On Channel Codes for Short Underwater Messages
Abstract
:1. Introduction
2. Scenario: Underwater Sensor Network
3. Competition
3.1. Task Description
- Both the average encoding and decoding time should be below a reference time which is based on fast Fourier transform (FFT) calculations for all signal-to-noise power ratios.
- The memory requirements of the encoder and decoder should be below 1 MB.
3.2. Evaluation of the Submitted Proposals
- Polar code with successive cancellation (SC) decoder and 4-PSK.
- Cyclic redundancy check (CRC) aided polar code with successive cancellation list (SCL) decoder and 4-PSK.
- LDPC code with 4-PSK.
- Non-binary LDPC code on GF(256) with 4-PSK.
- Reed–Solomon code with BPSK.
4. Polar Code
4.1. Successive Cancellation Decoding
- Calculate the LLRs of the upper branches of block C and D as and .
- As is frozen, the estimate .
- Calculate the LLR of the lower branch of block A as and estimate as .
- Propagate the decision on to determine and .
- Calculate the LLRs of the lower branches of block C and D as and .
- Calculate the LLR of the upper branch of block B as and estimate as .
- Use to calculate the LLR of the lower branch of block B as and estimate as .
4.2. Successive Cancellation List Decoder
5. Non-Binary Polar Codes and Influence of PSK Size
5.1. Polar Codes on GF(q)
Algorithm 1: funUpperBranch(,) |
Algorithm 2: funLowerBranch(,,) |
5.2. Results
6. Comparison to Other Codes
6.1. Tail-Biting Convolutional Code
6.2. Turbo Code
6.3. Results
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nissen, I. Burst communication—A solution for the underwater information management. Hydroacoustics 2015, 18, 113–126. [Google Scholar]
- Kebkal, V.; Kebkal, O.; Kebkal, K. Network coding for underwater acoustic sensor networks. In Proceedings of the 2013 MTS/IEEE OCEANS, Bergen, Norway, 10–14 June 2013; pp. 1–5. [Google Scholar] [CrossRef]
- Sprea, N.; Bashir, M.; Truhachev, D.; Srinivas, K.V.; Schlegel, C.; Sacchi, C. BATS Coding for Underwater Acoustic Communication Networks. In Proceedings of the OCEANS 2019, Marseille, France, 17–20 June 2019; pp. 1–10. [Google Scholar] [CrossRef]
- Wang, H.; Wang, S.; Zhang, E.; Zou, J. A network coding based hybrid ARQ protocol for underwater acoustic sensor networks. Sensors 2016, 16, 1444. [Google Scholar] [CrossRef] [PubMed]
- Barreto, G.; Simão, D.; Pellenz, M.; Souza, R.; Jamhour, E.; Penna, M.; Brante, G.; Chang, B. Energy-Efficient Channel Coding Strategy for Underwater Acoustic Networks. Sensors 2017, 17, 728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Behgam, M.; Zheng, Y.R.; Liu, Z. Coding for Short Messages in Multipath Underwater Acoustic Communication Channels. In Proceedings of the OCEANS 2018 MTS/IEEE Charleston, Charleston, SC, USA, 22–25 October 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Goalic, A.; Trubuil, J.; Beuzelin, N. Channel Coding for Underwater Acoustic Communication System. In Proceedings of the OCEANS 2006, Boston, MA, USA, 18–21 September 2006; pp. 1–4. [Google Scholar] [CrossRef]
