A Social Media Mining and Ensemble Learning Model: Application to Luxury and Fast Fashion Brands
Abstract
:1. Introduction
2. Literature Review
2.1. Brand Community Participation
2.2. Information Image and Cues
3. Hypotheses
4. Methodology
5. Data Analyses and Results
5.1. Reliability and Validity
5.2. Hypotheses Testing
5.3. Data Findings
5.4. Data Verification
5.4.1. Luxury Fashion Brand: Louis Vuitton
5.4.2. Luxury Fashion Brand: Hermès
5.4.3. Luxury Fashion Brand: Chanel
5.4.4. Fast Fashion Brand: Zara
5.4.5. Fast Fashion Brand: Nike
5.4.6. Fast Fashion Brand: Adidas
6. Conclusions
6.1. Finding and Discussion
- (A)
- Image cue module: The image cue module focuses on the behavioral response of comments and image cues in the content. Brand pages with significant findings include the luxury fashion brand Hermès and the fast fashion brand Nike. Image information reflects the extent to which information impacts the public [97], and information evoked in viewer memory often influences public attitudes and behaviors. Familiar information is more likely to be recalled than unfamiliar content [98]. Research on information management processing clearly demonstrates a high correlation between information familiarity and memory recall. Therefore, brand pages that continuously provide key information along with brand familiarity are more likely to evoke stronger recall [99] and more easily trigger participation in the form of comments.
- (B)
- Image and theme cue module: The image and theme cue module effectively combines the three types of interactions of likes, comments, and shares. The module highlights image and theme cues that generate public focus on and interest in the brand. Luxury fashion brands Chanel and Louis Vuitton and the fast fashion brand Zara best exemplify the module. This primary aim of the image and theme cue module is to transform image cues into a unique brand personality. Information cues can be generated through different marketing plans such as the continuous disclosure of product-related cues, prices, features, and other information [100]. Information cognition represents not only public beliefs and ideas but also emotional or behavioral responses and thus, is the main factor determining the effectiveness of posts [101]. The module strengthens benefits common to both images and themes and uses information to promote representative behaviors such as sharing and commenting. The social media activities of luxury fashion brands employ various dimensions including entertainment, interaction, fashion, and personalization to create brand stories and establish a connection between brands and emotions [13,14,15]. Image cues also help enhance user trust [13,14,15] and brand equity [102]. In summary, the appropriate use of image and theme cues is the most effective way to evoke public participation.
6.2. Theoretical Implications
6.3. Practical Implications
6.4. Research Limitations and Suggestions for Future Research
Funding
Conflicts of Interest
Appendix A. Measurement and Items
Likes | Negative | Positive | Comments | Negative | Positive | Shares | Negative | Positive |
---|---|---|---|---|---|---|---|---|
Jones | 21.16 | 24.54 | Jones | 21.4 | 19.67 | Paris | 21.97 | 23.23 |
now | 32.39 | 20.32 | now | 24.55 | 17.61 | now | 31.28 | 23.2 |
Paris | 20.55 | 17.14 | http | 40.14 | 17.59 | Jones | 18 | 22.16 |
Louis.Vuitton | 19.22 | 16.1 | show | 25.97 | 12.8 | show | 24.85 | 16.37 |
show | 25.02 | 13.65 | world | 26.82 | 11.26 | Louis.Vuitton | 17.39 | 15 |
men | 23.02 | 12.98 | full | 16.77 | 10.19 | world | 27.75 | 13.68 |
world | 25.76 | 10.97 | all | 29.18 | 9.56 | http | 34.3 | 13.32 |
full | 16.11 | 9.55 | style | 25.13 | 8.31 | full | 20.84 | 11.51 |
http | 33.74 | 9.54 | Louis.Vuitton | 24.36 | 7.5 | bag | 15.7 | 8.59 |
new | 27.32 | 6.85 | Paris | 13.61 | 5.93 | all | 27.5 | 8.38 |
all | 32.3 | 6.42 | new | 25.9 | 5.52 | men | 23.33 | 7.15 |
