An Analytical and Numerical Detour for the Riemann Hypothesis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mathematical Notations
2.2. Complex Analysis Reminders
2.2.1. Holomorphic and Meromorphic Functions
2.2.2. Weierstraß’s and Hadamard’s Factorization Theorems
2.3. Reminders on Special Functions
2.3.1. The Gamma Function
2.3.2. The Incomplete Gamma Function
2.3.3. The Digamma Function
2.3.4. The Zeta () Function
2.4. RH over a Finite Field
2.5. Reasoning Strategy
- In [26], we analyzed the genesis of the numerical value of the function from the original series, by identifying three phases, according to the development of the index n of the series; firstly, influential and constitutive phase of the value by successive plateaus from 1 to , secondly a phase completing the final value of to , and finally a divergent phase without influence on the value of to infinity.
- In [27], we calculated the serial expansion of , in the CS, with its reduced transcription on the CL. From these formulas emerges a geometric interpretation of in the group of similitudes, i.e., a homothety and four rotations, followed by a final transformation ε, which prefigures the RH.
- In [28], we proposed a two-layer stochastic model of the position of the nth zero on the CL, with its estimate of the ordinate The two layers are composed of one deterministic layer, via the Lambert function . The second layer is stochastic via Gaussian random variables.
- Holomorphy: the function is a continuous complex function, infinitely differentiable, and conformal, i.e., angles are preserved—the image of a circle is a circle.
- The constitutional symmetry of the complex : the symmetry of the real surface with respect to the plane and the symmetry of the imaginary surface with respect to the line .
2.6. RH Analysis
3. Results
3.1. The Zeros of the Function
- (1)
- The zeros are on the CL . They are isolated points. We are certain that there exist of them.
- (2)
- The zeros in the CS . In this case, the zeros come in quadruplets: . Their cardinality is unknown. The RH refutes their existence ().
- (3)
- A teratological case must be considered: zeros of the CL are aligned with zeros in the CS. In this case, there are six zeros, which are the combination of the two previous cases.
3.2. The Power Series of the Gamma Function
3.3. The Function from the
3.4. The Kernels of the and Functions
3.5. The Poles and Zeros Function
3.6. The Family of Functions
3.7. The Family of Composite Functions
3.8. Taylor’s Formula within the CS
- (a)
- is not a non-trivial zero:
- (b)
- is a non-trivial zero:
3.9. The Numerical RH Debate
- (a)
- is not a non-trivial zero:
- (b)
- is a non-trivial zero:
4. Discussion
4.1. The Function as an Integral
4.2. The Comparison with the Version in Finite Fields
- On the infinite field, the zeros of the function correspond to the zeros of the real surface of on the plane of symmetry. The holomorphy is the smoothness property which mitigates and constrains the local variations of the function. The congruence appears on the anamorphic space: and include undulations over unit and double periods over the unitary interval corresponding to the nth zero whose midpoint has the ordinate .
- On the finite field, the number of rational points on a smooth curve corresponds to the number of times that the curve meets, up to congruence, the crossings of the grid drawn on a sheet of checkered paper according to the scale of algebraic integers. The rigidity of the irreducible polynomial makes it possible to control the contours of the curve. However, the composition of the Taylor function with the introduction of the congruence and the constraints of the irreducible polynomial is more problematic to define and to conceive.
5. Conclusions
- A function of class has an important property of regularity, but it is a local property.
- An analytical function is more rigid than a function of class . The knowledge of an analytical function in the neighborhood of a point makes it possible to deliver information beyond the neighborhood of this point, in particular for a meromorphic function with isolated zeros and an analytical expansion, making use of Weierstraß’s results.
