Analysis of Facial Information for Healthcare Applications: A Survey on Computer Vision-Based Approaches
Abstract
:1. Introduction
- to give an overview of the cutting-edge approaches that perform facial cue analysis in the healthcare area;
- to find critical aspects that rule the transfer of knowledge from academic, applied, and healthcare researches;
- to path the way for further researches in this challenging domain starting from the last exciting findings in machine learning and computer vision; and
- to point out benchmark datasets specifically built for the healthcare scenario.
2. Eye Analysis
- The USC eye-1 [88] dataset, designed to analyze the role of memory in visual interaction.
- The dataset presented in [89], containing behavioral and pupil size data from non-diagnosed controls and ADHD-diagnosed children performing a visuospatial working memory task.
- Saliency4ASD [72], made of eye movements of 14 children with Autism Spectrum Disorder (ASD) and 14 healthy controls, with the aim of evaluating specialized models to identify the individuals with ASD.
- Self-Stimulatory Behaviour Dataset (SSBD) [90], designed for the automatic behavior analysis in uncontrolled natural settings.
- Multimodal Dyadic Behavior Dataset [91], containing 160 sessions of 3–5 min semistructured play interaction between a trained adult examiner and a child between (15–30 months). The session aims at eliciting social attention, back-and-forth interaction, and non-verbal communication.
3. Facial Expression
- Ubiquitous healthcare systems
- Computational diagnosis and assessment of mental of facial diseases
- Machine-Assisted Rehabilitation
- Smart Environments
4. Soft/Hard Biometrics
5. Vital Parameters Monitoring
6. Visual Speech Recognition and Animation
7. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ross, M.A.; Graff, L.G. Principles of observation medicine. Emerg. Med. Clin. 2001, 19, 1–17. [Google Scholar] [CrossRef]
- Marco, L.; Farinella, G.M. Computer Vision for Assistive Healthcare, 1st ed.; Academic Press Ltd.: Cambridge, MA, USA, 2018. [Google Scholar]
- Omer, Y.; Sapir, R.; Hatuka, Y.; Yovel, G. What Is a Face? Critical Features for Face Detection. Perception 2019, 48, 437–446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, A.; Kaur, A.; Kumar, M. Face detection techniques: A review. Artif. Intell. Rev. 2019, 52, 927–948. [Google Scholar] [CrossRef]
- Sepas-Moghaddam, A.; Pereira, F.; Correia, P.L. Face recognition: A novel multi-level taxonomy based survey. arXiv 2019, arXiv:1901.00713. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Deng, W. Deep face recognition: A survey. arXiv 2018, arXiv:1804.06655. [Google Scholar]
- Sabharwal, T.; Gupta, R.; Kumar, R.; Jha, S. Recognition of surgically altered face images: An empirical analysis on recent advances. Artif. Intell. Rev. 2019, 52, 1009–1040. [Google Scholar] [CrossRef]
- Shafin, M.; Hansda, R.; Pallavi, E.; Kumar, D.; Bhattacharyya, S.; Kumar, S. Partial Face Recognition: A Survey. In Proceedings of the Third International Conference on Advanced Informatics for Computing Research, ICAICR ’19, Shimla, India, 15–16 June 2019. [Google Scholar]
- Rajput, S.S.; Arya, K.; Singh, V.; Bohat, V.K. Face Hallucination Techniques: A Survey. In Proceedings of the 2018 Conference on Information and Communication Technology (CICT), Jabalpur, India, 26–28 October 2018; pp. 1–6. [Google Scholar]
- Zhi, R.; Liu, M.; Zhang, D. A comprehensive survey on automatic facial action unit analysis. Vis. Comput. 2019, 1–27. [Google Scholar] [CrossRef]
- Mehta, D.; Siddiqui, M.; Javaid, A. Facial emotion recognition: A survey and real-world user experiences in mixed reality. Sensors 2018, 18, 416. [Google Scholar] [CrossRef] [Green Version]
- Tuba, M.; Alihodzic, A.; Bacanin, N. Cuckoo search and bat algorithm applied to training feed-forward neural networks. In Recent Advances in Swarm Intelligence and Evolutionary Computation; Springer: Berlin/Heidelberg, Germany, 2015; pp. 139–162. [Google Scholar]
- Liang, M.; Hu, X. Recurrent convolutional neural network for object recognition. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 3367–3375. [Google Scholar]
- Lee, C.Y.; Gallagher, P.W.; Tu, Z. Generalizing Pooling Functions in Convolutional Neural Networks: Mixed, Gated, and Tree. Proc. Mach. Learn. Res. 2016, 51, 464–472. [Google Scholar]
- Ilyas, A.; Santurkar, S.; Tsipras, D.; Engstrom, L.; Tran, B.; Madry, A. Adversarial examples are not bugs, they are features. In Advances in Neural Information Processing Systems; Neural Information Processing Systems Foundation, Inc.: South Lake Tahoe, NV, USA, 2019; pp. 125–136. [Google Scholar]
- Ghiasi, G.; Lin, T.; Le, Q.V. NAS-FPN: Learning Scalable Feature Pyramid Architecture for Object Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, 16–20 June 2019; pp. 7036–7045. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Eigen, D.; Dodge, S.; Zeiler, M.; Wang, X. Finding task-relevant features for few-shot learning by category traversal. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, 16–20 June 2019; pp. 1–10. [Google Scholar]
- Kornblith, S.; Shlens, J.; Le, Q.V. Do better imagenet models transfer better? In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, 16–20 June 2019; pp. 2661–2671. [Google Scholar]
- Cubuk, E.D.; Zoph, B.; Mane, D.; Vasudevan, V.; Le, Q.V. Autoaugment: Learning augmentation strategies from data. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, 16–20 June 2019; pp. 113–123. [Google Scholar]
- Chen, C.; Li, O.; Tao, D.; Barnett, A.; Rudin, C.; Su, J.K. This looks like that: Deep learning for interpretable image recognition. In Advances in Neural Information Processing Systems; Neural Information Processing Systems Foundation, Inc.: South Lake Tahoe, NV, USA, 2019; pp. 8928–8939. [Google Scholar]
- Fu, J.; Liu, J.; Tian, H.; Li, Y.; Bao, Y.; Fang, Z.; Lu, H. Dual attention network for scene segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, 16–20 June 2019; pp. 3146–3154. [Google Scholar]
- Wu, Z.; Shen, C.; Van Den Hengel, A. Wider or deeper: Revisiting the resnet model for visual recognition. Pattern Recognit. 2019, 90, 119–133. [Google Scholar] [CrossRef] [Green Version]
- Ma, C.Y.; Chen, M.H.; Kira, Z.; AlRegib, G. TS-LSTM and temporal-inception: Exploiting spatiotemporal dynamics for activity recognition. Signal Process. Image Commun. 2019, 71, 76–87. [Google Scholar] [CrossRef] [Green Version]
- Deng, J.; Guo, J.; Zhang, D.; Deng, Y.; Lu, X.; Shi, S. Lightweight Face Recognition Challenge. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Seoul, Korea, 27 October–2 November 2019. [Google Scholar]
- Dong, H.; Liang, X.; Shen, X.; Wang, B.; Lai, H.; Zhu, J.; Hu, Z.; Yin, J. Towards multi-pose guided virtual try-on network. In Proceedings of the IEEE International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 9026–9035. [Google Scholar]
- Zou, X.; Zhong, S.; Yan, L.; Zhao, X.; Zhou, J.; Wu, Y. Learning Robust Facial Landmark Detection via Hierarchical Structured Ensemble. In Proceedings of the IEEE International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 141–150. [Google Scholar]
