SlowTT: A Slow Denial of Service against IoT Networks
Abstract
:1. Introduction
2. Related Work
3. The MQTT Protocol
- CONNECT/CONNACK: packets adopted to authenticate a device on the MQTT broker.
- SUBSCRIBE/SUBACK: packets adopted to subscribe a client on a specific topic.
- UNSUBSCRIBE/UNSUBACK: packets adopted to unsubscribe a client from the topic.
- PINGREQ/PINGRESP: packets adopted to ping the broker server [73].
- DISCONNECT: packets adopted to disconnect the client from the MQTT broker [74].
4. The SlowTT Attack
- Connection with the MQTT broker by exploiting the CONNECT packet.
- Sending packets to keep the connection alive by exploiting the PING packet.
5. Testbed
- The Raspberry Pi device starts to execute the SlowTT attack.
- In order to validate the attack, the MQTT broker checks if there are connections available on the MQTT broker by using the validation tool.
6. Executed Tests and Obtained Results
6.1. Identification of the Best Approach to Adopt
- Connect + Ping: both the CONNECT and PING packets adopted; in the following called SlowTT.
- Only Connect: only CONNECT packets adopted. This version is SlowITe.
- Only Ping: only PING packets adopted; in the following called Slowping.
6.2. Executed Tests and Results on the Testbed
6.3. Targeting an MQTT Service Running on SSL
6.4. SlowTT against MQTT Version 5
7. Detection Systems and Algorithms
8. Conclusions and Future Work
Author Contributions
Funding
Conflicts of Interest
References
- Wang, Y.; Chen, M.; Wang, X.; Chan, R.H.; Li, W.J. IoT for next-generation racket sports training. IEEE Internet Things J. 2018, 5, 4558–4566. [Google Scholar] [CrossRef]
- Chihana, S.; Phiri, J.; Kunda, D. An IoT based warehouse intrusion detection (E-Perimeter) and grain tracking model for food reserve agency. Int. J. Adv. Comput. Sci. Appl. 2018, 9. [Google Scholar] [CrossRef]
- Minchev, D.; Dimitrov, A. Home automation system based on ESP8266. In Proceedings of the 2018 20th International Symposium on Electrical Apparatus and Technologies (SIELA), Bourgas, Bulgaria, 3–6 June 2018; pp. 1–4. [Google Scholar]
- Manavalan, E.; Jayakrishna, K. A review of Internet of Things (IoT) embedded sustainable supply chain for industry 4.0 requirements. Comput. Ind. Eng. 2019, 127, 925–953. [Google Scholar] [CrossRef]
- Soni, D.; Makwana, A. A survey on mqtt: A protocol of Internet of Things (iot). In Proceedings of the International Conference On Telecommunication, Power Analysis And Computing Techniques (ICTPACT-2017), Chennai, India, 6–8 March 2017. [Google Scholar]
- Lee, S.; Kim, H.; Hong, D.K.; Ju, H. Correlation analysis of MQTT loss and delay according to QoS level. In Proceedings of the International Conference on Information Networking 2013 (ICOIN), Bangkok, Thailand, 28–30 January 2013; pp. 714–717. [Google Scholar]
- Luzuriaga, J.E.; Cano, J.C.; Calafate, C.; Manzoni, P.; Perez, M.; Boronat, P. Handling mobility in IoT applications using the MQTT protocol. In Proceedings of the 2015 Internet Technologies and Applications (ITA), Wrexham, UK, 8–11 September 2015; pp. 245–250. [Google Scholar]
- Moustafa, N.; Turnbull, B.; Choo, K.K.R. Towards automation of vulnerability and exploitation identification in IIoT networks. In Proceedings of the 2018 IEEE International Conference on Industrial Internet (ICII), Seattle, WA, USA, 21–23 October 2018; pp. 139–145. [Google Scholar]
- Kim, G.; Kang, S.; Park, J.; Chung, K. An MQTT-Based Context-Aware Autonomous System in oneM2M Architecture. IEEE Internet Things J. 2019, 6, 8519–8528. [Google Scholar] [CrossRef]
- Sadeghi, A.R.; Wachsmann, C.; Waidner, M. Security and privacy challenges in industrial Internet of Things. In Proceedings of the 2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC), San Francisco, CA, USA, 8–12 June 2015; pp. 1–6. [Google Scholar]
