SOPHIA: An Event-Based IoT and Machine Learning Architecture for Predictive Maintenance in Industry 4.0
Abstract
:1. Introduction
2. Related Work
3. Materials and Methods
3.1. Log File Data Collection
3.2. Big Data Architecture
3.3. Data Science Module
3.3.1. Log-File Parsing Module
3.3.2. Feature Engineering
3.3.3. Model Optimization
3.3.4. Machine Learning Model Building
3.4. Experimental Procedures and Metrics
- Accuracy, Recall and Precision:
- Receiver operating characteristic (ROC): is designed by plotting the true positive rate (TPR) against the false positive rate (FPR) at various threshold settings. It illustrates the performance of a binary classifier as its threshold is changed. We used an area under the ROC curve (AUC) to compare the performance of classifiers.
- Confusion matrix: the square matrix that shows the type of error in a supervised task. For the considered binary task we show , , and values.
4. Experimental Results
4.1. Log File Parser
4.2. Feature Engineering
4.3. Classification Results
4.4. Model Feature Importance
5. Platform Integration: PdM Application and Machine Down Monitoring
6. Discussions
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
StdOut Flag | Regular Expression | Format TXT | Description |
---|---|---|---|
START | START.* | START (18/10/2018 10:00:08)=BdriveIso/Step13 _strettaDX campo5 650x334x19 _20181018100008547,0,1,0,-1,1 | Indicates the timestamp of program execution START |
Start - BBOX_35 | BBOX_35 | PLC: 277545608678.051 BBOX_35(1 1)[6137216] | Indicates the start point of an execution center |
BBOX | BBOX_.* | PLC: 15401013.151 BBOX_22(0 1)[4598] | All BBOX events |
Errori PLC | ERRORE ?=(PLC.*?) ?>.* | ERRORE (0-27/09/2018 08:47:25)=PLC 9314 >I/O device missing or incorrectly defined. ybn.10.0.10.PE75 (PE71-IN) | All PLC errors |
End - BBOX_35 | BBOX_35 | PLC: 277545608678.051 BBOX_35(0 0)[6136089] | Indicate the end point of an execution center |
ENDP | ENDP.* | ENDP (18/10/2018 09:59:57)=0,0 | Indicates the timestamp of program execution END |
Error Classification Group | PLC Code |
---|---|
Emergency/inverter | PLC9004, PLC9705 |
Security control/inverter | PLC90455 |
KO | PLC9001, PLC9024, PLC9096, PLC9103, PLC9224, PLC9282, PLC9284,PLC9366,PLC9532,PLC9763,PLC9766,PLC9952,PLC9955,PLC90177, PLC90208,PLC90223,PLC90226,PLC90429,PLC90712,PLC90713,PLC90714, PLC90715,PLC90716,PLC90717,PLC90718,PLC91219,PLC91220 |
KO / Emergency | PLC9690 |
KO / Inverter | PLC9038 |
KO / Overheating | PLC9054, PLC9530, PLC9531, PLC90609 |
Emergency | PLC9005, PLC9035, PLC9068,PLC9191,PLC9448,PLC9517,PLC9643,PLC9689, PLC9954,PLC9996,PLC90062,PLC90467,PLC90473,PLC90607 |
Emergency/Security control | PLC90454, PLC90456, PLC90465,PLC90485,PLC90620,PLC90623, PLC90625,PLC90627,PLC90628 |
Inverter | PLC9029, PLC9093, PLC9514,PLC9644,PLC9746,PLC9044,PLC9915 |
Overheating | PLC90445, PLC90446, PLC90448,PLC90449,PLC9012,PLC90489,PLC90490 |
Overheating / inverter | PLC90500 |
Security control | PLC90457, PLC90458, PLC90459,PLC90461,PLC90469,PLC90470, PLC90477,PLC90478,PLC90481,PLC90482,PLC90483,PLC90621, PLC90622,PLC90624,PLC90626 |
Security control / inverter | PLC90462 |
Tool change | PLC9116,PLC9118,PLC9145,PLC9146,PLC9147, PLC9148,PLC9149,PLC9159,PLC9167,PLC9172, PLC9338,PLC9364,PLC9740,PLC9742 |
Model | Hyperparameter Ranges | Optimal Hyperpameters |
---|---|---|
Distributed Random Forest (DRF) | Max depth = [5, 6, 7, 8, 9] Number of trees = [10, 20, 30, 40, 50] Sample rate = [0.5, 0.6, 0.7, 0.8, 1.0] Column sample rate per tree = [0.2, 0.4, 0.5, 0.6, 0.7, 0.8, 1.0] | Max depth = 9 Number of trees = 30 Sample rate = 0.8 Column sample rate per tree = 0.5 |
Gradient Boosting Machine (GBM) | Learning rate = [0.05, 0.1, 0.2] Max depth = [ 5, 6, 7, 8, 9] Number of trees = [50, 100, 150] Sample rate = [0.7, 0.8, 0.9] | Learning rate = 0.2 Max depth = 9 Number of trees = 150 Sample rate = 0.7 |
