Atrial Fibrillation Detection Directly from Compressed ECG with the Prior of Measurement Matrix
Abstract
:1. Introduction
- To address the real-time problem of atrial fibrillation detection based on compressed sensing, a deep learning method to detect atrial fibrillation directly from the compressed ECG is proposed without the need to reconstruct the ECG, thereby ensuring the real-time detection of atrial fibrillation in wearable health monitoring.
- In order to fully benefit from the existing prior information, we designed the first layer of the deep network model as a fully connected layer, and then used the measurement matrix to initialize the weights of this layer, so that the model can learn the features related to atrial fibrillation more easily. As a result, the classification performance of the model can be effectively improved.
- Experiments on the MIT-BIH Atrial Fibrillation Database show that the classification performance of the proposed method is superior to the existing methods for detecting atrial fibrillation from compressed ECG. Especially at higher compression ratios, it can effectively reduce the loss of classification performance caused by signal compression.
2. Problem Description and Motivation
2.1. Importance of Measurement Matrix in Compressed Sensing
2.2. AF Detection Based on Compressed Sensing
3. Proposed Method
3.1. Loss Function
3.2. Model Architecture
3.3. Initialization Using Measurement Matrix and Training
4. Experiments and Results
4.1. MIT-BIH Atrial Fibrillation Database
4.2. Experimental Setup
4.3. Evaluation Metrics
4.4. Results
4.4.1. Comparison of AF Detection from Compressed ECG and Reconstructed ECG, Respectively
4.4.2. Comparison of Different Methods for AF Detection from Compressed ECG
4.4.3. Comparison of Different Measurement Matrices
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wolf, P.A.; Abbott, R.D.; Kannel, W.B. Atrial fibrillation as an independent risk factor for stroke: The Framingham Study. Stroke 1991, 22, 983–988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weng, L.C.; Preis, S.R.; Hulme, O.L.; Larson, M.G.; Choi, S.H.; Wang, B.; Trinquart, L.; McManus, D.D.; Staerk, L.; Lin, H.; et al. Genetic predisposition, clinical risk factor burden, and lifetime risk of atrial fibrillation. Circulation 2018, 137, 1027–1038. [Google Scholar] [CrossRef] [PubMed]
- Lustig, M.; Donoho, D.L.; Santos, J.M.; Pauly, J.M. Compressed sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306. [Google Scholar] [CrossRef]
- Candès, E.J.; Romberg, J.; Tao, T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 2006, 52, 489–509. [Google Scholar] [CrossRef] [Green Version]
- Candes, E.J.; Tao, T. Near-optimal signal recovery from random projections: Universal encoding strategies? IEEE Trans. Inf. Theory 2006, 52, 5406–5425. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Jung, T.P.; Makeig, S.; Rao, B.D. Compressed sensing for energy-efficient wireless telemonitoring: Challenges and opportunities. In Proceedings of the 2013 Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 3–6 November 2013; IEEE: Piscataway, NJ, USA, 2013. [Google Scholar]