- Al-Turjman, F.; Zahmatkesh, H.; Shahroze, R. An overview of security and privacy in smart cities’ IoT communications. Trans. Emerg. Telecommun. Technol. 2019, e3677. [Google Scholar] [CrossRef]
- Seleznev, S.; Yakovlev, V. Industrial Application Architecture IoT and protocols AMQP, MQTT, JMS, REST, CoAP, XMPP, DDS. Int. J. Open Inf. Technol. 2019, 7, 17–28. [Google Scholar]
- Cornel-Cristian, A.; Gabriel, T.; Arhip-Calin, M.; Zamfirescu, A. Smart home automation with MQTT. In Proceedings of the 2019 54th International Universities Power Engineering Conference (UPEC), Bucharest, Romania, 3–6 September 2019; pp. 1–5. [Google Scholar]
- Vaccari, I.; Aiello, M.; Cambiaso, E. SlowITe, a Novel Denial of Service Attack Affecting MQTT. Sensors 2020, 20, 2932. [Google Scholar] [CrossRef]
- Shorey, T.; Subbaiah, D.; Goyal, A.; Sakxena, A.; Mishra, A.K. Performance comparison and analysis of slowloris, goldeneye and xerxes ddos attack tools. In Proceedings of the 2018 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Bangalore, India, 19–22 September 2018; pp. 318–322. [Google Scholar]
- Park, J.; Iwai, K.; Tanaka, H.; Kurokawa, T. Analysis of slow read DoS attack. In Proceedings of the 2014 International Symposium on Information Theory and its Applications, Melbourne, Australia, 26–29 October 2014; pp. 60–64. [Google Scholar]
- Maciá-Fernández, G.; Díaz-Verdejo, J.E.; García-Teodoro, P.; de Toro-Negro, F. LoRDAS: A low-rate DoS attack against application servers. In International Workshop on Critical Information Infrastructures Security; Springer: Berlin/Heidelberg, Germany, 2007; pp. 197–209. [Google Scholar]
- Miorandi, D.; Sicari, S.; De Pellegrini, F.; Chlamtac, I. Internet of things: Vision, applications and research challenges. Ad Hoc Netw. 2012, 10, 1497–1516. [Google Scholar] [CrossRef] [Green Version]
- Suo, H.; Wan, J.; Zou, C.; Liu, J. Security in the Internet of Things: A review. In Proceedings of the 2012 International Conference on Computer Science and Electronics Engineering, Hangzhou, China, 23–25 March 2012; Volume 3, pp. 648–651. [Google Scholar]
- Hossain, M.M.; Fotouhi, M.; Hasan, R. Towards an analysis of security issues, challenges, and open problems in the Internet of Things. In Proceedings of the 2015 IEEE World Congress on Services, New York, NY, USA, 27 June–2 July 2015; pp. 21–28. [Google Scholar]
- Matharu, G.S.; Upadhyay, P.; Chaudhary, L. The Internet of Things: Challenges and security issues. In Proceedings of the 2014 International Conference on Emerging Technologies (ICET), Islamabad, Pakistan, 8–9 December 2014; pp. 54–59. [Google Scholar]
- Balte, A.; Kashid, A.; Patil, B. Security issues in Internet of things (IoT): A survey. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 2015, 5, 450–455. [Google Scholar]
- Kumar, J.S.; Patel, D.R. A survey on Internet of things: Security and privacy issues. Int. J. Comput. Appl. 2014, 90, 20–26. [Google Scholar]
- Hedi, I.; Špeh, I.; Šarabok, A. IoT network protocols comparison for the purpose of IoT constrained networks. In Proceedings of the 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, Croatia, 22–26 May 2017; pp. 501–505. [Google Scholar]
- Yassein, M.B.; Shatnawi, M.Q. Application layer protocols for the Internet of Things: A survey. In Proceedings of the 2016 International Conference on Engineering & MIS (ICEMIS), Agadir, Morocco, 22–24 September 2016; pp. 1–4. [Google Scholar]
- Al-Fuqaha, A.; Guizani, M.; Mohammadi, M.; Aledhari, M.; Ayyash, M. Internet of things: A survey on enabling technologies, protocols, and applications. IEEE Commun. Surv. Tutor. 2015, 17, 2347–2376. [Google Scholar] [CrossRef]