online | 11.03 | 5.79 | watch | 22.59 | 4.6 | fall | 15.16 | 6.54 |
fashion | 21.23 | 5.16 | men | 25.7 | 4.17 | style | 12.21 | 6.18 |
Collect | 25.58 | 4.78 | discover | 5.08 | 4.15 | Spring.Summer | 16.07 | 5.82 |
present | 10.15 | 4.55 | fall | 15.04 | 4.05 | design | 15.76 | 5.14 |
discover | 6.23 | 4.24 | open | 12.61 | 4.01 | online | 8.97 | 4.93 |
fall | 12.07 | 3.9 | present | 7.12 | 3.27 | leather | 13.66 | 4.62 |
leather | 14.93 | 3.55 | Collect | 21.36 | 1.74 | discover | 5.78 | 4.5 |
holiday | 16.64 | 3.13 | Spring.Summer | 16.02 | 1.74 | new | 26.52 | 4.35 |
select | 19.83 | 1.89 | para | 5.91 | 1.51 | campaign | 24.94 | 3.73 |
design | 14.14 | 1.7 | holiday | 15.15 | 0.76 | watch | 11.63 | 3.21 |
Cruise | 27.39 | 1.56 | online | 4.75 | 0.21 | Collect | 22.66 | 2.45 |
style | 12.89 | 1.35 | design | 11.81 | −0.08 | fashion | 14.27 | 2.18 |
time | 9.96 | 1.1 | leather | 11.84 | −0.27 | Cruise | 28.16 | 1.99 |
watch | 11.5 | −0.15 | visit | 9.64 | −0.61 | holiday | 15.71 | 1.91 |
season | 17.17 | −0.33 | campaign | 27.08 | −0.82 | para | 5.18 | 1.72 |
find | 22.79 | −0.42 | select | 14.51 | −1.16 | visit | 13.47 | 1.67 |
travel | 16.67 | −0.42 | time | 9.08 | −2 | season | 20.2 | 0.99 |
para | 5.37 | −0.44 | find | 15.38 | −2.41 | select | 18.84 | −0.25 |
campaign | 27.73 | −0.56 | available | 17.65 | −2.5 | travel | 15.95 | −2.64 |
visit | 12.85 | −0.87 | season | 16.76 | −2.73 | time | 9.21 | −3.3 |
available | 16.96 | −1.77 | travel | 12.68 | −3.04 | present | 12.81 | −3.39 |
Spring.Summer | 17.02 | −1.86 | fashion | 18.45 | −3.49 | Ghesqui | 21.66 | −3.42 |
Ghesqui | 18.4 | −2.94 | Cruise | 28.6 | −5.06 | Nicolas | 19.82 | −3.58 |
bag | 16.89 | −3.43 | Ghesqui | 18.6 | −6.86 | open | 13.16 | −3.96 |
Nicolas | 21.22 | −4.31 | Nicolas | 18.33 | −7.93 | find | 16.95 | −4.56 |
open | 12.71 | −5.06 | store | 25.74 | −8.35 | inspire | 29.65 | −7.64 |
Likes | Negative | Positive | Comments | Negative | Positive | Shares | Negative | Positive |
---|---|---|---|---|---|---|---|---|
photo | 24.83 | 30.54 | live | 2.89 | 11.31 | Milan | −7.29 | 8.41 |
sautHermès | 12.11 | 18.84 | Hermèsistible | 0.07 | 8.41 | maison | −0.12 | 6.63 |
Hermèsistible | 1.77 | 9.84 | Herm.s | 7.42 | 7.62 | Twilly | −5.8 | 6.01 |
TwillydHermès | −7.2 | 6.72 | Discover | 0.31 | 7.54 | TwillydHermès | −3.49 | 4.35 |
je | −0.53 | 6.7 | http | 3.97 | 6.26 | carr. | 3 | 4.28 |
Twilly | −6.85 | 6.7 | Fondation | 8.03 | 5.87 | Discover | 1.12 | 3.89 |
http | 2.51 | 5.74 | Terre | −8.83 | 4.95 | invite | 3.62 | 3.18 |
silk | −3.56 | 5.65 | photo | 14.74 | 4.44 | parfum | −2.68 | 2.84 |
art | 1.43 | 5.52 | show | 7.66 | 4.4 | Fondation | 4.83 | 2.34 |
live | 6.33 | 5.45 | break. | −4.33 | 4.13 | break. | −2.32 | 2 |
break. | −4.55 | 4.67 | parfum | −2.04 | 3.82 | collection | 5.79 | 1.97 |
Monday | −4 | 4.53 | Twilly | −2 | 3.32 | new | 2.51 | 1.81 |
come | 2.43 | 4.5 | je | 3.61 | 2.96 | je | 1.26 | 1.79 |
Discover | 2.71 | 4.29 | d.fil. | 7.54 | 1.59 | Monday | −2.24 | 1.73 |
Fondation | 3.85 | 3.98 | men | 8.74 | 1.32 | April | −1.36 | 1.28 |
leather | −1.56 | 3.92 | Monday | −0.48 | 0.88 | photo | 10.81 | 1.23 |
April | 0.68 | 3.74 | TwillydHermès | −4 | 0.84 | Paris | 10.44 | 1.21 |
Herm.s | 6.63 | 2.67 | maison | −5.83 | 0.72 | Herm.s | 2.66 | 1.14 |
parfum | −3.68 | 2.48 | Palais | −4.04 | 0.05 | live | 0.75 | 1.11 |
women | 5.92 | 2.33 | carr. | 1.01 | −0.58 | art | −3.02 | −0.19 |
Milan | −3.91 | 0.02 | silk | −5.46 | −0.63 | silk | −2.45 | −0.33 |
d.fil. | −3.85 | −0.09 | vous | 11.68 | −0.94 | leather | −1.44 | −1.18 |
defile | 5.1 | −0.11 | time | 2.64 | −0.98 | sautHermès | 13.29 | −1.56 |
collection | 8.78 | −0.15 | women | 7.5 | −1.01 | men | 5.38 | −1.57 |
Terre | −4.8 | −0.56 | art | −1.86 | −1.47 | show | 0.61 | −1.67 |
maison | −2.97 | −0.75 | Milan | −2.54 | −1.53 | http | −3.05 | −1.68 |