- Zhang, Y.; Jiang, H.; Wu, B.; Fan, Y.; Ji, Q. Context-Aware Feature and Label Fusion for Facial Action Unit Intensity Estimation with Partially Labeled Data. In Proceedings of the IEEE International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 733–742. [Google Scholar]
- Sun, K.; Xiao, B.; Liu, D.; Wang, J. Deep High-Resolution Representation Learning for Human Pose Estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, 16–20 June 2019. [Google Scholar]
- Nguyen, T.N.; Meunier, J. Anomaly detection in video sequence with appearance-motion correspondence. In Proceedings of the IEEE International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 1273–1283. [Google Scholar]
- Farinella, G.M.; Leo, M.; Medioni, G.G.; Trivedi, M. Learning and Recognition for Assistive Computer Vision. Pattern Recognit. Lett. 2019. [Google Scholar] [CrossRef]
- Leo, M.; Furnari, A.; Medioni, G.G.; Trivedi, M.; Farinella, G.M. Deep Learning for Assistive Computer Vision. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 10–13 September 2018. [Google Scholar]
- Hossain, M.S. Patient State Recognition System for Healthcare Using Speech and Facial Expressions. J. Med. Syst. 2016, 40, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Hansen, D.W.; Ji, Q. In the eye of the beholder: A survey of models for eyes and gaze. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 32, 478–500. [Google Scholar] [CrossRef]
- Zhang, W.; Smith, M.L.; Smith, L.N.; Farooq, A. Gender and gaze gesture recognition for human–computer interaction. Comput. Vis. Image Underst. 2016, 149, 32–50. [Google Scholar] [CrossRef] [Green Version]
- Cazzato, D.; Dominio, F.; Manduchi, R.; Castro, S.M. Real-time gaze estimation via pupil center tracking. Paladyn, J. Behav. Robot. 2018, 9, 6–18. [Google Scholar] [CrossRef]
- Grillon, H.; Riquier, F.; Herbelin, B.; Thalmann, D. Use of Virtual Reality as Therapeutic Tool for Behavioural Exposure in the Ambit of Social. In Proceedings of the International Conference Series on Disability, Virtual Reality and Associated Technologies (ICDVRAT), Esbjerg, Denmark, 18–20 September 2006. [Google Scholar]
- Chennamma, H.; Yuan, X. A survey on eye-gaze tracking techniques. arXiv 2013, arXiv:1312.6410. [Google Scholar]
- Blondon, K.S.; Wipfli, R.; Lovis, C. Use of eye-tracking technology in clinical reasoning: A systematic review. In MIE; IOS Press: Amsterdam, The Netherlands, 2015; pp. 90–94. [Google Scholar]
- Krafka, K.; Khosla, A.; Kellnhofer, P.; Kannan, H.; Bhandarkar, S.; Matusik, W.; Torralba, A. Eye Tracking for Everyone. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 2176–2184. [Google Scholar]
- Guo, T.; Liu, Y.; Zhang, H.; Liu, X.; Kwak, Y.; In Yoo, B.; Han, J.J.; Choi, C. A Generalized and Robust Method Towards Practical Gaze Estimation on Smart Phone. In Proceedings of the IEEE International Conference on Computer Vision Workshops, Seoul, Korea, 27 October–2 November 2019. [Google Scholar]
- Fischer, T.; Jin Chang, H.; Demiris, Y. Rt-gene: Real-time eye gaze estimation in natural environments. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 10–13 September 2018; pp. 334–352. [Google Scholar]
- Palmero, C.; Selva, J.; Bagheri, M.A.; Escalera, S. Recurrent cnn for 3d gaze estimation using appearance and shape cues. arXiv 2018, arXiv:1805.03064. [Google Scholar]
- Funes Mora, K.A.; Monay, F.; Odobez, J.M. Eyediap: A database for the development and evaluation of gaze estimation algorithms from rgb and rgb-d cameras. In Proceedings of the Symposium on Eye Tracking Research and Applications, Safety Harbor, FL, USA, 26–28 March 2014; pp. 255–258. [Google Scholar]
- Baltrušaitis, T.; Robinson, P.; Morency, L.P. Openface: An open source facial behavior analysis toolkit. In Proceedings of the 2016 IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Placid, NY, USA, 7–10 March 2016; pp. 1–10. [Google Scholar]
- Nguyen, T.H.D.; Richards, M.; El-Nasr, M.S.; Isaacowitz, D.M. A Visual Analytic System for Comparing Attention Patterns in Eye-Tracking Data. In Proceedings of the ETVIS 2015, Chicago, IL, USA, 25 October 2015. [Google Scholar]
- Newman, K.R.; Sears, C.R. Eye gaze tracking reveals different effects of a sad mood induction on the attention of previously depressed and never depressed women. Cogn. Ther. Res. 2015, 39, 292–306. [Google Scholar] [CrossRef]
- Alghowinem, S.; Goecke, R.; Wagner, M.; Epps, J.; Hyett, M.; Parker, G.; Breakspear, M. Multimodal depression detection: Fusion analysis of paralinguistic, head pose and eye gaze behaviors. IEEE Trans. Affect. Comput. 2016, 9, 478–490. [Google Scholar] [CrossRef]
- Cazzato, D.; Leo, M.; Distante, C. An investigation on the feasibility of uncalibrated and unconstrained gaze tracking for human assistive applications by using head pose estimation. Sensors 2014, 14, 8363–8379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Browning, M.; Cooper, S.; Cant, R.; Sparkes, L.; Bogossian, F.; Williams, B.; O’Meara, P.; Ross, L.; Munro, G.; Black, B. The use and limits of eye-tracking in high-fidelity clinical scenarios: A pilot study. Int. Emerg. Nurs. 2016, 25, 43–47. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.H.; Fu, H.; Lo, W.L.; Chi, Z.; Xu, B. Eye-tracking-aided digital system for strabismus diagnosis. Healthc. Technol. Lett. 2018, 5, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Samadani, U.; Ritlop, R.; Reyes, M.; Nehrbass, E.; Li, M.; Lamm, E.; Schneider, J.; Shimunov, D.; Sava, M.; Kolecki, R.; et al. Eye tracking detects disconjugate eye movements associated with structural traumatic brain injury and concussion. J. Neurotrauma 2015, 32, 548–556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caplan, B.; Bogner, J.; Brenner, L.; Hunt, A.W.; Mah, K.; Reed, N.; Engel, L.; Keightley, M. Oculomotor-based vision assessment in mild traumatic brain injury: A systematic review. J. Head Trauma Rehabil. 2016, 31, 252–261. [Google Scholar]
- Kumar, D.; Dutta, A.; Das, A.; Lahiri, U. Smarteye: Developing a novel eye tracking system for quantitative assessment of oculomotor abnormalities. IEEE Trans. Neural Syst. Rehabil. Eng. 2016, 24, 1051–1059. [Google Scholar] [CrossRef]
- O’Meara, P.; Munro, G.; Williams, B.; Cooper, S.; Bogossian, F.; Ross, L.; Sparkes, L.; Browning, M.; McClounan, M. Developing situation awareness amongst nursing and paramedicine students utilizing eye tracking technology and video debriefing techniques: A proof of concept paper. Int. Emerg. Nurs. 2015, 23, 94–99. [Google Scholar] [CrossRef] [Green Version]
- Farandos, N.M.; Yetisen, A.K.; Monteiro, M.J.; Lowe, C.R.; Yun, S.H. Contact lens sensors in ocular diagnostics. Adv. Healthc. Mater. 2015, 4, 792–810. [Google Scholar] [CrossRef]
- Leo, M.; Medioni, G.; Trivedi, M.; Kanade, T.; Farinella, G.M. Computer vision for assistive technologies. Comput. Vis. Image Underst. 2017, 154, 1–15. [Google Scholar] [CrossRef]
- Ruminski, J.; Bujnowski, A.; Kocejko, T.; Andrushevich, A.; Biallas, M.; Kistler, R. The data exchange between smart glasses and healthcare information systems using the HL7 FHIR standard. In Proceedings of the 2016 9th International Conference on Human System Interactions (HSI), Portsmouth, UK, 6–8 July 2016; pp. 525–531. [Google Scholar]
- Ortis, A.; Farinella, G.M.; D’Amico, V.; Addesso, L.; Torrisi, G.; Battiato, S. Organizing egocentric videos for daily living monitoring. In Proceedings of the first Workshop on Lifelogging Tools and Applications, Amsterdam, The Netherlands, 15–19 October 2016; pp. 45–54. [Google Scholar]