- Gazis, V.; Görtz, M.; Huber, M.; Leonardi, A.; Mathioudakis, K.; Wiesmaier, A.; Zeiger, F.; Vasilomanolakis, E. A survey of technologies for the Internet of Things. In Proceedings of the 2015 International Wireless Communications and Mobile Computing Conference (IWCMC), Dubrovnik, Croatia, 24–28 August 2015; pp. 1090–1095. [Google Scholar]
- Dragomir, D.; Gheorghe, L.; Costea, S.; Radovici, A. A survey on secure communication protocols for IoT systems. In Proceedings of the 2016 International Workshop on Secure Internet of Things (SIoT), Heraklion, Greece, 26–30 September 2016; pp. 47–62. [Google Scholar]
- Asim, M. A survey on application layer protocols for Internet of Things (IoT). Int. J. Adv. Res. Comput. Sci. 2017, 8. [Google Scholar]
- Kraijak, S.; Tuwanut, P. A survey on IoT architectures, protocols, applications, security, privacy, real-world implementation and future trends. In Proceedings of the 11th International Conference on Wireless and Mobile Communications, Shanghai, China, 21–23 September 2015. [Google Scholar]
- Vaccari, I.; Cambiaso, E.; Aiello, M. Remotely Exploiting AT Command Attacks on ZigBee Networks. Secur. Commun. Netw. 2017, 2017, 1723658. [Google Scholar] [CrossRef] [Green Version]
- Vaccari, I.; Cambiaso, E.; Aiello, M. Evaluating Security of Low-Power Internet of Things Networks. Int. J. Comput. Digit. Syst. 2019, 8, 101–114. [Google Scholar] [CrossRef]
- Vidgren, N.; Haataja, K.; Patino-Andres, J.L.; Ramirez-Sanchis, J.J.; Toivanen, P. Security threats in ZigBee-enabled systems: Vulnerability evaluation, practical experiments, countermeasures, and lessons learned. In Proceedings of the 2013 46th Hawaii International Conference on System Sciences, Wailea, Maui, HI, USA, 7–10 January 2013; pp. 5132–5138. [Google Scholar]
- Plósz, S.; Farshad, A.; Tauber, M.; Lesjak, C.; Ruprechter, T.; Pereira, N. Security vulnerabilities and risks in industrial usage of wireless communication. In Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA), Barcelona, Spain, 16–19 September 2014; pp. 1–8. [Google Scholar]
- Khanji, S.; Iqbal, F.; Hung, P. ZigBee security vulnerabilities: Exploration and evaluating. In Proceedings of the 2019 10th International Conference on Information and Communication Systems (ICICS), Irbid, Jordan, 11–13 June 2019; pp. 52–57. [Google Scholar]
- Pongle, P.; Chavan, G. A survey: Attacks on RPL and 6LoWPAN in IoT. In Proceedings of the 2015 International Conference on Pervasive Computing (ICPC), Pune, India, 8–10 January 2015; pp. 1–6. [Google Scholar]
- Hummen, R.; Hiller, J.; Wirtz, H.; Henze, M.; Shafagh, H.; Wehrle, K. 6LoWPAN fragmentation attacks and mitigation mechanisms. In Proceedings of the Sixth ACM Conference on Security and Privacy in Wireless and Mobile Networks, Budapest, Hungary, 17–19 April 2013; pp. 55–66. [Google Scholar]
- Sahay, R.; Geethakumari, G.; Modugu, K. Attack graph—Based vulnerability assessment of rank property in RPL-6LOWPAN in IoT. In Proceedings of the 2018 IEEE 4th World Forum on Internet of Things (WF-IoT), Singapore, 5–8 February 2018; pp. 308–313. [Google Scholar]
- Kasinathan, P.; Pastrone, C.; Spirito, M.A.; Vinkovits, M. Denial-of-service detection in 6LoWPAN based Internet of Things. In Proceedings of the 2013 IEEE 9th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Lyon, France, 7–9 October 2013; pp. 600–607. [Google Scholar]
- Yassein, M.B.; Mardini, W.; Almasri, T. Evaluation of security regarding Z-Wave wireless protocol. In Proceedings of the Fourth International Conference on Engineering & MIS 2018, Istanbul, Turkey, 19–21 June 2018; p. 32. [Google Scholar]
- Fuller, J.D.; Ramsey, B.W. Rogue Z-Wave controllers: A persistent attack channel. In Proceedings of the 2015 IEEE 40th Local Computer Networks Conference Workshops (LCN Workshops), Clearwater Beach, FL, USA, 26–29 October 2015; pp. 734–741. [Google Scholar]
- Fouladi, B.; Ghanoun, S. Security evaluation of the Z-Wave wireless protocol. Black Hat USA 2013, 24, 1–2. [Google Scholar]