cover | 8.88 | −2.33 | April | 0.45 | −1.56 | defile | 9.66 | −1.72 |
carr. | 1.94 | −2.52 | leather | −3.76 | −2.03 | come | −0.97 | −1.75 |
time | 3.32 | −2.87 | sautHermès | 13.34 | −2.97 | Terre | −4.44 | −1.84 |
show | 6.76 | −3.33 | Dan | 3.68 | −3.43 | Hermèsistible | −4.05 | −1.93 |
invite | 5.25 | −3.36 | defile | 12.59 | −3.91 | women | 3.31 | −2.17 |
new | 10.48 | −4.21 | cover | 19.43 | −4.21 | vous | −1.54 | −2.2 |
vres | 7.43 | −4.29 | come | 5.03 | −4.45 | design | 1.45 | −2.24 |
design | −2.74 | −4.31 | Paris | 11.04 | −5.21 | time | 3.3 | −2.98 |
vous | 4.18 | −4.36 | design | 0.55 | −5.66 | d.fil. | 3.56 | −3.18 |
Dan | 2.22 | −4.7 | new | 12.23 | −7.37 | Palais | 3.15 | −3.38 |
men | 8.81 | −5.3 | collection | 15.76 | −7.48 | Dan | 4.83 | −5.18 |
Palais | 3.1 | −6.74 | invite | 5.11 | −7.86 | cover | 11.17 | −8.67 |
Likes | Negative | Positive | Comments | Negative | Positive | Shares | Negative | Positive |
---|---|---|---|---|---|---|---|---|
show | 13.75 | 21.13 | show | 13.38 | 22.89 | show | 13.64 | 24.76 |
CHANEL | 4.76 | 11.07 | present | 9.68 | 17.75 | present | 7.71 | 19.42 |
present | 5.13 | 10.46 | CHANEL | 1.88 | 10.76 | Spring.Summer | 11.91 | 14.75 |
Ready.to.Wear | 7.1 | 10.4 | Spring.Summer | 11.39 | 10.43 | CHANEL | 4.54 | 10.03 |
Spring.Summer | 7.87 | 8.77 | film | 2.82 | 8.19 | Haute | 11.14 | 9.95 |
new | −2.15 | 7.12 | Ready.to.Wear | 4.62 | 6.37 | new | −3.99 | 5.88 |
Grand | 11.14 | 5.92 | Haute | 11.89 | 6.15 | Paris | 5.78 | 5.13 |
M.tiers | −2.84 | 5.74 | skin | −7.46 | 5.87 | skin | −6.49 | 5.03 |
now | 3.92 | 5.58 | Paris | 3.16 | 5.84 | makeup | 9.53 | 4.29 |
Haute | 6.2 | 5.39 | new | −4.17 | 5.53 | ROUGE | 0.23 | 4.07 |
makeup | 6.92 | 5.03 | makeup | 7.41 | 4.26 | look | 6.89 | 3.82 |
Fall.Winter | 5.91 | 3.9 | Cruise | 1.2 | 3.36 | design | 5.9 | 3.71 |
create | 4.34 | 3.78 | now | 4.15 | 3.1 | Ready.to.Wear | 3.61 | 3.36 |
skin | −4.12 | 3.69 | ROUGE | 2.23 | 2.76 | now | −1.22 | 3.28 |
fragrance | 1.8 | 3.63 | M.tiers | 1.75 | 2.46 | Cruise | 2.06 | 2.96 |
film | 5.13 | 3.4 | create | 1.25 | 1.96 | GABRIELLE | −0.17 | 2.72 |
ROUGE | 0.36 | 2.66 | fragrance | −2.75 | 1.61 | Lucia | −4.58 | 2.23 |
Palais | 10.59 | 2.45 | GABRIELLE | 1.76 | 1.16 | Fall.Winter | 5.45 | 2.07 |
look | 8.08 | 2.06 | Mademoiselle | 3.86 | 0.83 | inspired | 0.23 | 1.8 |
Paris | 3.92 | 1.87 | come | 3.39 | 0.71 | create | 1.64 | 1.65 |
exhibition | 2.68 | 1.53 | colour | −1.35 | 0.41 | Palais | 8.52 | 1.42 |
Pica | −3.2 | 1.26 | Grand | 12.04 | 0.23 | Grand | 9.61 | 1.39 |
discover | 1.78 | 1.11 | look | 3.85 | 0.2 | come | 0.35 | 1.24 |
Karl | 7.12 | 0.62 | Lucia | −3.95 | 0.16 | colour | −3.83 | 1.08 |
Lucia | −1.94 | 0.51 | Pica | −3.09 | −0.15 | campaign | 6.81 | 0.8 |
come | 0.26 | 0.21 | Gabrielle | 4.63 | −0.71 | Pica | −3.41 | 0.8 |
Lagerfeld | 8.36 | −0.21 | discover | 2.84 | −0.93 | Lagerfeld | 8.09 | 0.77 |
Cruise | 3.11 | −0.32 | design | 1.09 | −0.97 | M.tiers | −0.31 | 0.55 |
Mademoiselle | 3.6 | −0.5 | exhibition | 5.61 | −1.21 | fragrance | −3.75 | 0.36 |
GABRIELLE | 1.83 | −0.79 | inspired | −3.22 | −1.23 | collection | 6.03 | 0.04 |
collection | 9.64 | −1.15 | available | 0.49 | −1.33 | discover | 2.01 | 0 |
Gabrielle | 2.94 | −1.15 | Palais | 9.16 | −1.38 | exhibition | 4.06 | −0.89 |
colour | −0.74 | −1.51 | Karl | 7.83 | −1.56 | available | −0.52 | −0.91 |
Priv. | 3.71 | −1.8 | beauty | 4.32 | −1.58 | Gabrielle | 2.17 | −1.01 |
boutique | 6.83 | −2.05 | Priv. | 5.41 | −2.05 | Priv. | 3.7 | −1.83 |
inspired | 1.36 | −2.36 | collection | 10.11 | −2.31 | Mademoiselle | 2.62 | −1.84 |
design | 0.73 | −2.97 | boutique | 5.15 | −2.5 | film | 0 | −1.88 |
available | −0.18 | −3.1 | Fall.Winter | 8.44 | −2.69 | boutique | 5.67 | −2.2 |
Likes | Negative | Positive | Comments | Negative | Positive | Shares | Negative | Positive |
---|---|---|---|---|---|---|---|---|
PEOPLE | 42.71 | 68.23 | lookbook | 12.43 | 36.55 | PEOPLE | 36.87 | 70.45 |