- Nemati, E.; Deen, M.J.; Mondal, T. A wireless wearable ECG sensor for long-term applications. IEEE Commun. Mag. 2012, 50, 36–43. [Google Scholar] [CrossRef]
- Mamaghanian, H.; Khaled, N.; Atienza, D.; Vergheynst, P. Compressed sensing for real-time energy-efficient ECG compression on wireless body sensor nodes. IEEE Trans. Biomed. Eng. 2011, 58, 2456–2466. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.; Ye, Y.; Hou, M.; He, W.; Li, Y.; Deng, X. A fast and robust non-sparse signal recovery algorithm for wearable ECG telemonitoring using ADMM-based block sparse Bayesian learning. Sensors 2018, 18, 2021. [Google Scholar] [CrossRef] [Green Version]
- Berkaya, S.K.; Uysal, A.K.; Gunal, E.S.; Ergin, S.; Gunal, S.; Gulmezoglu, M.B. A survey on ECG analysis. Biomed. Signal Process. Control 2018, 43, 216–235. [Google Scholar] [CrossRef]
- Da Poian, G.; Liu, C.; Bernardini, R.; Rinaldo, R.; Clifford, G.D. Atrial fibrillation detection on compressed sensed ECG. Physiol. Meas. 2017, 38, 1405. [Google Scholar] [CrossRef]
- Zhang, H.; Dong, Z.; Gao, J.; Lu, P.; Wang, Z. Automatic screening method for atrial fibrillation based on lossy compression of the electrocardiogram signal. Physiol. Meas. 2020, 41, 7. [Google Scholar] [CrossRef] [PubMed]
- Razzaque, M.A.; Dobson, S. Energy-efficient sensing in wireless sensor networks using compressed sensing. Sensors 2014, 14, 2822–2859. [Google Scholar] [CrossRef] [Green Version]
- Dixon, A.M.; Allstot, E.G.; Gangopadhyay, D.; Allstot, D.J. Compressed sensing system considerations for ECG and EMG wireless biosensors. IEEE Trans. Biomed. Circuits Syst. 2012, 6, 156–166. [Google Scholar] [CrossRef]
- Needell, D.; Tropp, J.A. CoSaMP: Iterative signal recovery from incomplete and inaccurate samples. Appl. Comput. Harmon. Anal. 2009, 26, 301–321. [Google Scholar] [CrossRef] [Green Version]
- Eldar, Y.C.; Kuppinger, P.; Bolcskei, H. Block-sparse signals: Uncertainty relations and efficient recovery. IEEE Trans. Signal Process. 2010, 58, 3042–3054. [Google Scholar] [CrossRef] [Green Version]
- Peleg, T.; Eldar, Y.C.; Elad, M. Exploiting statistical dependencies in sparse representations for signal recovery. IEEE Trans. Signal Process. 2012, 60, 2286–2303. [Google Scholar] [CrossRef] [Green Version]
- Blumensath, T. Accelerated iterative hard thresholding. Signal Process. 2012, 92, 752–756. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, A.; Finlay, D.D.; Guldenring, D.; Bond, R.R.; Moran, K.; McLaughlin, J. Automated detection of atrial fibrillation using RR intervals and multivariate-based classification. J. Electrocardiol. 2016, 49, 871–876. [Google Scholar] [CrossRef] [Green Version]
- Hagiwara, Y.; Fujita, H.; Oh, S.L.; Tan, J.H.; Tan, R.S.; Ciaccio, E.J.; Acharya, U.R. Computer-aided diagnosis of atrial fibrillation based on ECG signals: A review. Inf. Sci. 2018, 467, 99–114. [Google Scholar] [CrossRef]