- Randhawa, R.H.; Hameed, A.; Mian, A.N. Energy efficient cross-layer approach for object security of CoAP for IoT devices. Ad Hoc Netw. 2019, 92, 101761. [Google Scholar] [CrossRef]
- Raza, S.; Shafagh, H.; Hewage, K.; Hummen, R.; Voigt, T. Lithe: Lightweight secure CoAP for the Internet of things. IEEE Sens. J. 2013, 13, 3711–3720. [Google Scholar] [CrossRef]
- Kothmayr, T.; Schmitt, C.; Hu, W.; Brünig, M.; Carle, G. DTLS based security and two-way authentication for the Internet of Things. Ad Hoc Netw. 2013, 11, 2710–2723. [Google Scholar] [CrossRef]
- Rahman, R.A.; Shah, B. Security analysis of IoT protocols: A focus in CoAP. In Proceedings of the 2016 3rd MEC International Conference on Big Data and Smart City (ICBDSC), Muscat, Oman, 15–16 March 2016; pp. 1–7. [Google Scholar]
- Capossele, A.; Cervo, V.; De Cicco, G.; Petrioli, C. Security as a CoAP resource: An optimized DTLS implementation for the IoT. In Proceedings of the 2015 IEEE International Conference on Communications (ICC), London, UK, 8–12 June 2015; pp. 549–554. [Google Scholar]
- Andrea, I.; Chrysostomou, C.; Hadjichristofi, G. Internet of Things: Security vulnerabilities and challenges. In Proceedings of the 2015 IEEE Symposium on Computers and Communication (ISCC), Larnaca, Cyprus, 6–9 July 2015; pp. 180–187. [Google Scholar]
- Meneghello, F.; Calore, M.; Zucchetto, D.; Polese, M.; Zanella, A. IoT: Internet of Threats? A Survey of Practical Security Vulnerabilities in Real IoT Devices. IEEE Internet Things J. 2019, 6, 8182–8201. [Google Scholar] [CrossRef]
- Luzuriaga, J.E.; Perez, M.; Boronat, P.; Cano, J.C.; Calafate, C.; Manzoni, P. A comparative evaluation of AMQP and MQTT protocols over unstable and mobile networks. In Proceedings of the 2015 12th Annual IEEE Consumer Communications and Networking Conference (CCNC), Las Vegas, NV, USA, 9–12 January 2015; pp. 931–936. [Google Scholar]
- Fernandes, J.L.; Lopes, I.C.; Rodrigues, J.J.; Ullah, S. Performance evaluation of RESTful web services and AMQP protocol. In Proceedings of the 2013 Fifth International Conference on Ubiquitous and Future Networks (ICUFN), Da Nang, Vietnam, 2–5 July 2013; pp. 810–815. [Google Scholar]
- Nebbione, G.; Calzarossa, M.C. Security of IoT application layer protocols: Challenges and findings. Future Internet 2020, 12, 55. [Google Scholar] [CrossRef] [Green Version]
- Santhadevi, D.; Janet, B. Security challenges in computing system, communication technology and protocols in IoT system. In Proceedings of the 2018 International Conference on Circuits and Systems in Digital Enterprise Technology (ICCSDET), Kottayam, India, 21–22 December 2018; pp. 1–7. [Google Scholar]
- Issarny, V.; Mallet, V.; Nguyen, K.; Raverdy, P.G.; Rebhi, F.; Ventura, R. Dos and don’ts in mobile phone sensing middleware: Learning from a large-scale experiment. In Proceedings of the 17th International Middleware Conference, Trento, Italy, 12–16 December 2016; p. 17. [Google Scholar]
- Hunkeler, U.; Truong, H.L.; Stanford-Clark, A. MQTT-S—A publish/subscribe protocol for wireless sensor networks. In Proceedings of the 2008 3rd International Conference on Communication Systems Software and Middleware and Workshops (COMSWARE’08), Bangalore, India, 6–10 January 2008; pp. 791–798. [Google Scholar]
- Pflanzner, T.; Kertész, A. A survey of IoT cloud providers. In Proceedings of the 2016 39th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, Croatia, 30 May–3 June 2016; pp. 730–735. [Google Scholar]
- Jukić, O.; Špeh, I.; Hedi, I. Cloud-based services for the Internet of Things. In Proceedings of the 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, Croatia, 21–25 May 2018; pp. 0372–0377. [Google Scholar]