editorial | 3.23 | 33.63 | PEOPLE | 47.19 | 31.69 | lookbook | 7.81 | 35.21 |
http | −6.68 | 30.75 | capsule | 12.09 | 21.88 | http | 2.69 | 21.92 |
capsule | 27.1 | 28.3 | zaradaily | 33.31 | 21.07 | ZARA | −13.29 | 18.26 |
lookbook | 17.38 | 25.55 | http | 3.02 | 17.62 | tuesday | 6.16 | 14.47 |
ZARA | −17.52 | 24.95 | all | 0.7 | 16.65 | capsule | 14.02 | 14.42 |
sale | −19.29 | 21.3 | new | −6.91 | 16.44 | zaradaily | 11.67 | 13.83 |
zaranewin | −14.91 | 20.75 | selected | 10.6 | 15.68 | sale | −3.79 | 12.23 |
start | −0.67 | 17.69 | editorial | 1.75 | 13.59 | all | −1.68 | 11.35 |
selected | −3.34 | 17.31 | store | −2.75 | 13.08 | online | −2.36 | 10.36 |
tienda | 7.76 | 16 | online | 1.3 | 12.86 | new | 1.76 | 10.04 |
online | −3.22 | 15.83 | ZARA | −7.9 | 11.09 | summer | −5.13 | 9.88 |
jacket | 11.26 | 13.38 | sale | 5.25 | 10.69 | in.store | 1.59 | 9.55 |
store | −6.26 | 12.62 | woman | 4.92 | 10.46 | woman | 3.15 | 9.51 |
zarasale | −10.93 | 12.01 | season | −3.55 | 10.35 | editorial | 2.11 | 9.28 |
all | −0.9 | 11.17 | week | 2.99 | 9.87 | now | 13.82 | 9.08 |
now | 1.94 | 10.43 | kids | −0.85 | 9.05 | look | −2.06 | 9.06 |
zaradaily | 34.43 | 9.95 | zarasale | 3.63 | 8.29 | monday | −2.52 | 8.77 |
woman | 13.44 | 8.6 | denim | −3.48 | 7.99 | store | 0.56 | 8.57 |
look | −3.34 | 7.01 | look | −3.25 | 7.8 | season | −4.95 | 8.57 |
week | 3.79 | 6.43 | now | 9.96 | 7.57 | zarasale | −1.65 | 8.52 |
new | −3.91 | 5.21 | in.store | −0.12 | 6.87 | kids | 0.31 | 8.42 |
recycle | 4.64 | 4.13 | zaranewin | −0.76 | 6.63 | selected | −4.85 | 8.36 |
REBAJAS | 5.39 | 3.53 | start | 0.05 | 6.59 | week | −6.25 | 8.34 |
shirt | 11.12 | 3.37 | recycle | −3.34 | 5.7 | outerwear | 0.39 | 8.21 |
newthisweek | 11.72 | 3.11 | summer | −6.3 | 5.02 | weekend | −4.65 | 6.83 |
in.store | −0.34 | 2.66 | −1.85 | 3.7 | more | −5.2 | 6.34 | |
more | 6.73 | 2.14 | newthisweek | 10.86 | 3.13 | campaign | −5.07 | 6.16 |
kids | 9.34 | 1.51 | weekend | 3.94 | 3.08 | −4.33 | 5.92 | |
campaign | −3.86 | 1.43 | zaraeditorial - | 4.66 | 2.8 | bag | −1.44 | 5.89 |
summer | 3.68 | 1.01 | shirt | 3.25 | 2.59 | knitwear | −7.16 | 5.1 |
bag | 3.63 | 0.85 | monday | 2.5 | 2.22 | zaranewin | 1.42 | 4.58 |
season | −3.02 | 0.06 | campaign | −2.13 | 1.64 | newthisweek | 4.69 | 1.94 |
outerwear | 7.89 | −0.2 | man | 11.1 | 1.07 | start | −5.11 | 0.87 |
monday | 3.46 | −0.73 | jacket | −6.55 | 0.63 | zaraeditorial | −4.87 | 0.49 |
weekend | 5.9 | −1.22 | more | −1.79 | −0.84 | coat | 9.36 | −0.04 |
Dear | 3.81 | −1.4 | bag | −3.91 | −0.94 | baby | −0.64 | −0.2 |
knitwear | 2.91 | −1.84 | available | 24.09 | −1.14 | shirt | 5.49 | −0.26 |
Likes | Negative | Positive | Comments | Negative | Positive | Shares | Negative | Positive |
---|---|---|---|---|---|---|---|---|
findgreatness | 6.44 | 21.96 | women | 5.58 | 11.25 | basketball | 4.84 | 7.62 |
justdoit | 0.77 | 8.91 | more | 1.08 | 10.89 | free | −7.16 | 6.27 |
great | −1.61 | 8 | here | −0.08 | 10.06 | never | −1.1 | 6.03 |
free | −6.15 | 6.65 | count | 16.55 | 9.9 | collection | 2.81 | 5.73 |
life | 0.01 | 4.99 | now | 4.09 | 8.56 | run | −5.06 | 4.72 |
here | −4.15 | 4.89 | basketball | 5.44 | 7.86 | justdoit | 0.7 | 4.47 |
women | −3.72 | 4.77 | life | 0.83 | 7.48 | great | 0.75 | 4.22 |
more | −2.94 | 3.91 | team | 4.22 | 7.12 | time | −1.68 | 3.44 |
new | −2.35 | 3.64 | never | 0.31 | 5.15 | first | 5.14 | 3.08 |
now | 0.14 | 3.59 | justdoit | 4.3 | 4.79 | game | 1.35 | 2.86 |
conditions | −2.28 | 3.02 | weather | 0.37 | 4.02 | women | 2.23 | 2.85 |
weather | −0.04 | 2.92 | sport | 0.57 | 3.21 | here | −4.3 | 2.83 |
control | 1.49 | 2.52 | Vapor | 8.27 | 3.19 | http | 1.57 | 1.94 |
game | 3.35 | 2.4 | conditions | 0.02 | 3.02 | count | 4.66 | 1.74 |
basketball | 5.74 | 2.18 | great | 3.3 | 2.74 | today | 4.78 | 1.42 |
court | 2.36 | 2.14 | football | 0.72 | 2.64 | conditions | −1.41 | 1.42 |