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Riemann, B. Über die Anzahl der Primzahlen unter Einer Gegebenen Größe; Monatsberichte der Königlichen Preußische Akademie der Wissenschaften: Berlin, Germany, 1859; pp. 671–680. [Google Scholar]
- Hadamard, J. Sur les Zéros de la Fonction ζ(s) de Riemann. Comptes Rendus L’académie Sci. 1896, 122, 1470–1473. [Google Scholar]
- De la Vallée Poussin, C.-J. Recherches analytiques sur la théorie des nombres premiers. Ann. Soc. Sci. 1896, 20–21B, 183–256, 281–352, 363–397, 351–368. [Google Scholar]
- Titchmarsh, E.C. The Theory of the Riemann Zeta-Function, 1st ed.; Oxford University Press: Oxford, UK, 1951; p. 346. [Google Scholar]
- Gram, J.-P. Note sur les zéros de la fonction ζ(s) de Riemann. Acta Math 1903, 27, 289–304. [Google Scholar] [CrossRef]
- Landau, E. Über die Nullstellen der Zeta-funktion. Math. Ann. 1912, 71, 548–564. [Google Scholar] [CrossRef]
- Hardy, G.H. Sur les zéros de la fonction ζ(s) de Riemann. Comptes Rendus L’académie Sci. 1914, 158, 1012–1014. [Google Scholar]
- Littlewood, J.E. On the zeros of the Riemann zeta-function. Proc. Camb. Phil. Soc. 1924, 22, 295–318. [Google Scholar] [CrossRef]
- Levinson, N. More than one third of zeros of Riemann’s zeta-function are on σ = ½. Adv. Math. 1974, 13, 383–436. [Google Scholar] [CrossRef] [Green Version]
- Conrey, J.B. More than 2/5 of the zeros of the Riemann zeta function are on the critical line. J. Reine Angew. Math. 1989, 399, 1–26. [Google Scholar]
- Hardy, G.H.; Littlewood, J.E. The zeros of Riemann’s zeta function on the critical line. Math. Z. 1921, 10, 283–317. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, F.V. The mean value of the zeta-function on the critical line. Proc. London Math. Soc. 1941, 47, 174–200. [Google Scholar]
- Odlyzko, A. Tables of Zeros of the Riemann Zeta Function. 2002. Available online: http://www.dtc.umn.edu/~odlyzko/zeta_tables/index.html (accessed on 20 October 2021).
- Python: A Programming Language. Available online: https://www.python.org/ (accessed on 20 October 2021).
- The SciPy Ecosystem: Sci. Computing Tools for Python. Available online: https://www.scipy.org/ (accessed on 20 October 2021).
- Matplotlib: A Comprehensive Python Plotting Library. Available online: https://matplotlib.org/ (accessed on 20 October 2021).
- Mpmath: A BSD Licensed Python Library for Real and Complex Floating-Point Arithmetic with Arbitrary Precision. Available online: http://mpmath.org (accessed on 20 October 2021).
- SageMath: A Computer Algebra System with Features Covering Many Aspects of Mathematics. Available online: https://wiki2.org/en/SageMath (accessed on 20 October 2021).
- Weierstraß, K. Zur Theorie der Eindeutigen Analytischen Funktionen; Mathematische Abhandlungen der Königlichen Akademie der Wissenschaften: Berlin, Germany, 1876; pp. 11–60. [Google Scholar]
- Artin, E. Quadratische Körper im Gebiete der höheren Kongruenzen I, II. Math. Z. 1924, 19, 153–246. [Google Scholar] [CrossRef]
- Hasse, H. Theorie der relativ-zyklischen algebraischen Funktionenkörper, insbesondere bei endlichen Konstantenkörper. J. Reine Angew. Math. 1934, 172, 37–54. [Google Scholar]
- Hasse, H. Über die Riemannsche Vermutung in Funktionenkörpern. In Proceedings of the Congrès International des Mathématiciens, Oslo, Norway, 13–18 July 1936; pp. 183–206. [Google Scholar]
- Weil, A. Foundations of Algebraic Geometry; American Mathematical Society: Providence, RI, USA, 1946. [Google Scholar]
- Deligne, P. La conjecture de Weil, I. Inst. Hautes Etudes Sci. Publ. Math. 1974, 43, 273–307. [Google Scholar] [CrossRef]
- Deligne, P. La conjecture de Weil, II. Inst. Hautes Etudes Sci. Publ. Math. 1980, 52, 137–252. [Google Scholar] [CrossRef]
- Riguidel, M. Morphogenesis of the Zeta Function in the Critical Strip by Computational Approach. Mathematics 2018, 6, 285. [Google Scholar] [CrossRef] [Green Version]