- Breivold, H.P.; Sandström, K. Internet of things for industrial automation–challenges and technical solutions. In Proceedings of the 2015 IEEE International Conference on Data Science and Data Intensive Systems, Sydney, Australia, 11–13 December 2015; pp. 532–539. [Google Scholar]
- Andy, S.; Rahardjo, B.; Hanindhito, B. Attack scenarios and security analysis of MQTT communication protocol in IoT system. In Proceedings of the 2017 4th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), Yogyakarta, Indonesia, 19–21 September 2017; pp. 1–6. [Google Scholar]
- Harsha, M.; Bhavani, B.; Kundhavai, K. Analysis of vulnerabilities in MQTT security using Shodan API and implementation of its countermeasures via authentication and ACLs. In Proceedings of the 2018 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Bangalore, India, 19–22 September 2018; pp. 2244–2250. [Google Scholar]
- Chifor, B.C.; Bica, I.; Patriciu, V.V. Mitigating DoS attacks in publish-subscribe IoT networks. In Proceedings of the 2017 9th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), Targoviste, Romania, 29 June–1 July 2017; pp. 1–6. [Google Scholar]
- Firdous, S.N.; Baig, Z.; Valli, C.; Ibrahim, A. Modelling and evaluation of malicious attacks against the iot mqtt protocol. In Proceedings of the 2017 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), Exeter, UK, 21–23 June 2017; pp. 748–755. [Google Scholar]
- Yassein, M.B.; Shatnawi, M.Q.; Aljwarneh, S.; Al-Hatmi, R. Internet of Things: Survey and open issues of MQTT protocol. In Proceedings of the 2017 International Conference on Engineering & MIS (ICEMIS), Monastir, Tunisia, 8–10 May 2017; pp. 1–6. [Google Scholar]
- Naik, N. Choice of effective messaging protocols for IoT systems: MQTT, CoAP, AMQP and HTTP. In Proceedings of the 2017 IEEE International Systems Engineering Symposium (ISSE), Vienna, Austria, 11–13 October 2017; pp. 1–7. [Google Scholar]
- Ammar, M.; Russello, G.; Crispo, B. Internet of Things: A survey on the security of IoT frameworks. J. Inf. Secur. Appl. 2018, 38, 8–27. [Google Scholar] [CrossRef] [Green Version]
- Karagiannis, V.; Chatzimisios, P.; Vazquez-Gallego, F.; Alonso-Zarate, J. A survey on application layer protocols for the Internet of things. Trans. IoT Cloud Comput. 2015, 3, 11–17. [Google Scholar]
- Fysarakis, K.; Askoxylakis, I.; Soultatos, O.; Papaefstathiou, I.; Manifavas, C.; Katos, V. Which iot protocol? Comparing standardized approaches over a common M2M application. In Proceedings of the 2016 IEEE Global Communications Conference (GLOBECOM), Washington, DC, USA, 4–8 December 2016. [Google Scholar]
- Gündogan, C.; Kietzmann, P.; Schmidt, T.C.; Lenders, M.; Petersen, H.; Wählisch, M.; Frey, M.; Shzu-Juraschek, F. Information-centric networking for the industrial IoT. In Proceedings of the 4th ACM Conference on Information-Centric Networking, Berlin, Germany, 26–28 September 2017; pp. 214–215. [Google Scholar]
- Kodali, R.K.; Soratkal, S. MQTT based home automation system using ESP8266. In Proceedings of the 2016 IEEE Region 10 Humanitarian Technology Conference (R10-HTC), Agra, India, 21–23 December 2016; pp. 1–5. [Google Scholar]
- Prada, M.A.; Reguera, P.; Alonso, S.; Morán, A.; Fuertes, J.J.; Domínguez, M. Communication with resource-constrained devices through MQTT for control education. IFAC-PapersOnLine 2016, 49, 150–155. [Google Scholar] [CrossRef]
- Wukkadada, B.; Wankhede, K.; Nambiar, R.; Nair, A. Comparison with HTTP and MQTT in Internet of Things (IoT). In Proceedings of the 2018 International Conference on Inventive Research in Computing Applications (ICIRCA), Coimbatore, India, 11–12 July 2018; pp. 249–253. [Google Scholar]
- Bauer, J.; Aschenbruck, N. Measuring and adapting MQTT in cellular networks for collaborative smart farming. In Proceedings of the 2017 IEEE 42nd Conference on Local Computer Networks (LCN), Singapore, 9–12 October 2017; pp. 294–302. [Google Scholar]