team | −3.32 | 2.07 | collection | 7.26 | 2.45 | control | 2.32 | 1.4 |
athlete | 0.6 | 1.43 | free | −1.83 | 2.35 | Vapor | 3.82 | 1.32 |
know | 3.8 | 1.16 | today | 3.32 | 1.67 | athlete | 2.95 | 0.97 |
never | −1.23 | 0.77 | first | 6.63 | 1.19 | Hyperdunk | 2.67 | 0.82 |
count | 5.98 | 0.75 | time | −1.22 | 0.86 | air | 0.53 | 0.78 |
collection | 2.85 | 0.66 | know | 2.86 | 0.42 | team | −0.68 | 0.35 |
Hyperdunk | −0.11 | 0.09 | findgreatness | 3.42 | −0.22 | fit | 6.06 | 0.21 |
best | 8.12 | −0.01 | Hyperdunk | 1.35 | −0.23 | show | 0.53 | −0.38 |
design | 0.07 | −0.07 | just | 6.75 | −0.29 | know | 2.66 | −0.57 |
time | 1.28 | −0.08 | train | 5.67 | −0.9 | weather | −1.15 | −0.74 |
run | 2.61 | −0.27 | shoe | −0.76 | −0.96 | Nike | 5.4 | −0.84 |
cover | 2.41 | −0.41 | cover | 2.49 | −1.18 | more | −3.44 | −0.97 |
show | −2.02 | −0.59 | photo | 3.08 | −1.25 | best | 5.37 | −1 |
world | 5.57 | −0.69 | design | −0.19 | −1.33 | new | 3.28 | −1.04 |
football | 2.1 | −0.94 | best | −0.71 | −1.61 | court | 2.72 | −1.16 |
photo | 2.13 | −1.4 | keep | 6.68 | −1.62 | now | 1.22 | −1.24 |
fit | 6.27 | −1.69 | show | −1.74 | −1.67 | keep | 3.18 | −1.31 |
feature | 4.26 | −1.74 | game | 6.52 | −1.98 | life | −3.39 | −1.34 |
train | −2.42 | −2.04 | world | 8.8 | −2.2 | shoe | −4.86 | −1.54 |
speed | 5.61 | −2.12 | athlete | 0.86 | −2.32 | speed | −0.21 | −1.63 |
just | 3.87 | −2.38 | http | 6.41 | −2.37 | findgreatness | 3.09 | −1.92 |
Likes | Negative | Positive | Comments | Negative | Positive | Shares | Negative | Positive |
---|---|---|---|---|---|---|---|---|
adidas | 14.24 | 29.78 | shoe | 29.18 | 22.69 | allin | 18.23 | 24.39 |
train | 12.01 | 26 | adidas | 24.23 | 22.17 | like | 20.36 | 20.45 |
now | 16.01 | 19.25 | allin | 5.56 | 21.9 | shoe | 11.1 | 20.37 |
team | 12.41 | 19.17 | like | 30.21 | 19.09 | team | 11.64 | 20.22 |
shoe | 12.62 | 17.23 | boost | −1.15 | 17.42 | football | 12.69 | 19.21 |
allin | 5.86 | 16.14 | football | 28.29 | 16.76 | adidas | 11.99 | 16.23 |
http | 11.57 | 15.51 | go | 15.25 | 16.72 | here | 14.12 | 15.7 |
game | 1.35 | 14.38 | now | 25.97 | 15.97 | go | 5.57 | 15.03 |
me | 16.24 | 12.05 | team | 14.99 | 15.93 | me | 16.01 | 14.54 |
win | 15.24 | 12 | new | 18.56 | 12.71 | game | 4.35 | 14.47 |
Tsonga | −9.41 | 11.73 | run | 2.79 | 12.57 | sport | 9.92 | 14.38 |
football | 6.25 | 11.72 | win | 20.42 | 12.37 | http | 9.57 | 14.12 |
sport | 7.45 | 11.62 | France | 2.44 | 11.74 | boost | −1 | 12.72 |
France | 0.05 | 11.46 | FindFocus | −2.62 | 11.05 | now | 12.76 | 12.71 |
final | 0.49 | 11.44 | olympique | 0.29 | 10.76 | first | 9.81 | 12.29 |
world | 6.59 | 9.5 | video | −0.33 | 9.61 | France | 2.84 | 12.29 |
go | 5.07 | 9.15 | creatividad | 2.7 | 8.53 | new | 10 | 12.06 |
chance | 4.37 | 8.92 | http | 19.57 | 8.44 | today | 10.62 | 11.91 |
creatividad | 8.73 | 8.41 | para | 1.64 | 8.23 | creatividad | 8.39 | 10.47 |
time | 1.57 | 8.3 | look | 10.4 | 7.98 | final | 8.66 | 10.23 |
para | 0.64 | 8.22 | make | 14.66 | 7.31 | stage | 13.79 | 10.07 |
boost | −5.38 | 7.75 | game | 15.94 | 6.84 | time | −3.98 | 10.03 |
video | 1.93 | 7.68 | time | 2.49 | 6.05 | run | 2.14 | 9.97 |
run | 9.66 | 7.66 | train | 5.38 | 5.56 | video | 0.57 | 9.76 |
first | 16.18 | 7.39 | here | 21.49 | 5.28 | FindFocus | −5.56 | 9.34 |
speedtakes | 11.12 | 7.33 | first | 13.58 | 5.11 | Tsonga | 0.42 | 8.79 |
make | −0.23 | 7.14 | sport | 11.76 | 5.1 | photo | 7.78 | 8.16 |
like | 11.25 | 6.64 | final | 13.22 | 4.94 | world | 2.07 | 8.08 |
olympique | −5.5 | 5.98 | today | 10.69 | 4.49 | chance | 3.96 | 7.66 |
look | 1.25 | 5.58 | stage | 17.56 | 3.47 | look | 5.39 | 6.39 |
here | 8.53 | 4.62 | challenge | 5.05 | 3.28 | origin | 1.83 | 6.01 |
stage | 18.03 | 4.41 | speedtakes | 10.95 | 3.22 | ready | 11.2 | 5.78 |
new | 14.03 | 4.21 | chance | 7.64 | 3.16 | make | 1.56 | 5.55 |
today | 9.19 | 3.97 | me | 14.2 | 2.71 | train | 2.11 | 4.02 |