- Ortis, A.; Farinella, G.M.; D’Amico, V.; Addesso, L.; Torrisi, G.; Battiato, S. Organizing egocentric videos of daily living activities. Pattern Recognit. 2017, 72, 207–218. [Google Scholar] [CrossRef]
- Wu, H.; Wang, B.; Yu, X.; Zhao, Y.; Cheng, Q. Explore on Doctor’s Head Orientation Tracking for Patient’s Body Surface Projection Under Complex Illumination Conditions. J. Med Imaging Health Inform. 2019, 9, 1971–1977. [Google Scholar] [CrossRef]
- Celiktutan, O.; Demiris, Y. Inferring Human Knowledgeability from Eye Gaze in Mobile Learning Environments. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 10–13 September 2018. [Google Scholar]
- Su, Y.C.; Grauman, K. Detecting engagement in egocentric video. In European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2016; pp. 454–471. [Google Scholar]
- Barz, M.; Sonntag, D. Gaze-guided object classification using deep neural networks for attention-based computing. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct, Heidelberg, Germany, 12–16 September 2016; pp. 253–256. [Google Scholar]
- Pelphrey, K.A.; Sasson, N.J.; Reznick, J.S.; Paul, G.; Goldman, B.D.; Piven, J. Visual scanning of faces in autism. J. Autism Dev. Disord. 2002, 32, 249–261. [Google Scholar] [CrossRef] [PubMed]
- Frazier, T.W.; Strauss, M.; Klingemier, E.W.; Zetzer, E.E.; Hardan, A.Y.; Eng, C.; Youngstrom, E.A. A meta-analysis of gaze differences to social and nonsocial information between individuals with and without autism. J. Am. Acad. Child Adolesc. Psychiatry 2017, 56, 546–555. [Google Scholar] [CrossRef] [PubMed]
- Dawson, G.; Toth, K.; Abbott, R.; Osterling, J.; Munson, J.; Estes, A.; Liaw, J. Early social attention impairments in autism: Social orienting, joint attention, and attention to distress. Dev. Psychol. 2004, 40, 271. [Google Scholar] [CrossRef] [Green Version]
- Higuchi, K.; Matsuda, S.; Kamikubo, R.; Enomoto, T.; Sugano, Y.; Yamamoto, J.; Sato, Y. Visualizing Gaze Direction to Support Video Coding of Social Attention for Children with Autism Spectrum Disorder. In Proceedings of the 23rd International Conference on Intelligent User Interfaces, Tokyo, Japen, 7–11 March 2018; pp. 571–582. [Google Scholar]
- Hashemi, J.; Tepper, M.; Vallin Spina, T.; Esler, A.; Morellas, V.; Papanikolopoulos, N.; Egger, H.; Dawson, G.; Sapiro, G. Computer vision tools for low-cost and noninvasive measurement of autism-related behaviors in infants. Autism Res. Treat. 2014, 2014, 935686. [Google Scholar] [CrossRef] [Green Version]
- Cazzato, D.; Leo, M.; Distante, C.; Crifaci, G.; Bernava, G.; Ruta, L.; Pioggia, G.; Castro, S. An Ecological Visual Exploration Tool to Support the Analysis of Visual Processing Pathways in Children with Autism Spectrum Disorders. J. Imaging 2018, 4, 9. [Google Scholar] [CrossRef] [Green Version]
- Rudovic, O.; Lee, J.; Dai, M.; Schuller, B.; Picard, R.W. Personalized machine learning for robot perception of affect and engagement in autism therapy. Sci. Robot. 2018, 3, eaao6760. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Zhao, Q. Attention-Based Autism Spectrum Disorder Screening With Privileged Modality. In Proceedings of the IEEE International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 1181–1190. [Google Scholar]
- Duan, H.; Zhai, G.; Min, X.; Che, Z.; Fang, Y.; Yang, X.; Gutiérrez, J.; Callet, P.L. A dataset of eye movements for the children with autism spectrum disorder. In Proceedings of the 10th ACM Multimedia Systems Conference, Istanbul, Turkey, 18–21 June 2019; pp. 255–260. [Google Scholar]
- Pandey, P.; AP, P.; Kohli, M.; Pritchard, J. Guided weak supervision for action recognition with scarce data to assess skills of children with autism. arXiv 2019, arXiv:1911.04140. [Google Scholar]
- Meltzoff, A.N.; Brooks, R.; Shon, A.P.; Rao, R.P. “Social” robots are psychological agents for infants: A test of gaze following. Neural Netw. 2010, 23, 966–972. [Google Scholar] [CrossRef]
- Mutlu, B.; Shiwa, T.; Kanda, T.; Ishiguro, H.; Hagita, N. Footing in human-robot conversations: How robots might shape participant roles using gaze cues. In Proceedings of the 4th ACM/IEEE International Conference on Human Robot Interaction, La Jolla, CA, USA, 9–13 March 2009; pp. 61–68. [Google Scholar]
- Cai, H.; Fang, Y.; Ju, Z.; Costescu, C.; David, D.; Billing, E.; Ziemke, T.; Thill, S.; Belpaeme, T.; Vanderborght, B.; et al. Sensing-enhanced therapy system for assessing children with autism spectrum disorders: A feasibility study. IEEE Sens. J. 2018, 19, 1508–1518. [Google Scholar] [CrossRef] [Green Version]
- Anzalone, S.M.; Tilmont, E.; Boucenna, S.; Xavier, J.; Jouen, A.L.; Bodeau, N.; Maharatna, K.; Chetouani, M.; Cohen, D.; MICHELANGELO Study Group. How children with autism spectrum disorder behave and explore the 4-dimensional (spatial 3D+ time) environment during a joint attention induction task with a robot. Res. Autism Spectr. Disord. 2014, 8, 814–826. [Google Scholar] [CrossRef]
- Pan, Y.; Hirokawa, M.; Suzuki, K. Measuring k-degree facial interaction between robot and children with autism spectrum disorders. In Proceedings of the 24th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), Kobe, Japan, 31 August–4 September 2015; pp. 48–53. [Google Scholar]
- Cazzato, D.; Mazzeo, P.L.; Spagnolo, P.; Distante, C. Automatic joint attention detection during interaction with a humanoid robot. In International Conference on Social Robotics; Springer: Berlin/Heidelberg, Germany, 2015; pp. 124–134. [Google Scholar]
- Baltrušaitis, T.; Robinson, P.; Morency, L.P. 3D constrained local model for rigid and non-rigid facial tracking. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 2610–2617. [Google Scholar]
- Venturelli, M.; Borghi, G.; Vezzani, R.; Cucchiara, R. From depth data to head pose estimation: A siamese approach. arXiv 2017, arXiv:1703.03624. [Google Scholar]
- Sun, L.; Liu, Z.; Sun, M.T. Real time gaze estimation with a consumer depth camera. Inf. Sci. 2015, 320, 346–360. [Google Scholar] [CrossRef]
- Fanelli, G.; Dantone, M.; Gall, J.; Fossati, A.; Van Gool, L. Random forests for real time 3d face analysis. Int. J. Comput. Vis. 2013, 101, 437–458. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Cai, H.; Li, Y.; Liu, H. Two-eye model-based gaze estimation from a Kinect sensor. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 1646–1653. [Google Scholar]
- Zhang, X.; Sugano, Y.; Fritz, M.; Bulling, A. Mpiigaze: Real-world dataset and deep appearance-based gaze estimation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 41, 162–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, X.; Lin, J.; Jiang, J.; Chen, S. Learning A 3D Gaze Estimator with Improved Itracker Combined with Bidirectional LSTM. In Proceedings of the 2019 IEEE International Conference on Multimedia and Expo (ICME), Shanghai, China, 8–12 July 2019; pp. 850–855. [Google Scholar]
- Liu, G.; Yu, Y.; Mora, K.A.F.; Odobez, J.M. A Differential Approach for Gaze Estimation with Calibration. In Proceedings of the 2018 BMVC, Newcastle, UK, 3–6 September 2018. [Google Scholar]
- CRCNS. Collaborative Research in Computational Neuroscience: Eye-1. 2008. Available online: https://crcns.org/data-sets/eye/eye-1 (accessed on 23 January 2020).
