Prediction Framework with Kalman Filter Algorithm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Autonomous Open Data Prediction Framework (AODPF)
2.2. Case Study on Road Maintenance Using a Kalman Filter Approach
- Prediction:
- Update step:
3. Results
4. Conclusions
Supplementary Materials
Funding
Acknowledgments
Conflicts of Interest
References
- Holsapple, C.W.; Sena, M.P. ERP plans and decision-support benefits. Decis. Support Syst. 2005, 38, 575–590. [Google Scholar] [CrossRef]
- Bahrami, B.; Jordan, E. Utilizing Enterprise Resource Planning in Decision-Making Processes. In Innovation and Future of Enterprise Information Systems; Springer: Berlin/Heidelberg, Germany, 2013; pp. 153–168. [Google Scholar]
- O’Leary, D.E. Supporting decisions in real-time enterprises: Autonomic supply chain systems. Inf. Syst. e-Bus. Manag. 2008, 6, 239–255. [Google Scholar] [CrossRef]
- Aslan, B.; Stevenson, M.; Hendry, L.C. Enterprise Resource Planning systems: An assessment of applicability to Make-To-Order companies. Comput. Ind. 2012, 63, 692–705. [Google Scholar] [CrossRef] [Green Version]
- Peksa, J.; Grabis, J. Integration of Decision-Making Components in ERP Systems. In Proceedings of the 20th International Conference on Enterprise Information Systems; Scitepress: Funchal, Madeira, Portugal, 2018; Volume 1, pp. 183–189. [Google Scholar]
- Grabis, J.; Bondars, Ž.; Kampars, J.; Dobelis, Ē.; Zaharčukovs, A. Context-Aware Customizable Routing Solution for Fleet Management. In Proceedings of the 19th International Conference on Enterprise Information Systems; Scitepress: Porto, Portugal, 2017; Volume 1, pp. 638–645. [Google Scholar]
- Pindyck, R.S.; Rubinfeld, D.L. Econometric Models and Economic Forecasts, 3rd ed.; McGraw-Hill: New York, NY, USA, 1991. [Google Scholar]
- Zdravkovic, J.; Kampars, J.; Stirna, J. Using Open Data to Support Organizational Capabilities in Dynamic Business Contexts. In Lecture Notes in Business Information Processing; Springer International Publishing: Tallinn, Estonia, 2018; Volume 316, pp. 28–39. [Google Scholar]
- Grabis, J.; Minkevica, V. Context-Aware Multi-Objective Vehicle Routing. In 31st Conference on Modelling and Simulation; European Council for Modelling and Simulation: Budapest, Hungary, 2017; pp. 235–239. [Google Scholar]
- Edwards, J.B. Speed adjustment of motorway commuter traffic to inclement weather. Transp. Res. Part F Traffic Psychol. Behav. 1999, 2, 1–14. [Google Scholar] [CrossRef]
- Peksa, J.; Peka, J. Forecasting using Contextual Data in Road Maintenance Work. In 2018 IEEE 6th Workshop on Advances in Information, Electronic and Electrical Engineering (AIEEE); IEEE: Piscataway, NJ, USA, 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Peksa, J. Autonomous Open Data Prediction Framework. In 2019 IEEE 7th IEEE Workshop on Advances in Information, Electronic and Electrical Engineering (AIEEE); IEEE: Piscataway, NJ, USA, 2019; pp. 1–5. [Google Scholar]
- Nguwi, Y.-Y.; Kouzani, A.Z. Detection and classification of road signs in natural environments. Neural Comput. Appl. 2008, 17, 265–289. [Google Scholar] [CrossRef]
- Jeffrey, S.J.; Carter, J.O.; Moodie, K.B.; Beswick, A.R. Using spatial interpolation to construct a comprehensive archive of Australian climate data. Environ. Model. Softw. 2001, 16, 309–330. [Google Scholar] [CrossRef]
- Welch, G.; Bishop, G. An Introduction to the Kalman Filter; University of North Carolina: Chapel Hill, NC, USA, 2006; Volume 6, pp. 1–16. [Google Scholar]
Stations | RMSE Average | MSE Average |
---|---|---|
LV01 | 2.65 | 14.27 |
LV02 | 3.08 | 19.84 |
LV03 | 2.77 | 16.12 |
LV04 | 2.99 | 17.47 |
LV05 | 2.70 | 14.45 |
LV07 | 2.68 | 14.87 |
LV08 | 2.77 | 15.52 |
LV09 | 2.88 | 18.09 |
LV10 | 3.29 | 24.83 |
LV12 | 2.67 | 14.11 |
LV13 | 2.66 | 13.90 |
LV14 | 2.61 | 13.54 |
LV15 | 1.91 | 6.98 |
LV18 | 3.15 | 20.94 |
LV20 | 2.70 | 13.91 |
LV25 | 3.27 | 22.13 |
LV30 | 3.26 | 22.50 |
LV33 | 3.09 | 19.31 |
LV34 | 3.12 | 19.24 |
LV35 | 2.73 | 14.54 |
LV36 | 2.56 | 11.53 |
LV38 | 2.94 | 18.22 |
LV41 | 2.80 | 15.74 |
LV42 | 2.81 | 15.82 |
LV44 | 2.76 | 15.68 |
LV45 | 2.56 | 12.53 |
LV46 | 2.98 | 18.08 |
LV47 | 2.51 | 12.04 |
LV48 | 3.13 | 19.05 |
LV51 | 2.86 | 16.04 |
LV59 | 2.65 | 13.69 |
LV60 | 2.73 | 15.18 |
LV63 | 2.50 | 13.74 |
LV64 | 2.61 | 14.05 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peksa, J. Prediction Framework with Kalman Filter Algorithm. Information 2020, 11, 358. https://doi.org/10.3390/info11070358
Peksa J. Prediction Framework with Kalman Filter Algorithm. Information. 2020; 11(7):358. https://doi.org/10.3390/info11070358
Chicago/Turabian StylePeksa, Janis. 2020. "Prediction Framework with Kalman Filter Algorithm" Information 11, no. 7: 358. https://doi.org/10.3390/info11070358
APA StylePeksa, J. (2020). Prediction Framework with Kalman Filter Algorithm. Information, 11(7), 358. https://doi.org/10.3390/info11070358