find | 8.49 | 1.76 | Tsonga | 9.93 | 2.08 | win | 7.56 | 3.44 |
challenge | 6.67 | 1.28 | heretocreate | 4.44 | 0.4 | para | −0.62 | 2.11 |
store | 8.79 | −1.28 | cover | 14.63 | −0.95 | store | 9.44 | 1.55 |
heretocreate | 4 | −1.57 | world | 13.42 | −1.11 | olympique | −4.55 | 1.17 |
References
- Cheung, C.; Lee, Z.W.; Chan, T.K. Self-disclosure in social networking sites the role of perceived cost, perceived benefits and social influence. Internet Res. 2015, 25, 279–299. [Google Scholar] [CrossRef]
- Hassan, M.; Casaló Ariño, L.V. Consumer devotion to a different height: How consumers are defending the brand within Facebook brand communities. Internet Res. 2016, 26, 963–981. [Google Scholar] [CrossRef]
- Hollebeek, L.D.; Juric, B.; Tang, W. Virtual brand community engagement practices: A refined typology and model. J. Serv. Mark. 2017, 31, 204–217. [Google Scholar] [CrossRef]
- Ashley, C.; Tuten, T. Creative Strategies in Social Media Marketing: An Exploratory Study of Branded Social Content and Consumer Engagement. Psychol. Mark. 2015, 32, 15–27. [Google Scholar] [CrossRef]
- Lipsman, A.; Mudd, G.; Rich, M.; Bruich, S. The power of “like”: How brands reach (and influence) fans through social-media marketing. J. Advert. Res. 2012, 52, 40–52. [Google Scholar] [CrossRef]
- Kelley, J.B.; Alden, D.L. Online brand community: Through the eyes of Self-Determination Theory. Internet Res. 2016, 26, 790–808. [Google Scholar] [CrossRef]
- Zhou, M.; Lei, L.; Wang, J.; Wang, A.G.A.; Fan, W. Social media adoption and corporate disclosure. J. Inf. Syst. 2015, 29, 23–50. [Google Scholar] [CrossRef]
- Islam, J.U.; Rahman, Z.; Hollebeek, L.D. Personality factors as predictors of online consumer engagement: An empirical investigation. Mark. Intell. Plan. 2017, 35, 510–528. [Google Scholar] [CrossRef]
- Fernandes, T.; Remelhe, P. How to engage customers in co-creation: Customers’ motivations for collaborative innovation. J. Strateg. Mark. 2016, 24, 311–326. [Google Scholar] [CrossRef] [Green Version]
- Hollebeek, L.D.; Brodie, R.J. Non-monetary social and network value: Understanding the effects of non-paying customers in new media. J. Strateg. Mark. 2016, 24, 169–174. [Google Scholar] [CrossRef] [Green Version]
- Hutter, K.; Hautz, J.; Dennhardt, S.; Füller, J. The impact of user interactions in social media on brand awareness and purchase intention: The case of MINI on Facebook. J. Prod. Brand Manag. 2013, 22, 342–351. [Google Scholar] [CrossRef] [Green Version]
- Wallace, E.; Buil, I.; de Chernatony, L.; Hogan, M. Who “likes” you … and why? A typology of facebook fans: From “fan”-atics and self- expressives to utilitarians and authentics. J. Advert. Res. 2014, 54, 92–109. [Google Scholar] [CrossRef] [Green Version]
- Kim, A.J.; Ko, E. Do social media marketing activities enhance customer equity? An empirical study of luxury fashion brand. J. Bus. Res. 2012, 65, 1480–1486. [Google Scholar] [CrossRef]
- Kim, A.J.; Ko, E. Impacts of luxury fashion brand’s social media marketing on customer relationship and purchase intention. J. Glob. Fash. Mark. 2010, 1, 164–171. [Google Scholar] [CrossRef]
- Kim, D.H.; Spiller, L.; Hettche, M. Analyzing media types and content orientations in Facebook for global brands. J. Res. Interact. Mark. 2015, 9, 4–30. [Google Scholar] [CrossRef]
- Tynan, C.; McKechnie, S.; Chhuon, C. Co-creating value for luxury brands. J. Bus. Res. 2010, 63, 1156–1163. [Google Scholar] [CrossRef]
- Kwai Fun Ip, R.; Wagner, C. Weblogging: A study of social computing and its impact on organizations. Decis. Support Syst. 2008, 45, 242–250. [Google Scholar] [CrossRef]
- Foster, D.; Jonker, J. Stakeholder relationships: The dialogue of engagement. Corp. Gov. 2005, 5, 51–57. [Google Scholar] [CrossRef]
- Cambra-Fierro, J.; Melero-Polo, I.; Javier Sese, F. Can complaint-handling efforts promote customer engagement? Serv. Bus. 2016, 10, 847–866. [Google Scholar] [CrossRef]