- Rojas-Líbano, D.; Wainstein, G.; Carrasco, X.; Aboitiz, F.; Crossley, N.; Ossandón, T. A pupil size, eye-tracking and neuropsychological dataset from ADHD children during a cognitive task. Sci. Data 2019, 6, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Rajagopalan, S.; Dhall, A.; Goecke, R. Self-stimulatory behaviours in the wild for autism diagnosis. In Proceedings of the IEEE International Conference on Computer Vision Workshops, Sydney, NSW, Australia, 1–8 December 2013; pp. 755–761. [Google Scholar]
- Rehg, J.; Abowd, G.; Rozga, A.; Romero, M.; Clements, M.; Sclaroff, S.; Essa, I.; Ousley, O.; Li, Y.; Kim, C.; et al. Decoding children’s social behavior. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Oregon, Portland, 25–27 June 2013; pp. 3414–3421. [Google Scholar]
- Corneanu, C.A.; Simón, M.O.; Cohn, J.F.; Guerrero, S.E. Survey on rgb, 3d, thermal, and multimodal approaches for facial expression recognition: History, trends, and affect-related applications. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 1548–1568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.; Deng, W. Deep facial expression recognition: A survey. arXiv 2018, arXiv:1804.08348. [Google Scholar] [CrossRef] [Green Version]
- Ding, H.; Zhou, S.K.; Chellappa, R. Facenet2expnet: Regularizing a deep face recognition net for expression recognition. In Proceedings of the 2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017), Washington, DC, USA, 30 May–3 June 2017; pp. 118–126. [Google Scholar]
- Lucey, P.; Cohn, J.F.; Kanade, T.; Saragih, J.; Ambadar, Z.; Matthews, I. The extended cohn-kanade dataset (ck+): A complete dataset for action unit and emotion-specified expression. In Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, San Francisco, CA, USA, 13–18 June 2010; pp. 94–101. [Google Scholar]
- Dhall, A.; Ramana Murthy, O.; Goecke, R.; Joshi, J.; Gedeon, T. Video and image based emotion recognition challenges in the wild: Emotiw 2015. In Proceedings of the 2015 ACM on International Conference on Multimodal Interaction, Seattle, WA, USA, 9–13 November 2015; pp. 423–426. [Google Scholar]
- Kim, B.K.; Lee, H.; Roh, J.; Lee, S.Y. Hierarchical committee of deep cnns with exponentially-weighted decision fusion for static facial expression recognition. In Proceedings of the 2015 ACM on International Conference on Multimodal Interaction, Seattle, WA, USA, 9–13 November 2015; pp. 427–434. [Google Scholar]
- Pei, E.; Jiang, D.; Sahli, H. An efficient model-level fusion approach for continuous affect recognition from audiovisual signals. Neurocomputing 2020, 376, 42–53. [Google Scholar] [CrossRef]
- Du, Z.; Wu, S.; Huang, D.; Li, W.; Wang, Y. Spatio-Temporal Encoder-Decoder Fully Convolutional Network for Video-based Dimensional Emotion Recognition. IEEE Trans. Affect. Comput. 2019, in press. [Google Scholar] [CrossRef]
- Chen, M.; Yang, J.; Hao, Y.; Mao, S.; Hwang, K. A 5G cognitive system for healthcare. Big Data Cogn. Comput. 2017, 1, 2. [Google Scholar] [CrossRef]
- Hossain, M.S.; Muhammad, G. Emotion-aware connected healthcare big data towards 5G. IEEE Internet Things J. 2017, 5, 2399–2406. [Google Scholar] [CrossRef]
- Shan, C.; Gong, S.; McOwan, P.W. Robust facial expression recognition using local binary patterns. In Proceedings of the IEEE International Conference on Image Processing 2005, Genoa, Italy, 11–14 September 2005. [Google Scholar]
- Alamri, A. Monitoring system for patients using multimedia for smart healthcare. IEEE Access 2018, 6, 23271–23276. [Google Scholar] [CrossRef]
- Leo, M.; Carcagnì, P.; Distante, C.; Spagnolo, P.; Mazzeo, P.; Rosato, A.; Petrocchi, S.; Pellegrino, C.; Levante, A.; De Lumè, F.; et al. Computational Assessment of Facial Expression Production in ASD Children. Sensors 2018, 18, 3993. [Google Scholar] [CrossRef] [Green Version]
- Leo, M.; Carcagnì, P.; Distante, C.; Mazzeo, P.L.; Spagnolo, P.; Levante, A.; Petrocchi, S.; Lecciso, F. Computational Analysis of Deep Visual Data for Quantifying Facial Expression Production. Appl. Sci. 2019, 9, 4542. [Google Scholar] [CrossRef] [Green Version]
- Storey, G.; Bouridane, A.; Jiang, R.; Li, C.t. Atypical Facial Landmark Localisation with Stacked Hourglass Networks: A Study on 3D Facial Modelling for Medical Diagnosis. arXiv 2019, arXiv:1909.02157. [Google Scholar]
- Lee, J.; Park, S.H.; Ju, J.H.; Cho, J.H. Application of a real-time pain monitoring system in Korean fibromyalgia patients: A pilot study. Int. J. Rheum. Dis. 2019, 22, 934–939. [Google Scholar] [CrossRef]
- Chen, Z.; Ansari, R.; Wilkie, D. Learning pain from action unit combinations: A weakly supervised approach via multiple instance learning. In Proceedings of the 8th IEEE Transactions on Affective Computing, Oldenburg, Germany, 31 December 2019. [Google Scholar]
- Maria, E.; Matthias, L.; Sten, H. Emotion Recognition from Physiological Signal Analysis: A Review. Electron. Notes Theor. Comput. Sci. 2019, 343, 35–55. [Google Scholar]
- Leo, M.; Del Coco, M.; Carcagni, P.; Distante, C.; Bernava, M.; Pioggia, G.; Palestra, G. Automatic emotion recognition in robot-children interaction for ASD treatment. In Proceedings of the IEEE International Conference on Computer Vision Workshops, Santiago, Chile, 7–13 December 2015; pp. 145–153. [Google Scholar]
- Del Coco, M.; Leo, M.; Carcagnì, P.; Fama, F.; Spadaro, L.; Ruta, L.; Pioggia, G.; Distante, C. Study of mechanisms of social interaction stimulation in autism spectrum disorder by assisted humanoid robot. IEEE Trans. Cogn. Dev. Syst. 2017, 10, 993–1004. [Google Scholar] [CrossRef]
- Yang, J.; Wang, R.; Guan, X.; Hassan, M.M.; Almogren, A.; Alsanad, A. AI-enabled emotion-aware robot: The fusion of smart clothing, edge clouds and robotics. Future Gener. Comput. Syst. 2020, 102, 701–709. [Google Scholar] [CrossRef]
- Greche, L.; Akil, M.; Kachouri, R.; Es-Sbai, N. A new pipeline for the recognition of universal expressions of multiple faces in a video sequence. J. Real-Time Image Process. 2019, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Yu, M.; Zheng, H.; Peng, Z.; Dong, J.; Du, H. Facial expression recognition based on a multi-task global-local network. Pattern Recognit. Lett. 2020, 131, 166–171. [Google Scholar] [CrossRef]
- Kherchaoui, S.; Houacine, A. Facial expression identification using gradient local phase. Multimed. Tools Appl. 2019, 78, 16843–16859. [Google Scholar] [CrossRef]
- Andriluka, M.; Pishchulin, L.; Gehler, P.; Schiele, B. 2d human pose estimation: New benchmark and state-of-the-art analysis. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, 16–20 June 2019; pp. 3686–3693. [Google Scholar]
- Newell, A.; Yang, K.; Deng, J. Stacked hourglass networks for human pose estimation. In European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2016; pp. 483–499. [Google Scholar]