Extreeme Gradient Boosting (XGBoost) | Learning rate = [0.05, 0.1, 0.2] Max depth = [4, 5, 6, 7, 8, 9] Number of trees = [50, 100, 150,200,250,300] Sample rate = [0.7, 0.8, 0.9] Column sample rate per tree = [0.2, 0.4, 0.5, 0.6, 0.7, 0.8, 1.0] | Learning rate = 0.05 Max depth = 9 Number of trees = 300 Sample rate = 0.7 Column sample rate per tree = 0.7 |
References
- Mönch, L.; Fowler, J.W.; Dauzere-Peres, S.; Mason, S.J.; Rose, O. A survey of problems, solution techniques, and future challenges in scheduling semiconductor manufacturing operations. J. Sched. 2011, 14, 583–599. [Google Scholar] [CrossRef]
- Susto, G.A.; Schirru, A.; Pampuri, S.; Pagano, D.; McLoone, S.; Beghi, A. A predictive maintenance system for integral type faults based on support vector machines: An application to ion implantation. In Proceedings of the 2013 IEEE International Conference on Automation Science and Engineering (CASE), Madison, WI, USA, 17–21 August 2013; pp. 195–200. [Google Scholar]
- Paolanti, M.; Romeo, L.; Felicetti, A.; Mancini, A.; Frontoni, E.; Loncarski, J. Machine learning approach for predictive maintenance in industry 4.0. In Proceedings of the 2018 14th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA), Oulu, Finland, 2–4 July 2018; pp. 1–6. [Google Scholar]
- Susto, G.A.; Pampuri, S.; Schirru, A.; Beghi, A.; De Nicolao, G. Multi-step virtual metrology for semiconductor manufacturing: A multilevel and regularization methods-based approach. Comput. Oper. Res. 2015, 53, 328–337. [Google Scholar] [CrossRef]
- Romeo, L.; Loncarski, J.; Paolanti, M.; Bocchini, G.; Mancini, A.; Frontoni, E. Machine learning-based design support system for the prediction of heterogeneous machine parameters in industry 4.0. Expert Syst. Appl. 2020, 140, 112869. [Google Scholar] [CrossRef]
- Romeo, L.; Paolanti, M.; Bocchini, G.; Loncarski, J.; Frontoni, E. An Innovative Design Support System for Industry 4.0 Based on Machine Learning Approaches. In Proceedings of the 2018 5th International Symposium on Environment-Friendly Energies and Applications (EFEA), Rome, Italy, 24–26 September 2018; pp. 1–6. [Google Scholar]
- Susto, G.A.; Beghi, A.; De Luca, C. A predictive maintenance system for epitaxy processes based on filtering and prediction techniques. IEEE Trans. Semicond. Manuf. 2012, 25, 638–649. [Google Scholar] [CrossRef]
- Coleman, C.; Coleman, C.; Damodaran, S.; Chandramouli, M.; Deuel, E. Making Maintenance Smarter: Predictive Maintenance and the Digital Supply Network; Deloitte University Press: New York, NY, USA, 2017. [Google Scholar]
- Fraser, K.; Hvolby, H.H.; Watanabe, C. A review of the three most popular maintenance systems: How well is the energy sector represented? Int. J. Glob. Energy Issues 2011, 35, 287–309. [Google Scholar] [CrossRef]
- Chen, F. Issues in the continuous improvement process for preventive maintenance: Observations from Honda, Nippondenso and Toyota. Prod. Inventory Manag. J. 1997, 38, 13–16. [Google Scholar]
- Lei, Y.; Li, N.; Gontarz, S.; Lin, J.; Radkowski, S.; Dybala, J. A model-based method for remaining useful life prediction of machinery. IEEE Trans. Reliab. 2016, 65, 1314–1326. [Google Scholar] [CrossRef]
- Yoon, J.T.; Youn, B.D.; Yoo, M.; Kim, Y.; Kim, S. Life-cycle maintenance cost analysis framework considering time-dependent false and missed alarms for fault diagnosis. Reliab. Eng. Syst. Saf. 2019, 184, 181–192. [Google Scholar] [CrossRef]
- Sakib, N.; Wuest, T. Challenges and Opportunities of Condition-based Predictive Maintenance: A Review. Procedia CIRP 2018, 78, 267–272. [Google Scholar] [CrossRef]
- Lei, Y.; Li, N.; Guo, L.; Li, N.; Yan, T.; Lin, J. Machinery health prognostics: A systematic review from data acquisition to RUL prediction. Mech. Syst. Signal Process. 2018, 104, 799–834. [Google Scholar] [CrossRef]