- Andersen, R.S.; Peimankar, A.; Puthusserypady, S. A deep learning approach for real-time detection of atrial fibrillation. Expert Syst. Appl. 2019, 115, 465–473. [Google Scholar] [CrossRef]
- Nemati, S.; Ghassemi, M.M.; Ambai, V.; Isakadze, N.; Levantsevych, O.; Shah, A.; Clifford, G.D. Monitoring and detecting atrial fibrillation using wearable technology. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; IEEE: Piscataway, NJ, USA, 2016. [Google Scholar]
- Da Poian, G.; Rozell, C.J.; Bernardini, R.; Rinaldo, R.; Clifford, G.D. Matched filtering for heart rate estimation on compressive sensing ECG measurements. IEEE Trans. Biomed. Eng. 2017, 65, 1349–1358. [Google Scholar] [CrossRef] [PubMed]
- Da Poian, G.; Letizia, N.A.; Rinaldo, R.; Clifford, G.D. A low-complexity photoplethysmographic systolic peak detector for compressed sensed data. Physiol. Meas. 2019, 40, 065007. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2012, 25. [Google Scholar] [CrossRef]
- Xie, S.; Girshick, R.; Dollár, P.; Tu, Z.; He, K. Aggregated residual transformations for deep neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Ketkar, N. Introduction to pytorch. In Deep Learning With Python; Apress: Berkeley, CA, USA, 2017; pp. 195–208. [Google Scholar]
- Moody, G. A new method for detecting atrial fibrillation using RR intervals. Comput. Cardiol. 1983, 227–230. [Google Scholar]
- Iwen, M.A. Compressed sensing with sparse binary matrices: Instance optimal error guarantees in near-optimal time. J. Complex. 2014, 30, 1–15. [Google Scholar] [CrossRef]
- Li, K.; Cong, S. State of the art and prospects of structured sensing matrices in compressed sensing. Front. Comput. Sci. 2015, 9, 665–677. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Jung, T.P.; Makeig, S.; Rao, B.D. Compressed sensing for energy-efficient wireless telemonitoring of noninvasive fetal ECG via block sparse Bayesian learning. IEEE Trans. Biomed. Eng. 2012, 60, 300–309. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Rao, B.D. Extension of SBL algorithms for the recovery of block sparse signals with intra-block correlation. IEEE Trans. Signal Process. 2013, 61, 2009–2015. [Google Scholar] [CrossRef] [Green Version]
- Kirolos, S.; Laska, J.; Wakin, M.; Duarte, M.; Baron, D.; Ragheb, T.; Massoud, Y.; Baraniuk, R. Analog-to-information conversion via random demodulation. In Proceedings of the 2006 IEEE Dallas/CAS Workshop on Design, Applications, Integration and Software, Richardson, TX, USA, 29–30 October 2006; IEEE: Piscataway, NJ, USA, 2006. [Google Scholar]
- Laska, J.N.; Kirolos, S.; Duarte, M.F.; Ragheb, T.S.; Baraniuk, R.G.; Massoud, Y. Theory and implementation of an analog-to-information converter using random demodulation. In Proceedings of the 2007 IEEE International Symposium on Circuits and Systems, New Orleans, LA, USA, 27–30 May 2007; IEEE: Piscataway, NJ, USA, 2007. [Google Scholar]
First Stage | Second Stage | Third Stage | Forth Stage | |
---|---|---|---|---|