- Tang, W.; Wu, Y. Does Learning Specific Features for Related Parts Help Human Pose Estimation? In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, 16–20 June 2019; pp. 1107–1116. [Google Scholar]
- Kanade, T.; Cohn, J.F.; Tian, Y. Comprehensive database for facial expression analysis. In Proceedings of the Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580), Buenos Aires, Argentina, 18–22 May 2000; pp. 46–53. [Google Scholar]
- Bartlett, M.S.; Littlewort, G.; Frank, M.; Lainscsek, C.; Fasel, I.; Movellan, J. Fully Automatic Facial Action Recognition in Spontaneous Behavior. In Proceedings of the 7th International Conference on Automatic Face and Gesture Recognition (FGR06), Southampton, UK, 10–12 April 2006; pp. 223–230. [Google Scholar] [CrossRef]
- Valstar, M.F.; Almaev, T.; Girard, J.M.; McKeown, G.; Mehu, M.; Yin, L.; Pantic, M.; Cohn, J.F. Fera 2015-second facial expression recognition and analysis challenge. In Proceedings of the 2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG), Ljubljana, Slovenia, 4–8 May 2015; pp. 1–8. [Google Scholar]
- Zhang, Y.; Wu, B.; Dong, W.; Li, Z.; Liu, W.; Hu, B.G.; Ji, Q. Joint representation and estimator learning for facial action unit intensity estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, 16–20 June 2019; pp. 3457–3466. [Google Scholar]
- Brahnam, S.; Nanni, L.; McMurtrey, S.; Lumini, A.; Brattin, R.; Slack, M.; Barrier, T. Neonatal pain detection in videos using the iCOPEvid dataset and an ensemble of descriptors extracted from Gaussian of Local Descriptors. Appl. Comput. Inform. 2019, in press. [Google Scholar] [CrossRef]
- Aung, M.S.; Kaltwang, S.; Romera-Paredes, B.; Martinez, B.; Singh, A.; Cella, M.; Valstar, M.; Meng, H.; Kemp, A.; Shafizadeh, M.; et al. The automatic detection of chronic pain-related expression: Requirements, challenges and the multimodal EmoPain dataset. IEEE Trans. Affect. Comput. 2015, 7, 435–451. [Google Scholar] [CrossRef] [Green Version]
- Lucey, P.; Cohn, J.F.; Prkachin, K.M.; Solomon, P.E.; Matthews, I. Painful data: The UNBC-McMaster shoulder pain expression archive database. In Proceedings of the Face and Gesture, Santa Barbara, CA, USA, 21–25 March 2011; pp. 57–64. [Google Scholar]
- Ringeval, F.; Schuller, B.; Valstar, M.; Cummins, N.; Cowie, R.; Tavabi, L.; Schmitt, M.; Alisamir, S.; Amiriparian, S.; Messner, E.M.; et al. AVEC 2019 workshop and challenge: State-of-mind, detecting depression with AI, and cross-cultural affect recognition. In Proceedings of the 9th International on Audio/Visual Emotion Challenge and Workshop, Nice, France, 21 October 2019; pp. 3–12.
- Carcagnì, P.; Cazzato, D.; Del Coco, M.; Distante, C.; Leo, M. Visual interaction including biometrics information for a socially assistive robotic platform. In European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2014; pp. 391–406. [Google Scholar]
- Tapus, A.; Tapus, C.; Mataric, M.J. The use of socially assistive robots in the design of intelligent cognitive therapies for people with dementia. In Proceedings of the 2009 IEEE International Conference on Rehabilitation Robotics, Kyoto, Japan, 23–26 June 2009; pp. 924–929. [Google Scholar]
- Bemelmans, R.; Gelderblom, G.J.; Jonker, P.; De Witte, L. Socially assistive robots in elderly care: A systematic review into effects and effectiveness. J. Am. Med Dir. Assoc. 2012, 13, 114–120. [Google Scholar] [CrossRef]
- Tapus, A.; Mataric, M.J. Towards socially assistive robotics. J. Robot. Soc. Jpn. 2006, 24, 576–578. [Google Scholar] [CrossRef] [Green Version]
- Moore, D. Computers and people with autism. Asperger Syndr. 1998, 20–21. [Google Scholar]
- Moore, D.; McGrath, P.; Thorpe, J. Computer-aided learning for people with autism–a framework for research and development. Innov. Educ. Train. Int. 2000, 37, 218–228. [Google Scholar] [CrossRef]
- Tapus, A.; Ţăpuş, C.; Matarić, M.J. User—robot personality matching and assistive robot behavior adaptation for post-stroke rehabilitation therapy. Intell. Serv. Robot. 2008, 1, 169. [Google Scholar] [CrossRef]
- Jain, A.K.; Dass, S.C.; Nandakumar, K. Soft biometric traits for personal recognition systems. In International Conference on Biometric Authentication; Springer: Berlin/Heidelberg, Germany, 2004; pp. 731–738. [Google Scholar]
- Carcagnì, P.; Cazzato, D.; Del Coco, M.; Mazzeo, P.L.; Leo, M.; Distante, C. Soft biometrics for a socially assistive robotic platform. Paladyn. J. Behav. Robot. 2015, 6, 71–84. [Google Scholar] [CrossRef] [Green Version]
- Carcagnì, P.; Del Coco, M.; Cazzato, D.; Leo, M.; Distante, C. A study on different experimental configurations for age, race, and gender estimation problems. EURASIP J. Image Video Process. 2015, 2015, 37. [Google Scholar] [CrossRef] [Green Version]
- Levi, G.; Hassner, T. Age and gender classification using convolutional neural networks. In Proceedings of the iEEE Conference on Computer Vision and Pattern Recognition Workshops, Boston, MA, USA, 7–12 June 2015; pp. 34–42. [Google Scholar]
- Li, W.; Lu, J.; Feng, J.; Xu, C.; Zhou, J.; Tian, Q. BridgeNet: A Continuity-Aware Probabilistic Network for Age Estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, 16–20 June 2019; pp. 1145–1154. [Google Scholar]
- Shen, W.; Guo, Y.; Wang, Y.; Zhao, K.; Wang, B.; Yuille, A.L. Deep regression forests for age estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2018; pp. 2304–2313. [Google Scholar]
- Pan, H.; Han, H.; Shan, S.; Chen, X. Mean-variance loss for deep age estimation from a face. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2018; pp. 5285–5294. [Google Scholar]
- Schroff, F.; Kalenichenko, D.; Philbin, J. Facenet: A unified embedding for face recognition and clustering. In Proceedings of the IEEE Conference on Computer Vision and pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 815–823. [Google Scholar]
- Parkhi, O.M.; Vedaldi, A.; Zisserman, A. Deep face recognition. In Proceedings of the British Machine Vision Conference, BMVC, Swansea, UK, 7–10 September 2015; p. 6. [Google Scholar]
- Wu, X.; He, R.; Sun, Z.; Tan, T. A light cnn for deep face representation with noisy labels. IEEE Trans. Inf. Forensics Secur. 2018, 13, 2884–2896. [Google Scholar] [CrossRef] [Green Version]
- Wen, Y.; Zhang, K.; Li, Z.; Qiao, Y. A discriminative feature learning approach for deep face recognition. In European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2016; pp. 499–515. [Google Scholar]
- Deng, J.; Guo, J.; Xue, N.; Zafeiriou, S. Arcface: Additive angular margin loss for deep face recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, 16–20 June 2019; pp. 4690–4699. [Google Scholar]