- Sipos, R.; Fradkin, D.; Moerchen, F.; Wang, Z. Log-based predictive maintenance. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 24–27 August 2014; pp. 1867–1876. [Google Scholar]
- Wang, J.; Li, C.; Han, S.; Sarkar, S.; Zhou, X. Predictive maintenance based on event-log analysis: A case study. IBM J. Res. Dev. 2017, 61, 11–121. [Google Scholar] [CrossRef]
- Jardine, A.K.; Lin, D.; Banjevic, D. A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mech. Syst. Signal Process. 2006, 20, 1483–1510. [Google Scholar] [CrossRef]
- Heng, A.; Tan, A.C.; Mathew, J.; Montgomery, N.; Banjevic, D.; Jardine, A.K. Intelligent condition-based prediction of machinery reliability. Mech. Syst. Signal Process. 2009, 23, 1600–1614. [Google Scholar] [CrossRef]
- Khan, S.; Yairi, T. A review on the application of deep learning in system health management. Mech. Syst. Signal Process. 2018, 107, 241–265. [Google Scholar] [CrossRef]
- Xia, T.; Dong, Y.; Xiao, L.; Du, S.; Pan, E.; Xi, L. Recent advances in prognostics and health management for advanced manufacturing paradigms. Reliab. Eng. Syst. Saf. 2018, 178, 255–268. [Google Scholar] [CrossRef]
- Goldszmidt, M. Bayesian network classifiers. In Wiley Encyclopedia of Operations Research and Management Science; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010. [Google Scholar]
- Gullà, F.; Cavalieri, L.; Ceccacci, S.; Germani, M. A BBN-based Method to Manage Adaptive Behavior of a Smart User Interface. Procedia CIRP 2016, 50, 535–540. [Google Scholar] [CrossRef] [Green Version]
- Ghahramani, Z. Learning dynamic Bayesian networks. In International School on Neural Networks, Initiated by IIASS and EMFCSC; Springer: Berlin/Heidelberg, Germany, 1997; pp. 168–197. [Google Scholar]
- Arroyo-Figueroa, G.; Sucar, L.E. A temporal Bayesian network for diagnosis and prediction. arXiv 2013, arXiv:1301.6675. [Google Scholar]
- Salfner, F. Predicting Failures with Hidden Markov Models. In Proceedings of the 5th European Dependable Computing Conference (EDCC-5), Budapest, Hungary, 20–22 April 2005. [Google Scholar]
- Vrignat, P.; Avila, M.; Duculty, F.; Kratz, F. Failure event prediction using hidden markov model approaches. IEEE Trans. Reliab. 2015, 64, 1038–1048. [Google Scholar] [CrossRef]
- Zhou, Z.J.; Hu, C.H.; Xu, D.L.; Chen, M.Y.; Zhou, D.H. A model for real-time failure prognosis based on hidden Markov model and belief rule base. Eur. J. Oper. Res. 2010, 207, 269–283. [Google Scholar] [CrossRef]
- Canizo, M.; Onieva, E.; Conde, A.; Charramendieta, S.; Trujillo, S. Real-time predictive maintenance for wind turbines using Big Data frameworks. In Proceedings of the 2017 IEEE International Conference on Prognostics and Health Management (ICPHM), Dallas, TX, USA, 19–21 June 2017; pp. 70–77. [Google Scholar]
- Bousdekis, A.; Hribernik, K.; Lewandowski, M.; von Stietencron, M.; Thoben, K.D. A Unified Architecture for Proactive Maintenance in Manufacturing Enterprises. In Enterprise Interoperability VIII; Springer: Cham, Switzerland, 2019; pp. 307–317. [Google Scholar] [CrossRef]
- Liu, Z.; Jin, C.; Jin, W.; Lee, J.; Zhang, Z.; Peng, C.; Xu, G. Industrial AI Enabled Prognostics for High-speed Railway Systems. In Proceedings of the 2018 IEEE International Conference on Prognostics and Health Management (ICPHM), Seattle, WA, USA, 11–13 June 2018; pp. 1–8. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Lipton, Z.C. The mythos of model interpretability. Queue 2018, 16, 31–57. [Google Scholar] [CrossRef]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Abu-Samah, A.; Shahzad, M.; Zamai, E.; Said, A.B. Failure prediction methodology for improved proactive maintenance using Bayesian approach. IFAC-PapersOnLine 2015, 48, 844–851. [Google Scholar] [CrossRef]