- Rausch, T.; Nastic, S.; Dustdar, S. Emma: Distributed qos-aware mqtt middleware for edge computing applications. In Proceedings of the 2018 IEEE International Conference on Cloud Engineering (IC2E), Orlando, FL, USA, 17–20 April 2018; pp. 191–197. [Google Scholar]
- Atmoko, R.; Riantini, R.; Hasin, M. IoT real time data acquisition using MQTT protocol. J. Phys. Conf. Ser. 2017, 853, 012003. [Google Scholar] [CrossRef]
- Cambiaso, E.; Papaleo, G.; Chiola, G.; Aiello, M. Slow DoS attacks: Definition and categorisation. Int. J. Trust Manag. Comput. Commun. 2013, 1, 300–319. [Google Scholar] [CrossRef]
- Cambiaso, E.; Papaleo, G.; Aiello, M. Slowdroid: Turning a smartphone into a mobile attack vector. In Proceedings of the 2014 International Conference on Future Internet of Things and Cloud, Barcelona, Spain, 27–29 August 2014; pp. 405–410. [Google Scholar]
- Farina, P.; Cambiaso, E.; Papaleo, G.; Aiello, M. Understanding ddos attacks from mobile devices. In Proceedings of the 2015 3rd International Conference on Future Internet of Things and Cloud, Rome, Italy, 24–26 August 2015; pp. 614–619. [Google Scholar]
- Light, R.A. Mosquitto: Server and client implementation of the MQTT protocol. J. Open Source Softw. 2017, 2, 265. [Google Scholar] [CrossRef]
- Bambauer, D.E. Schrodinger’s Cybersecurity. UCDL Rev. 2014, 48, 791. [Google Scholar]
- Glaroudis, D.; Iossifides, A.; Chatzimisios, P. Survey, comparison and research challenges of IoT application protocols for smart farming. Comput. Netw. 2020, 168, 107037. [Google Scholar] [CrossRef]
- Aiello, M.; Cambiaso, E.; Mongelli, M.; Papaleo, G. An on-line intrusion detection approach to identify low-rate DoS attacks. In Proceedings of the 2014 International Carnahan Conference on Security Technology (ICCST), Rome, Italy, 13–16 October 2014; pp. 1–6. [Google Scholar]
- Mongelli, M.; Aiello, M.; Cambiaso, E.; Papaleo, G. Detection of DoS attacks through Fourier transform and mutual information. In Proceedings of the 2015 IEEE International Conference on Communications (ICC), London, UK, 8–12 June 2015; pp. 7204–7209. [Google Scholar]
- Aiello, M.; Cambiaso, E.; Scaglione, S.; Papaleo, G. A similarity based approach for application DoS attacks detection. In Proceedings of the 2013 IEEE Symposium on Computers and Communications (ISCC), Split, Croatia, 7–10 July 2013; pp. 000430–000435. [Google Scholar]
- Cambiaso, E.; Papaleo, G.; Chiola, G.; Aiello, M. A Network Traffic Representation Model for Detecting Application Layer Attacks. Int. J. Comput. Digit. Syst. 2016, 5. [Google Scholar] [CrossRef]
Feature | SlowTT | SlowITe |
---|---|---|
Duration time | Keep connections alive | When the 1.5 times KeepAlive value expires, |
for infinite time | connections are closed | |
KeepAlive | The attack does not | The attack strictly depends |
depend on the value of KeepAlive | on the value of KeepAlive | |
Behavior | More realistic behavior | Anomalous behavior |
(CONNECT and PING) | (just CONNECT is a rare approach) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vaccari, I.; Aiello, M.; Cambiaso, E. SlowTT: A Slow Denial of Service against IoT Networks. Information 2020, 11, 452. https://doi.org/10.3390/info11090452
Vaccari I, Aiello M, Cambiaso E. SlowTT: A Slow Denial of Service against IoT Networks. Information. 2020; 11(9):452. https://doi.org/10.3390/info11090452
Chicago/Turabian StyleVaccari, Ivan, Maurizio Aiello, and Enrico Cambiaso. 2020. "SlowTT: A Slow Denial of Service against IoT Networks" Information 11, no. 9: 452. https://doi.org/10.3390/info11090452
APA StyleVaccari, I., Aiello, M., & Cambiaso, E. (2020). SlowTT: A Slow Denial of Service against IoT Networks. Information, 11(9), 452. https://doi.org/10.3390/info11090452