- Wu, T.; Blazek, V.; Schmitt, H.J. Photoplethysmography imaging: A new noninvasive and noncontact method for mapping of the dermal perfusion changes. In Optical Techniques and Instrumentation for the Measurement of Blood Composition, Structure, and Dynamics; Priezzhev, A.V., Oberg, P.A., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2000; Volume 4163, pp. 62–70. [Google Scholar] [CrossRef]
- Trumpp, A.; Lohr, J.; Wedekind, D.; Schmidt, M.; Burghardt, M.; Heller, A.R.; Malberg, H.; Zaunseder, S. Camera-based photoplethysmography in an intraoperative setting. Biomed. Eng. Online 2018, 17, 33. [Google Scholar] [CrossRef] [Green Version]
- Kamshilin, A.A.; Volynsky, M.A.; Khayrutdinova, O.; Nurkhametova, D.; Babayan, L.; Amelin, A.V.; Mamontov, O.V.; Giniatullin, R. Novel capsaicin-induced parameters of microcirculation in migraine patients revealed by imaging photoplethysmography. J. Headache Pain 2018, 19, 43. [Google Scholar] [CrossRef] [Green Version]
- Hochhausen, N.; Pereira, C.B.; Leonhardt, S.; Rossaint, R.; Czaplik, M. Estimating Respiratory Rate in Post-Anesthesia Care Unit Patients Using Infrared Thermography: An Observational Study. Sensors 2018, 18, 168. [Google Scholar] [CrossRef] [Green Version]
- Tulyakov, S.; Alameda-Pineda, X.; Ricci, E.; Yin, L.; Cohn, J.F.; Sebe, N. Self-Adaptive Matrix Completion for Heart Rate Estimation from Face Videos under Realistic Conditions. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 2396–2404. [Google Scholar] [CrossRef] [Green Version]
- Pursche, T.; Clauß, R.; Tibken, B.; Möller, R. Using neural networks to enhance the quality of ROIs for video based remote heart rate measurement from human faces. In Proceedings of the 2019 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 11–13 January 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Qiu, Y.; Liu, Y.; Arteaga-Falconi, J.; Dong, H.; Saddik, A.E. EVM-CNN: Real-Time Contactless Heart Rate Estimation From Facial Video. IEEE Trans. Multimed. 2019, 21, 1778–1787. [Google Scholar] [CrossRef]
- Chauvin, R.; Hamel, M.; Brière, S.; Ferland, F.; Grondin, F.; Létourneau, D.; Tousignant, M.; Michaud, F. Contact-Free Respiration Rate Monitoring Using a Pan–Tilt Thermal Camera for Stationary Bike Telerehabilitation Sessions. IEEE Syst. J. 2016, 10, 1046–1055. [Google Scholar] [CrossRef]
- Kalal, Z.; Mikolajczyk, K.; Matas, J. Face-tld: Tracking-learning-detection applied to faces. In Proceedings of the 2010 IEEE International Conference on Image Processing, Hong Kong, China, 26–29 September 2010; pp. 3789–3792. [Google Scholar]
- Pereira, C.B.; Yu, X.; Czaplik, M.; Blazek, V.; Venema, B.; Leonhardt, S. Estimation of breathing rate in thermal imaging videos: A pilot study on healthy human subjects. J. Clin. Monit. Comput. 2016, 31, 1241–1254. [Google Scholar] [CrossRef]
- Wedekind, D.; Trumpp, A.; Gaetjen, F.; Rasche, S.; Matschke, K.; Malberg, H.; Zaunseder, S. Assessment of blind source separation techniques for video-based cardiac pulse extraction. J. Biomed. Opt. 2017, 223, 35002. [Google Scholar] [CrossRef] [Green Version]
- Cao, L.; Chua, K.S.; Chong, W.; Lee, H.; Gu, Q. A comparison of PCA, KPCA and ICA for dimensionality reduction in support vector machine. Neurocomputing 2003, 55, 321–336. [Google Scholar] [CrossRef]
- Chwyl, B.; Chung, A.G.; Amelard, R.; Deglint, J.; Clausi, D.A.; Wong, A. SAPPHIRE: Stochastically acquired photoplethysmogram for heart rate inference in realistic environments. In Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; pp. 1230–1234. [Google Scholar] [CrossRef]
- Wang, W.; den Brinker, A.C.; Stuijk, S.; de Haan, G. Algorithmic Principles of Remote PPG. IEEE Trans. Biomed. Eng. 2017, 64, 1479–1491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, Y.; Bianchi-Berthouze, N.; Julier, S.J. DeepBreath: Deep learning of breathing patterns for automatic stress recognition using low-cost thermal imaging in unconstrained settings. In Proceedings of the 2017 Seventh International Conference on Affective Computing and Intelligent Interaction (ACII), San Antonio, TX, USA, 23–26 October 2017. [Google Scholar] [CrossRef] [Green Version]
- Villarroel, M.; Jorge, J.; Pugh, C.; Tarassenko, L. Non-Contact Vital Sign Monitoring in the Clinic. In Proceedings of the 2017 12th IEEE International Conference on Automatic Face Gesture Recognition (FG 2017), Washington, DC, USA, 30 May–3 June 2017; pp. 278–285. [Google Scholar] [CrossRef]
- Rubins, U.; Spigulis, J.; Miščuks, A. Photoplethysmography imaging algorithm for continuous monitoring of regional anesthesia. In Proceedings of the 2016 14th ACM/IEEE Symposium on Embedded Systems For Real-time Multimedia (ESTIMedia), New York, NY, USA, 27 June–8 July 2016; pp. 1–5. [Google Scholar]
- Chaichulee, S.; Villarroel, M.; Jorge, J.; Arteta, C.; Green, G.; McCormick, K.; Zisserman, A.; Tarassenko, L. Multi-Task Convolutional Neural Network for Patient Detection and Skin Segmentation in Continuous Non-Contact Vital Sign Monitoring. In Proceedings of the 2017 12th IEEE International Conference on Automatic Face Gesture Recognition (FG 2017), Washington, DC, USA, 30 May–3 June 2017; pp. 266–272. [Google Scholar] [CrossRef]
- Jorge, J.; Villarroel, M.; Chaichulee, S.; Guazzi, A.; Davis, S.; Green, G.; McCormick, K.; Tarassenko, L. Non-Contact Monitoring of Respiration in the Neonatal Intensive Care Unit. In Proceedings of the 2017 12th IEEE International Conference on Automatic Face Gesture Recognition (FG 2017), Washington, DC, USA, 30 May–3 June 2017; pp. 286–293. [Google Scholar] [CrossRef]
- Blanik, N.; Heimann, K.; Pereira, C.B.; Paul, M.; Blazek, V.; Venema, B.; Orlikowsky, T.; Leonhardt, S. Remote vital parameter monitoring in neonatology - robust, unobtrusive heart rate detection in a realistic clinical scenario. Biomed. Technik. Biomed. Eng. 2016, 61, 631–643. [Google Scholar] [CrossRef]
- Chaichulee, S.; Villarroel, M.; Jorge, J.; Arteta, C.; Green, G.; McCormick, K.; Zisserman, A.; Tarassenko, L. Localised photoplethysmography imaging for heart rate estimation of pre-term infants in the clinic. In Optical Diagnostics and Sensing XVIII: Toward Point-of-Care Diagnostics; Coté, G.L., Ed.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2018; Volume 10501, pp. 146–159. [Google Scholar] [CrossRef]
- Van Gastel, M.; Balmaekers, B.; Oetomo, S.B.; Verkruysse, W. Near-continuous non-contact cardiac pulse monitoring in a neonatal intensive care unit in near darkness. In Proceedings Volume 10501, Optical Diagnostics and Sensing XVIII: Toward Point-of-Care Diagnostics; Event: San Francisco, CA, USA, 2018. [Google Scholar] [CrossRef]
- Wang, W.; den Brinker, A.C.; de Haan, G. Full video pulse extraction. Biomed. Opt. Express 2018, 9, 3898–3914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.; Balmaekers, B.; de Haan, G. Quality metric for camera-based pulse rate monitoring in fitness exercise. In Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; pp. 2430–2434. [Google Scholar] [CrossRef]