- Xu, Y.; Sun, Y.; Liu, X.; Zheng, Y. A digital-twin-assisted fault diagnosis using deep transfer learning. IEEE Access 2019, 7, 19990–19999. [Google Scholar] [CrossRef]
- Gan, C.L. Prognostics and Health Management of Electronics: Fundamentals, Machine Learning, and the Internet of Things; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2020. [Google Scholar]
- Sun, B.; Feng, J.; Saenko, K. Return of frustratingly easy domain adaptation. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016. [Google Scholar]
Lag Features | |
---|---|
(W = {30,20,15,10} days) | Description |
Programs | Reports the average frequency of program aggregates of size W |
Security control errors | Reports the average frequency of error aggregates of size W |
Inverter errors | Reports the average frequency of inverter error aggregates of size W |
KO error | Reports the average frequency of KO error aggregates of size W |
SOS error | Reports the average frequency of SOS aggregates of size W |
Emergency errors | Reports the average frequency of emergency errors aggregates of size W |
Overheating error | Reports the average frequency of overheating error aggregates of size W |
Tool change | Reports the average frequency of tool change aggregates of size W |
Global errors | Report the average frequency all error (security control, inverter, KO, SOS, overheating, tool change) aggregates of size W |
SOS program error | Report the average frequency number of programs within of size W |
Accuracy | Recall | Precision | |||||
---|---|---|---|---|---|---|---|
Model | RUL | Training | Testing | Training | Testing | Training | Testing |
Distributed Random Forest (DRF) | 30 | 97.4 (0.4) | 96.8 | 98.8 (0.4) | 96.5 | 98.3 (0.3) | 100 |
20 | 97.8 (0.2) | 96.5 | 99.3 (0.2) | 96.5 | 98.4 (0.4) | 99.3 | |
10 | 98.2 (0.5) | 96.5 | 99.6 (0.2) | 96.9 | 98.5 (0.4) | 99.3 | |
Gradient Boosting Machine (GBM) | |||||||
30 | 98.2 (0.2) | 98.9 | 99.6 (0.1) | 99.6 | 98.3 (0.3) | 99.1 | |
20 | 98.7 (0.4) | 97.8 | 99.5 (0.2) | 98.7 | 99.1 (0.2) | 98.8 | |
10 | 98.5 (0.8) | 97.8 | 93.3 (0.2) | 97.9 | 99.2 (0.6) | 99.8 | |
Extreme Gradient Boosting (XGBoost) | |||||||
30 | 98.1 (0.5) | 98.8 | 99.5 (0.1) | 100 | 98.4 (0.7) | 98.7 | |
20 | 98.3 (0.7) | 96.3 | 99.7 (0.01) | 100 | 98.4(0.7) | 96.2 | |
10 | 98.4 (0.6) | 98.8 | 99.6 (0.1) | 99.8 | 98.8 (0.7) | 99.8 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calabrese, M.; Cimmino, M.; Fiume, F.; Manfrin, M.; Romeo, L.; Ceccacci, S.; Paolanti, M.; Toscano, G.; Ciandrini, G.; Carrotta, A.; et al. SOPHIA: An Event-Based IoT and Machine Learning Architecture for Predictive Maintenance in Industry 4.0. Information 2020, 11, 202. https://doi.org/10.3390/info11040202
Calabrese M, Cimmino M, Fiume F, Manfrin M, Romeo L, Ceccacci S, Paolanti M, Toscano G, Ciandrini G, Carrotta A, et al. SOPHIA: An Event-Based IoT and Machine Learning Architecture for Predictive Maintenance in Industry 4.0. Information. 2020; 11(4):202. https://doi.org/10.3390/info11040202
Chicago/Turabian StyleCalabrese, Matteo, Martin Cimmino, Francesca Fiume, Martina Manfrin, Luca Romeo, Silvia Ceccacci, Marina Paolanti, Giuseppe Toscano, Giovanni Ciandrini, Alberto Carrotta, and et al. 2020. "SOPHIA: An Event-Based IoT and Machine Learning Architecture for Predictive Maintenance in Industry 4.0" Information 11, no. 4: 202. https://doi.org/10.3390/info11040202
APA StyleCalabrese, M., Cimmino, M., Fiume, F., Manfrin, M., Romeo, L., Ceccacci, S., Paolanti, M., Toscano, G., Ciandrini, G., Carrotta, A., Mengoni, M., Frontoni, E., & Kapetis, D. (2020). SOPHIA: An Event-Based IoT and Machine Learning Architecture for Predictive Maintenance in Industry 4.0. Information, 11(4), 202. https://doi.org/10.3390/info11040202