- Zhang, K.Z.K.; Zhao, S.J.; Cheung, C.M.K.; Lee, M.K.O. Examining the influence of online reviews on consumers’ decision-making: A heuristic-systematic model. Decis. Support Syst. 2014, 67, 78–89. [Google Scholar] [CrossRef]
- Lee, S.; Jeong, M. Enhancing online brand experiences: An application of congruity theory. Int. J. Hosp. Manag. 2014, 40, 49–58. [Google Scholar] [CrossRef]
- Gensler, S.; Völckner, F.; Liu-Thompkins, Y.; Wiertz, C. Managing brands in the social media environment. J. Interact. Mark. 2013, 27, 242–256. [Google Scholar] [CrossRef]
- Jahn, B.; Kunz, W. How to transform consumers into fans of your brand. J. Serv. Manag. 2012, 23, 344–361. [Google Scholar] [CrossRef]
- Kaplan, A.M.; Haenlein, M. Users of the world, unite! The challenges and opportunities of Social Media. Bus. Horiz. 2010, 53, 59–68. [Google Scholar] [CrossRef]
- Habibi, M.R.; Laroche, M.; Richard, M.O. Brand communities based in social media: How unique are they? Evidence from two exemplary brand communities. Int. J. Inf. Manag. 2014, 34, 123–132. [Google Scholar] [CrossRef]
- Habibi, M.R.; Laroche, M.; Richard, M.O. The roles of brand community and community engagement in building brand trust on social media. Comput. Hum. Behav. 2014, 37, 152–161. [Google Scholar] [CrossRef]
- Muntinga, D.G.; Moorman, M.; Smit, E.G. Introducing COBRAs: Exploring motivations for Brand-Related social media use. Int. J. Advert. 2011, 30, 13–46. [Google Scholar] [CrossRef]
- Aral, S.; Dellarocas, C.; Godes, D. Social media and business transformation: A Framework for research. Inf. Syst. Res. 2013, 24, 3–13. [Google Scholar] [CrossRef]
- Godes, D.; Mayzlin, D. Firm-created word-of-mouth communication: Evidence from a field test. Mark. Sci. 2009, 28, 721–739. [Google Scholar] [CrossRef] [Green Version]
- Schultz, D.E.; Peltier, J.J. Social media’s slippery slope: Challenges, opportunities and future research directions. J. Res. Interact. Mark. 2013, 7, 86–99. [Google Scholar] [CrossRef]
- Peters, K.; Chen, Y.; Kaplan, A.M.; Ognibeni, B.; Pauwels, K. Social media metrics—A framework and guidelines for managing social media. J. Interact. Mark. 2013, 27, 281–298. [Google Scholar] [CrossRef]
- Mandryk, R.L.; Inkpen, K.M.; Calvert, T.W. Using psychophysiological techniques to measure user experience with entertainment technologies. Behav. Inf. Technol. 2006, 25, 141–158. [Google Scholar] [CrossRef]
- De Vries, L.; Gensler, S.; Leeflang, P.S.H. Popularity of Brand Posts on Brand Fan Pages: An Investigation of the Effects of Social Media Marketing. J. Interact. Mark. 2012, 26, 83–91. [Google Scholar] [CrossRef]
- De Vries, N.J.; Carlson, J. Examining the drivers and brand performance implications of customer engagement with brands in the social media environment. J. Brand Manag. 2014, 21, 495–515. [Google Scholar] [CrossRef]
- Schau, H.J.; Muñiz Jr, A.M.; Arnould, E.J. How brand community practices create value. J. Mark. 2009, 73, 30–51. [Google Scholar] [CrossRef]
- Hollenbeck, C.R.; Kaikati, A.M. Consumers’ use of brands to reflect their actual and ideal selves on Facebook. Int. J. Res. Mark. 2012, 29, 395–405. [Google Scholar] [CrossRef]
- Wallace, E.; Buil, I.; De Chernatony, L. Facebook friendship and brand advocacy. J. Brand Manag. 2012, 20, 128–146. [Google Scholar] [CrossRef]
- Gummerus, J.; Liljander, V.; Weman, E.; Pihlström, M. Customer engagement in a Facebook brand community. Manag. Res. Rev. 2012, 35, 857–877. [Google Scholar] [CrossRef] [Green Version]
- Enginkaya, E.; Yılmaz, H. What drives consumers to interact with brands through social media? A motivation scale development study. Procedia-Soc. Behav. Sci. 2014, 148, 219–226. [Google Scholar] [CrossRef] [Green Version]
- Lin, R.; Utz, S. The emotional responses of browsing Facebook: Happiness, envy, and the role of tie strength. Comput. Hum. Behav. 2015, 52, 29–38. [Google Scholar] [CrossRef] [Green Version]