- Wang, W.; den Brinker, A.C.; Stuijk, S.; de Haan, G. Color-Distortion Filtering for Remote Photoplethysmography. In Proceedings of the 2017 12th IEEE International Conference on Automatic Face Gesture Recognition (FG 2017), Washington, DC, USA, 30 May–3 June 2017; pp. 71–78. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; den Brinker, A.C.; Stuijk, S.; de Haan, G. Robust heart rate from fitness videos. Physiol. Meas. 2017, 38, 1023–1044. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; den Brinker, A.C.; Stuijk, S.; de Haan, G. Amplitude-selective filtering for remote-PPG. Biomed. Opt. Express 2017, 8, 1965–1980. [Google Scholar] [CrossRef] [Green Version]
- Capraro, G.; Etebari, C.; Luchette, K.; Mercurio, L.; Merck, D.; Kirenko, I.; van Zon, K.; Bartula, M.; Rocque, M.; Kobayashi, L. ‘No Touch’ Vitals: A Pilot Study of Non-contact Vital Signs Acquisition in Exercising Volunteers. In Proceedings of the 2018 IEEE Biomedical Circuits and Systems Conference (BioCAS), Cleveland, OH, USA, 17–19 October 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Blöcher, T.; Schneider, J.; Schinle, M.; Stork, W. An online PPGI approach for camera based heart rate monitoring using beat-to-beat detection. In Proceedings of the 2017 IEEE Sensors Applications Symposium (SAS), Glassboro, NJ, USA, 13–15 March 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Zhang, Q.; Wu, Q.; Zhou, Y.; Wu, X.; Ou, Y.; Zhou, H. Webcam-based, non-contact, real-time measurement for the physiological parameters of drivers. Measurement 2017, 100, 311–321. [Google Scholar] [CrossRef]
- Wu, B.; Huang, P.; Lin, C.; Chung, M.; Tsou, T.; Wu, Y. Motion Resistant Image-Photoplethysmography Based on Spectral Peak Tracking Algorithm. IEEE Access 2018, 6, 21621–21634. [Google Scholar] [CrossRef]
- Nowara, E.M.; Marks, T.K.; Mansour, H.; Veeraraghavan, A. SparsePPG: Towards Driver Monitoring Using Camera-Based Vital Signs Estimation in Near-Infrared. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Salt Lake City, UT, USA, 18–22 June 2018; pp. 1353–135309. [Google Scholar] [CrossRef]
- Spicher, N.; Kukuk, M.; Maderwald, S.; Ladd, M.E. Initial evaluation of prospective cardiac triggering using photoplethysmography signals recorded with a video camera compared to pulse oximetry and electrocardiography at 7T MRI. Biomed. Eng. Online 2016, 15, 126. [Google Scholar] [CrossRef] [Green Version]
- Sugita, N.; Yoshizawa, M.; Abe, M.; Tanaka, A.; Homma, N.; Yambe, T. Contactless Technique for Measuring Blood-Pressure Variability from One Region in Video Plethysmography. J. Med. Biol. Eng. 2019, 39, 76–85. [Google Scholar] [CrossRef]
- Amelard, R.; Hughson, R.L.; Greaves, D.K.; Pfisterer, K.J.; Leung, J.; Clausi, D.A.; Wong, A. Non-contact hemodynamic imaging reveals the jugular venous pulse waveform. Sci. Rep. 2017, 7, 40150. [Google Scholar] [CrossRef] [PubMed]
- Van Gastel, M.; Liang, H.; Stuijk, S.; de Haan, G. Simultaneous estimation of arterial and venous oxygen saturation using a camera. In Proceedings of the SPIE BiOS, 2018, San Francisco, CA, USA, 23–28 January 2018; Volume 10501. [Google Scholar] [CrossRef]
- Bobbia, S.; Macwan, R.; Benezeth, Y.; Mansouri, A.; Dubois, J. Unsupervised skin tissue segmentation for remote photoplethysmography. Pattern Recognit. Lett. 2017, 124, 82–90. [Google Scholar] [CrossRef]
- Soleymani, M.; Lichtenauer, J.; Pun, T.; Pantic, M. A Multimodal Database for Affect Recognition and Implicit Tagging. IEEE Trans. Affect. Comput. 2012, 3, 42–55. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Alikhani, I.; Shi, J.; Seppanen, T.; Junttila, J.; Majamaa-Voltti, K.; Tulppo, M.; Zhao, G. The OBF Database: A Large Face Video Database for Remote Physiological Signal Measurement and Atrial Fibrillation Detection. In Proceedings of the 2018 13th IEEE International Conference on Automatic Face Gesture Recognition (FG 2018), Xi’an, China, 15–19 May 2018; pp. 242–249. [Google Scholar] [CrossRef] [Green Version]
- Song, R.; Zhang, S.; Cheng, J.; Li, C.; Chen, X. New insights on super-high resolution for video-based heart rate estimation with a semi-blind source separation method. Comput. Biol. Med. 2020, 116, 103535. [Google Scholar] [CrossRef]
- Yu, Z.; Peng, W.; Li, X.; Hong, X.; Zhao, G. Remote Heart Rate Measurement from Highly Compressed Facial Videos: An End-to-end Deep Learning Solution with Video Enhancement. In Proceedings of the IEEE International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 151–160. [Google Scholar]
- Chen, W.V.; Picard, R.W. Eliminating Physiological Information from Facial Videos. In Proceedings of the 2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017), Washington, DC, USA, 30 May–3 June 2017; pp. 48–55. [Google Scholar]
- Wang, W.; Brinker, A.C.D.; de Haan, G. Single-Element Remote-PPG. IEEE Trans. Biomed. Eng. 2018, 66, 2032–2043. [Google Scholar] [CrossRef] [PubMed]
- Bhaskar, S.; Thasleema, T.M.; Rajesh, R. A Survey on Different Visual Speech Recognition Techniques. In Data Analytics and Learning; Nagabhushan, P., Guru, D.S., Shekar, B.H., Kumar, Y.H.S., Eds.; Springer: Singapore, 2019; pp. 307–316. [Google Scholar]
- Yu, D.; Seltzer, M.L. Improved bottleneck features using pretrained deep neural networks. In Proceedings of the Twelfth Annual Conference of the International Speech Communication Association, Florence, Italy, 27–31 August 2011. [Google Scholar]
- Gehring, J.; Miao, Y.; Metze, F.; Waibel, A. Extracting deep bottleneck features using stacked auto-encoders. In Proceedings of the 2013 IEEE international conference on acoustics, speech and signal processing, Vancouver, Canada, 26–31 May 2013; pp. 3377–3381. [Google Scholar]
- Sui, C.; Togneri, R.; Bennamoun, M. Extracting deep bottleneck features for visual speech recognition. In Proceedings of the 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), South Brisbane, Queensland, Australia, 19–24 April 2015; pp. 1518–1522. [Google Scholar]
- Petridis, S.; Pantic, M. Deep complementary bottleneck features for visual speech recognition. In Proceedings of the 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China, 20–25 March 2016; pp. 2304–2308. [Google Scholar]
- Ngiam, J.; Khosla, A.; Kim, M.; Nam, J.; Lee, H.; Ng, A.Y. Multimodal deep learning. In Proceedings of the 28th International Conference on Machine Learning (ICML-11), Bellevue, WA, USA, 28 June–2 July 2011; pp. 689–696. [Google Scholar]
- Owens, A.; Efros, A.A. Audio-Visual Scene Analysis with Self-Supervised Multisensory Features. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 10–13 September 2018. [Google Scholar]