1D conv | kernel size = 1 number of filters = 64 | kernel size = 1 number of filters = 128 | kernel size = 1 number of filters = 256 | kernel size = 1 number of filters = 512 |
1D grouped conv | kernel size = 3 number of filters = 64 group = 16 | kernel size = 3 number of filters = 128 group = 16 | kernel size = 3 number of filters = 256 group = 16 | kernel size = 3 number of filters = 512 group = 16 |
1D conv | kernel size = 1 number of filters = 128 | kernel size = 1 number of filters = 256 | kernel size = 1 number of filters = 512 | kernel size = 1 number of filters = 1024 |
Metric | CR | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | ||
Acc(%) | Reconstructed | 97.62 | 97.21 | 96.69 | 96.19 | 95.47 | 95.22 | 94.26 | 91.16 | 88.46 |
Compressed | 97.52 | 97.17 | 96.65 | 96.32 | 95.81 | 95.16 | 94.46 | 93.55 | 91.63 | |
F1(%) | Reconstructed | 98.08 | 97.77 | 97.36 | 96.95 | 96.39 | 96.18 | 95.44 | 92.96 | 90.65 |
Compressed | 98.02 | 97.74 | 97.31 | 97.07 | 96.65 | 96.13 | 95.59 | 94.89 | 93.40 | |
Se(%) | Reconstructed | 98.24 | 97.38 | 96.9 | 96.77 | 95.68 | 95.87 | 94.43 | 92.18 | 91.56 |
Compressed | 97.59 | 97.49 | 97.33 | 96.48 | 96.29 | 95.70 | 94.70 | 93.61 | 91.80 | |
Sp(%) | Reconstructed | 96.59 | 96.92 | 96.34 | 95.23 | 95.11 | 94.13 | 93.96 | 89.39 | 83.61 |
Compressed | 97.40 | 96.65 | 95.53 | 96.05 | 95.01 | 94.24 | 94.04 | 93.43 | 91.32 | |
YI(%) | Reconstructed | 94.84 | 94.31 | 93.24 | 92.00 | 90.79 | 90.01 | 88.40 | 81.57 | 75.17 |
Compressed | 95.00 | 94.14 | 92.87 | 92.54 | 91.30 | 89.95 | 88.74 | 87.05 | 83.12 | |
CPU time(s) | Reconstructed | 26.472 | 22.624 | 16.891 | 12.358 | 8.200 | 4.856 | 2.919 | 1.885 | 1.056 |
Compressed | 0.0127 | 0.0126 | 0.0130 | 0.0127 | 0.0128 | 0.0125 | 0.0129 | 0.0124 | 0.0130 |
Metric | Method | B | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | ||
Acc(%) | Da Poian [11] | - | 94.93 | 94.51 | 94.10 | 93.27 | 92.55 | 90.32 | 86.92 | 80.13 | 65.37 |
Zhang [12] | 98.43 | 96.23 | 96.04 | 95.91 | 95.49 | 95.13 | 94.80 | 93.85 | 92.69 | 88.08 | |
Proposed | 98.40 | 97.52 | 97.17 | 96.65 | 96.32 | 95.81 | 95.16 | 94.46 | 93.55 | 91.63 | |
F1(%) | Da Poian [11] | - | 93.88 | 93.34 | 92.78 | 91.68 | 90.69 | 87.5 | 82.23 | 70.45 | 41.34 |
Zhang [12] | 98.43 | 96.25 | 96.05 | 95.90 | 95.51 | 95.16 | 94.83 | 93.90 | 92.71 | 88.17 | |
Proposed | 98.71 | 98.02 | 97.74 | 97.31 | 97.07 | 96.65 | 96.13 | 95.59 | 94.89 | 93.40 | |
Se(%) | Da Poian [11] | - | 90.47 | 89.63 | 88.47 | 86.85 | 85.24 | 79.79 | 72.00 | 57.10 | 29.88 |
Zhang [12] | 98.10 | 95.92 | 95.69 | 95.51 | 95.21 | 94.67 | 94.46 | 93.29 | 92.67 | 87.65 | |
Proposed | 98.68 | 97.59 | 97.49 | 97.33 | 96.48 | 96.29 | 95.70 | 94.70 | 93.61 | 91.80 | |
Sp(%) | Da Poian [11] | - | 98.30 | 98.19 | 98.33 | 98.06 | 97.97 | 98.10 | 97.74 | 96.46 | 89.88 |
Zhang [12] | 98.76 | 96.55 | 96.38 | 96.26 | 95.77 | 95.60 | 95.16 | 94.44 | 92.72 | 88.52 | |
Proposed | 97.94 | 97.40 | 96.65 | 96.53 | 96.05 | 95.01 | 94.24 | 94.04 | 93.43 | 91.32 | |
YI(%) | Da Poian [11] | - | 88.77 | 87.82 | 86.80 | 84.91 | 83.21 | 77.89 | 69.74 | 53.56 | 19.76 |