- Riguidel, M. Numerical Calculations to Grasp a Mathematical Issue Such as the Riemann Hypothesis. Information 2020, 11, 237. [Google Scholar] [CrossRef]
- Riguidel, M. The Two-Layer Hierarchical Distribution Model of Zeros of Riemann’s Zeta Function along the Critical Line. Information 2021, 12, 22. [Google Scholar] [CrossRef]
- Jacobi, C.G.J. Fundamenta Nova Theoriae Functionum Ellipticarum; Univ. Regiom.: Königsberg, Prussia, 1829; (In Latin). Reprinted by Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Tricomi, F.G. Sulle funzioni ipergeometriche confluenti. Ann. Mat. Pura Appl. 1947, 26, 141–175. [Google Scholar] [CrossRef]
- Tricomi, F.G. Funzioni Ipergeometriche Confluenti; Edizioni Cremonese; Consiglio Nazionale Delle Ricerche Monografie Matematiche: Rome, Italy, 1954; ISBN 978-88-7083-449-9. (In Italian) [Google Scholar]
- Temme, N.M. A Set of Algorithms for the Incomplete Gamma Functions. In Probability in the Engineering and Informational Sciences; Cambridge University Press: Cambridge, UK, 1994; Volume 8, pp. 291–307. [Google Scholar]
- Kummer, E.E. De integralibus quibusdam definitis et seriebus infinitis. J. Für Die Reine Und Angew. Math. 1837, 17, 228–242. (In Italian) [Google Scholar] [CrossRef] [Green Version]
- Serre, J.-P. Sur le nombre des points rationnels d’une courbe algébrique sur un corps fini. C. R. Acad. Sci. Paris 1983, 296, 397–402. [Google Scholar]
- Katz, N.M.; Messing, W. Some consequences of the Riemann hypothesis for varieties over finite fields. Invent. Math. 1974, 23, 73–77. [Google Scholar] [CrossRef]
Definition | Notation |
---|---|
Absolute value | |
Complex number | |
Integer and fractional parts | In , the integer part and the fractional part of a real number : |
Complex number in the CS | In , its conjugate |
Complex number associated with | In , its conjugate symmetric of with respect to () |
Critical strip (CS) | In the CS : |
Critical line (CL) | On the CL : |
CS, except the CL | |
Zeta function: | In the CS, the function is divergent. One considers in this CS, the analytical continuation . |
Eta Dirichlet function: | |
Derivative of the function | |
Functional equation of the function | |
Functional equation on the CL | |
Anamorphosis | The anamorphosis produces a stronger elongation of the axis as increases. |
Zeros in the CS\CL | |
Zeros on the CL | The zeros are ordered in pairs, and Calculations are carried out with |
Lambert function | The main branch is defined by: |
Gamma function | |
Lower incomplete Gamma function | |
Digamma function | |
Jacobi function | |
Pochhammer symbol | Rising factorial: |
Euler’s constant | Euler–Mascheroni constant: |
Taylor series | |
Bernoulli numbers | Coefficients of the power series of ; |
Milestones | Analytical & Numerical |
---|---|
Riemann | |
Zeros | |
Weierstraß, Hadamard | |
Poles and Zeros | |
Functions | |
Taylor | |
RH | |
Congruence | |
Meromorphy, Weierstraß | |
Infinite and Finite Fields | Primes ; |
Jacobi–Weierstraß Elliptics |
True F(s) Value | F * Direct Way (9 Derivatives) | F * Indirect Way (8 Terms) | |
---|---|---|---|
Infinite Field | Finite Field | |
---|---|---|
Series | Polynomial | |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riguidel, M. An Analytical and Numerical Detour for the Riemann Hypothesis. Information 2021, 12, 483. https://doi.org/10.3390/info12110483
Riguidel M. An Analytical and Numerical Detour for the Riemann Hypothesis. Information. 2021; 12(11):483. https://doi.org/10.3390/info12110483
Chicago/Turabian StyleRiguidel, Michel. 2021. "An Analytical and Numerical Detour for the Riemann Hypothesis" Information 12, no. 11: 483. https://doi.org/10.3390/info12110483
APA StyleRiguidel, M. (2021). An Analytical and Numerical Detour for the Riemann Hypothesis. Information, 12(11), 483. https://doi.org/10.3390/info12110483