- Ephrat, A.; Mosseri, I.; Lang, O.; Dekel, T.; Wilson, K.; Hassidim, A.; Freeman, W.T.; Rubinstein, M. Looking to Listen at the Cocktail Party: A Speaker-independent Audio-visual Model for Speech Separation. ACM Trans. Graph. 2018, 37, 112:1–112:11. [Google Scholar] [CrossRef] [Green Version]
- Chung, J.S.; Zisserman, A. Lip Reading in the Wild. In Computer Vision—ACCV 2016; Lai, S.H., Lepetit, V., Nishino, K., Sato, Y., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2017; pp. 87–103. [Google Scholar]
- Chung, J.S.; Senior, A.; Vinyals, O.; Zisserman, A. Lip Reading Sentences in the Wild. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 3444–3453. [Google Scholar]
- Cheng, S.; Ma, P.; Tzimiropoulos, G.; Petridis, S.; Bulat, A.; Shen, J.; Pantic, M. Towards Pose-invariant Lip-Reading. arXiv 2019, arXiv:1911.06095. [Google Scholar]
- Lakomkin, E.; Magg, S.; Weber, C.; Wermter, S. KT-Speech-Crawler: Automatic Dataset Construction for Speech Recognition from YouTube Videos. In Proceedings of the Conference on Empirical Methods in Natural Language Processing, Hong Kong, China, 3–7 November 2019; pp. 90–95. [Google Scholar]
- Afouras, T.; Chung, J.S.; Senior, A.; Vinyals, O.; Zisserman, A. Deep Audio-visual Speech Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 1. [Google Scholar] [CrossRef] [Green Version]
- Afouras, T.; Chung, J.S.; Zisserman, A. ASR Is All You Need: Cross-Modal Distillation for Lip Reading. arXiv 2019, arXiv:1911.12747. [Google Scholar]
- Scheier, D.B. Barriers to health care for people with hearing loss: A review of the literature. J. N. Y. State Nurses Assoc. 2009, 40, 4. [Google Scholar]
- Witko, J.; Boyles, P.; Smiler, K.; McKee, R. Deaf New Zealand Sign Language users’ access to healthcare. N. Z. Med. J. (Online) 2017, 130, 53–61. [Google Scholar] [PubMed]
- Hommes, R.E.; Borash, A.I.; Hartwig, K.; DeGracia, D. American Sign Language Interpreters Perceptions of Barriers to Healthcare Communication in Deaf and Hard of Hearing Patients. J. Community Health 2018, 43, 956–961. [Google Scholar] [CrossRef] [PubMed]
- Lesch, H.; Burcher, K.; Wharton, T.; Chapple, R.; Chapple, K. Barriers to healthcare services and supports for signing deaf older adults. Rehabil. Psychol. 2019, 64, 237. [Google Scholar] [CrossRef] [PubMed]
- Meltzer, E.C.; Gallagher, J.J.; Suppes, A.; Fins, J.J. Lip-reading and the ventilated patient. Crit. Care Med. 2012, 40, 1529–1531. [Google Scholar] [CrossRef] [PubMed]
- Hinton, G. Deep learning—A technology with the potential to transform health care. Jama 2018, 320, 1101–1102. [Google Scholar] [CrossRef] [PubMed]
- Esteva, A.; Robicquet, A.; Ramsundar, B.; Kuleshov, V.; DePristo, M.; Chou, K.; Cui, C.; Corrado, G.; Thrun, S.; Dean, J. A guide to deep learning in healthcare. Nat. Med. 2019, 25, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Baltrusaitis, T.; Zadeh, A.; Lim, Y.C.; Morency, L.P. Openface 2.0: Facial behavior analysis toolkit. In Proceedings of the 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), Xi’an, China, 15–19 May 2018; pp. 59–66. [Google Scholar]
- Klontz, J.C.; Klare, B.F.; Klum, S.; Jain, A.K.; Burge, M.J. Open source biometric recognition. In Proceedings of the 2013 IEEE Sixth International Conference on Biometrics: Theory, Applications and Systems (BTAS), Washington DC, USA, 29 September–2 October 2013; pp. 1–8. [Google Scholar]
- Sammons, G. Introduction to AWS (Amazon Web Services) Beginner’s Guide; CreateSpace Independent Publishing Platform: Scottsdale valley, CA, USA, 2016. [Google Scholar]
- Copeland, M.; Soh, J.; Puca, A.; Manning, M.; Gollob, D. Microsoft Azure; Apress: New York, NY, USA, 2015. [Google Scholar]
- Li, Z.; Wang, R.; Yu, D.; Du, S.S.; Hu, W.; Salakhutdinov, R.; Arora, S. Enhanced Convolutional Neural Tangent Kernels. arXiv 2019, arXiv:1911.00809. [Google Scholar]
- Wang, M.; Deng, W. Deep visual domain adaptation: A survey. Neurocomputing 2018, 312, 135–153. [Google Scholar] [CrossRef] [Green Version]
- Cohn, J.F.; Ertugrul, I.O.; Chu, W.S.; Girard, J.M.; Jeni, L.A.; Hammal, Z. Affective facial computing: Generalizability across domains. In Multimodal Behavior Analysis in the Wild; Elsevier: Amsterdam, The Netherlands, 2019; pp. 407–441. [Google Scholar]
- Patel, P.; Davey, D.; Panchal, V.; Pathak, P. Annotation of a large clinical entity corpus. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, 31 October–4 November 2018; pp. 2033–2042. [Google Scholar]
Healthcare Work | Method | Benchmark | Used CV appl. perf. | SoA CV appl. perf. |
---|---|---|---|---|
Celiktutan et al. [61] | End-To-End System | GazeCapture [39] | 2.05 cm [39] | 1.95 cm [40] |
Cazzato et al. [48] | Active Appearance Model | ICT-3DHP [80] | 6.9 (own dataset) [48] | [81] |
Cai et al. [76] | Geometric Model | - | 1.99 (own dataset) [76] | [82] |
Wu et al. [60] | AdaBoost+Haar Features | Biwi Head Pose [83] | 97.2% (detect acc only) [84] | 2.4 [81] |
Rudovic et al. [70] | Conditional Local Neural Fields | MPIIGaze [85] | [44] | [86] |
Cazzato et al. [35] | Geometric Features + Random Forest | EYEDIAP [85] | (own dataset) [35] | [87] |
Healthcare Works | Features | Classifier | Benchmark | Used CV app. | SoA CV app. |
---|---|---|---|---|---|
[101,102,103] | LBP | SVM | CK+ [95] | 88.4% [102] | 98.77% [114] |
7 classes classification | |||||
[104,105] | CE-CLM + HOG | GMM | CK+ [95] | 87% [104] | 99.49% [115] |
6 classes classification | |||||
[106] | End to end | MPII [116] | 90.9% [117] | 92.7% [118] | |
Stacked Hourglass Networks | Percentage of Correct Keypoints | ||||
[108] | GABOR filters | SVM | CMU-MIT [119] | 90.9% [120] | 98.77% [114] |
AU Recognition | |||||
[111] | HOG + CLNF | SVM | FERA2015 [121] | 0.47 [44] | 0.87 [122] |
F1 scores on AU detection | |||||
[113] | HOG | LDA | CK+ [95] | 87.78% [113] | 98.77% [114] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leo, M.; Carcagnì, P.; Mazzeo, P.L.; Spagnolo, P.; Cazzato, D.; Distante, C. Analysis of Facial Information for Healthcare Applications: A Survey on Computer Vision-Based Approaches. Information 2020, 11, 128. https://doi.org/10.3390/info11030128
Leo M, Carcagnì P, Mazzeo PL, Spagnolo P, Cazzato D, Distante C. Analysis of Facial Information for Healthcare Applications: A Survey on Computer Vision-Based Approaches. Information. 2020; 11(3):128. https://doi.org/10.3390/info11030128
Chicago/Turabian StyleLeo, Marco, Pierluigi Carcagnì, Pier Luigi Mazzeo, Paolo Spagnolo, Dario Cazzato, and Cosimo Distante. 2020. "Analysis of Facial Information for Healthcare Applications: A Survey on Computer Vision-Based Approaches" Information 11, no. 3: 128. https://doi.org/10.3390/info11030128
APA StyleLeo, M., Carcagnì, P., Mazzeo, P. L., Spagnolo, P., Cazzato, D., & Distante, C. (2020). Analysis of Facial Information for Healthcare Applications: A Survey on Computer Vision-Based Approaches. Information, 11(3), 128. https://doi.org/10.3390/info11030128