Zhang [12] | 96.86 | 92.47 | 92.07 | 91.77 | 90.98 | 90.27 | 89.86 | 87.73 | 85.39 | 76.17 | |
Proposed | 96.62 | 95.00 | 94.14 | 93.86 | 92.54 | 91.30 | 89.95 | 88.74 | 87.05 | 83.12 |
Metric | Method | Measurment Matrix | CR | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | |||
Acc(%) | Proposed | SBM | 97.52 | 97.17 | 96.65 | 96.32 | 95.81 | 95.16 | 94.46 | 93.55 | 91.63 |
GRM | 97.32 | 96.89 | 96.50 | 96.05 | 95.60 | 94.99 | 94.35 | 93.36 | 91.75 | ||
Zhang [12] | SBM | 96.23 | 96.04 | 95.91 | 95.49 | 95.13 | 94.8 | 93.85 | 92.69 | 88.08 | |
GRM | 95.29 | 95.16 | 94.96 | 94.69 | 94.46 | 93.88 | 92.98 | 91.89 | 87.97 | ||
Se(%) | Proposed | SBM | 97.59 | 97.49 | 97.33 | 96.48 | 96.29 | 95.70 | 94.70 | 93.61 | 91.80 |
GRM | 97.65 | 97.03 | 97.11 | 96.52 | 95.95 | 95.23 | 94.52 | 93.43 | 91.70 | ||
Zhang [12] | SBM | 95.92 | 95.69 | 95.51 | 95.21 | 94.67 | 94.46 | 93.29 | 92.67 | 87.65 | |
GRM | 94.81 | 94.58 | 94.19 | 94.23 | 94.37 | 93.08 | 92.75 | 92.36 | 88.55 | ||
Sp(%) | Proposed | SBM | 97.40 | 96.65 | 95.53 | 96.05 | 95.01 | 94.24 | 94.04 | 93.43 | 91.32 |
GRM | 96.77 | 96.64 | 95.47 | 95.24 | 94.99 | 94.58 | 94.04 | 93.23 | 91.83 | ||
Zhang [12] | SBM | 96.55 | 96.38 | 96.26 | 95.77 | 95.60 | 95.16 | 94.44 | 92.72 | 88.52 | |
GRM | 95.78 | 95.75 | 95.76 | 95.69 | 94.54 | 94.71 | 93.22 | 91.43 | 87.41 | ||
YI(%) | Proposed | SBM | 95.00 | 94.14 | 92.87 | 92.54 | 91.30 | 89.95 | 88.74 | 87.05 | 83.12 |
GRM | 94.42 | 93.68 | 92.59 | 91.77 | 90.95 | 89.81 | 88.56 | 86.67 | 83.54 | ||
Zhang [12] | SBM | 92.47 | 92.07 | 91.77 | 90.98 | 90.27 | 89.86 | 87.73 | 85.39 | 76.17 | |
GRM | 90.6 | 90.33 | 89.96 | 89.4 | 88.92 | 87.79 | 85.98 | 83.79 | 75.96 | ||
F1(%) | Proposed | SBM | 98.02 | 97.74 | 97.31 | 97.07 | 96.65 | 96.13 | 95.59 | 94.89 | 93.40 |
GRM | 97.85 | 97.51 | 97.19 | 96.84 | 96.48 | 96.01 | 95.51 | 94.74 | 93.51 | ||
Zhang [12] | SBM | 96.25 | 96.05 | 95.9 | 95.51 | 95.16 | 94.83 | 93.9 | 92.71 | 88.17 | |
GRM | 95.32 | 95.19 | 95.01 | 94.73 | 94.47 | 93.94 | 93.01 | 91.86 | 87.90 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, Y.; Hu, Y.; Hou, M.; Pan, T.; He, W.; Ye, Y. Atrial Fibrillation Detection Directly from Compressed ECG with the Prior of Measurement Matrix. Information 2020, 11, 436. https://doi.org/10.3390/info11090436
Cheng Y, Hu Y, Hou M, Pan T, He W, Ye Y. Atrial Fibrillation Detection Directly from Compressed ECG with the Prior of Measurement Matrix. Information. 2020; 11(9):436. https://doi.org/10.3390/info11090436
Chicago/Turabian StyleCheng, Yunfei, Ying Hu, Mengshu Hou, Tongjie Pan, Wenwen He, and Yalan Ye. 2020. "Atrial Fibrillation Detection Directly from Compressed ECG with the Prior of Measurement Matrix" Information 11, no. 9: 436. https://doi.org/10.3390/info11090436
APA StyleCheng, Y., Hu, Y., Hou, M., Pan, T., He, W., & Ye, Y. (2020). Atrial Fibrillation Detection Directly from Compressed ECG with the Prior of Measurement Matrix. Information, 11(9), 436. https://doi.org/10.3390/info11090436