- Xu, X.; Chen, Y.; Zhang, L.; Feng, W. Comparison of the performance of LDPC codes over different underwater acoustic channels. In Proceedings of the 2010 IEEE 12th International Conference on Communication Technology, Nanjing, China, 11–14 November 2010; pp. 155–158. [Google Scholar] [CrossRef]
- Wu, Y.; Zhu, M.; Zhu, W.; Xing, Z.; Xu, L.; Bo, Y. Nonbinary LDPC code for noncoherent underwater acoustic communication and its experiment results. In Proceedings of the 2013 OCEANS, San Diego, CA, USA, 23–27 September 2013; pp. 1–5. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, X.; Sun, H.; Chen, Y. Performance Analysis of IRA Codes for Underwater Acoustic OFDM Communication System. In Proceedings of the 2009 5th International Conference on Wireless Communications, Networking and Mobile Computing, Beijing, China, 24–26 September 2009; pp. 1–4. [Google Scholar] [CrossRef]
- Liu, L.; Wang, Y.; Li, L.; Zhang, X.; Wang, J. Design and implementation of channel coding for underwater acoustic system. In Proceedings of the 2009 IEEE 8th International Conference on ASIC, Changsha, China, 20–23 October 2009; pp. 497–500. [Google Scholar] [CrossRef]
- Chen, P.; Bai, B.; Ma, X. Two-stage polarization-based nonbinary polar codes for 5G URLLC. arXiv 2019, arXiv:1801.08059v2. [Google Scholar]
- Yuan, P.; Steiner, F. Construction and Decoding Algorithms for Polar Codes based on 2 × 2 Non-Binary Kernels. In Proceedings of the 2018 IEEE 10th International Symposium on Turbo Codes Iterative Information Processing (ISTC), Hong Kong, China, 3–7 December 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Goetz, M.; Nissen, I. GUWMANET—Multicast Routing in Underwater Acoustic Networks. In Proceedings of the Communications and Information Systems Conference (MCC), 2012 Military, Gdansk, Poland, 8–9 October 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 1–8. [Google Scholar]
- Van Walree, P.A. Propagation and Scattering Effects in Underwater Acoustic Communication Channels. IEEE J. Ocean. Eng. 2013, 38, 614–631. [Google Scholar] [CrossRef]
- Van Walree, P.A.; Socheleau, F.; Otnes, R.; Jenserud, T. The Watermark Benchmark for Underwater Acoustic Modulation Schemes. IEEE J. Ocean. Eng. 2017, 42, 1007–1018. [Google Scholar] [CrossRef] [Green Version]
- Falk, M.; Nissen, I.; Bauch, G. Wanted: Best Channel Codes for Short Underwater Messages. 2018. Available online: https://www.researchgate.net/profile/Melanie_Falk/publication/326378796_Wanted_Best_Channel_Codes_for_Short_Underwater_Messages/links/5c0a7a00a6fdcc494fe0b8f1/Wanted-Best-Channel-Codes-for-Short-Underwater-Messages.pdf (accessed on 15 April 2019).
- Reed, I.S.; Solomon, G. Polynomial codes over certain finite fields. J. Soc. Ind. Appl. Math. 1960, 8, 300–304. [Google Scholar] [CrossRef]
- Gallager, R. Low-density parity-check codes. IRE Trans. Inf. Theory 1962, 8, 21–28. [Google Scholar] [CrossRef] [Green Version]
- Davey, M.C.; MacKay, D.J.C. Low density parity check codes over GF(q). In Proceedings of the 1998 Information Theory Workshop (Cat. No.98EX131), Killarney, Ireland, 22–26 June 1998; pp. 70–71. [Google Scholar] [CrossRef]
- 3GPP TS 38.212 V15.0.0: Multiplexing and Channel Coding. 2017. Available online: 3gpp.org (accessed on 25 November 2019).
- Kasai, K.; Declercq, D.; Poulliat, C.; Sakaniwa, K. Multiplicatively Repeated Nonbinary LDPC Codes. IEEE Trans. Inf. Theory 2011, 57, 6788–6795. [Google Scholar] [CrossRef] [Green Version]
- Arikan, E. A performance comparison of polar codes and Reed-Muller codes. IEEE Commun. Lett. 2008, 12, 447–449. [Google Scholar] [CrossRef]
- Tal, I.; Vardy, A. List Decoding of Polar Codes. IEEE Trans. Inf. Theory 2015, 61, 2213–2226. [Google Scholar] [CrossRef]
- Yuan, P.; Prinz, T.; Boecherer, G.; Iscan, O.; Boehnke, R.; Xu, W. Polar Code Construction for List Decoding. In Proceedings of the 12th International ITG Conference on Systems, Communications and Coding (SCC 2019), Rostock, Germany, 11–14 February 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Arikan, E. Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels. IEEE Trans. Inf. Theory 2009, 55, 3051–3073. [Google Scholar] [CrossRef]
- Trifonov, P. Efficient Design and Decoding of Polar Codes. IEEE Trans. Commun. 2012, 60, 3221–3227. [Google Scholar] [CrossRef] [Green Version]
- Tal, I.; Vardy, A. How to Construct Polar Codes. IEEE Trans. Inf. Theory 2013, 59, 6562–6582. [Google Scholar] [CrossRef] [Green Version]
- Stark, M.; Shah, A.; Bauch, G. Polar code construction using the information bottleneck method. In Proceedings of the 2018 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), Barcelona, Spain, 15–18 April 2018; pp. 7–12. [Google Scholar] [CrossRef]
- Elkelesh, A.; Ebada, M.; Cammerer, S.; ten Brink, S. Genetic Algorithm-based Polar Code Construction for the AWGN Channel. In Proceedings of the 12th International ITG Conference on Systems, Communications and Coding (SCC 2019), Rostock, Germany, 11–14 February 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Balatsoukas-Stimming, A.; Parizi, M.B.; Burg, A. LLR-Based Successive Cancellation List Decoding of Polar Codes. IEEE Trans. Signal Process. 2015, 63, 5165–5179. [Google Scholar] [CrossRef] [Green Version]
- Sasoglu, E.; Telatar, E.; Arikan, E. Polarization for arbitrary discrete memoryless channels. In Proceedings of the 2009 IEEE Information Theory Workshop, Taormina, Italy, 11–16 October 2009; pp. 144–148. [Google Scholar] [CrossRef]
- Weiss, C.; Bettstetter, C.; Riedel, S. Code construction and decoding of parallel concatenated tail-biting codes. IEEE Trans. Inf. Theory 2001, 47, 366–386. [Google Scholar] [CrossRef]
- Shao, R.; Lin, S.; Fossorier, M. Two decoding algorithms for tailbiting codes. IEEE Trans. Commun. 2003, 51, 1658–1665. [Google Scholar] [CrossRef]
Name | Distance | Code Rate | ||
---|---|---|---|---|
2 | BPSK | 2 | 0.5 | 4 |
3 | 3-PSK | 1.732 | 0.316 | 5.47 |
4 | QPSK | 1.414 | 0.25 | 5.66 |
5 | 5-PSK | 1.176 | 0.219 | 5.37 |
6 | 6-PSK | 1 | 0.195 | 5.12 |
7 | 7-PSK | 0.868 | 0.180 | 4.83 |
8 | 8-PSK | 0.765 | 0.168 | 4.56 |
q | CRC Polynomial | |
---|---|---|
3 | 80 | |
5 | 55 | |
7 | 46 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Falk, M.; Bauch, G.; Nissen, I. On Channel Codes for Short Underwater Messages. Information 2020, 11, 58. https://doi.org/10.3390/info11020058
Falk M, Bauch G, Nissen I. On Channel Codes for Short Underwater Messages. Information. 2020; 11(2):58. https://doi.org/10.3390/info11020058
Chicago/Turabian StyleFalk, Melanie, Gerhard Bauch, and Ivor Nissen. 2020. "On Channel Codes for Short Underwater Messages" Information 11, no. 2: 58. https://doi.org/10.3390/info11020058
APA StyleFalk, M., Bauch, G., & Nissen, I. (2020). On Channel Codes for Short Underwater Messages. Information, 11(2), 58. https://doi.org/10.3390/info11020058