- Zaglia, M.E. Brand communities embedded in social networks. J. Bus. Res. 2013, 65, 890–895. [Google Scholar] [CrossRef]
- Chang, H.H.; Chuang, S.S. Social capital and individual motivations on knowledge sharing: Participant involvement as a moderator. Inf. Manag. 2011, 48, 9–18. [Google Scholar] [CrossRef]
- Rohm, A.; Kaltcheva, V.D.; Milne, G.R. A mixed-method approach to examining brand-consumer interactions driven by social media. J. Res. Interact. Mark. 2013, 7, 295–311. [Google Scholar] [CrossRef]
- Parboteeah, D.V.; Valacich, J.S.; Wells, J.D. The influence of website characteristics on a consumer’s urge to buy impulsively. Inf. Syst. Res. 2009, 20, 60–78. [Google Scholar] [CrossRef]
- Animesh, A.; Pinsonneault, A.; Yang, S.B.; Oh, W. An odyssey into virtual worlds: Exploring the impacts of technological and spatial environments on intention to purchase virtual products. MIS Q. Manag. Inf. Syst. 2011, 35, 789–810. [Google Scholar] [CrossRef] [Green Version]
- Ridings, C.; Gefen, D.; Arinze, B. Psychological barriers: Lurker and poster motivation and behavior in online communities. Commun. Assoc. Inf. Syst. 2006, 18, 329–354. [Google Scholar] [CrossRef]
- Halaszovich, T.; Nel, J. Customer brand engagement and facebook fan-page like intention. In Proceedings of the 44th EMAC Conference, Leuven, Belgium, 24–27 May 2015. [Google Scholar]
- Baloglu, S.; McCleary, K.W. A model of destination image formation. Ann. Tour. Res. 1999, 26, 868–897. [Google Scholar] [CrossRef]
- Canally, C.R. An Exploration of American and Canadian Tourist Destination Images of Cuba. Ph.D. Thesis, Wilfrid Laurier University, Waterloo, ON, Canada, 2010. [Google Scholar]
- Therkelsen, A. Imagining places: Image formation of tourists and its consequences for destination promotion. Scand. J. Hosp. Tour. 2003, 3, 134–150. [Google Scholar] [CrossRef]
- Box, G.E.P.; Jenkins, G.M.; Reinsel, G.C. Time Series Analysis: Forecasting and Control; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Mak, A.K.Y. An identity-centered approach to place branding: Case of industry partners evaluation of Iowa’s destination image. J. Brand Manag. 2011, 18, 438–450. [Google Scholar] [CrossRef]
- Gartner, W.C. Image formation process. J. Travel Tour. Mark. 1994, 2, 191–216. [Google Scholar] [CrossRef]
- Scotton, C.M. Self-enhancing codeswitching as interactional power. Spec. Issue Commun. Accomod. Recent Dev. 1988, 8, 199–211. [Google Scholar] [CrossRef]
- Embacher, J.; Buttle, R. A repertory grid analysis of Austria’s image as a summer vacation destination. J. Travel Res. 1989, 27, 3–7. [Google Scholar] [CrossRef]
- Prayag, G.; Ryan, C. Antecedents of tourists’ loyalty to mauritius: The role and influence of destination image, place attachment, personal involvement, and satisfaction. J. Travel Res. 2012, 51, 342–356. [Google Scholar] [CrossRef]
- Ekinci, Y.; Prokopaki, P.; Cobanoglu, C. Service quality in Cretan accommodations: Marketing strategies for the UK holiday market. Int. J. Hosp. Manag. 2003, 22, 47–66. [Google Scholar] [CrossRef]
- Panovich, K.; Miller, R.; Karger, D. Tie strength in question & answer on social network sites. In Proceedings of the ACM Conference on Computer Supported Cooperative Work; Association for Computing Machinery: New York, NY, USA, 2012; pp. 1057–1066. [Google Scholar]
- Pansari, A.; Kumar, V. Customer engagement: The construct, antecedents, and consequences. J. Acad. Mark. Sci. 2017, 45, 294–311. [Google Scholar] [CrossRef]
- Tsai, T.M.; Wang, W.N.; Lin, Y.T.; Choub, S.C. An O2O Commerce Service Framework and its Effectiveness Analysis with Application to Proximity Commerce. Procedia Manuf. 2015, 3, 3498–3505. [Google Scholar] [CrossRef] [Green Version]
- Bums, A.C.; Biswas, A.; Babin, L.A. The operation of visual imagery as a mediator of advertising effects. J. Advert. 1993, 22, 71–85. [Google Scholar]
- Haldrup, M.; Larsen, J. The Family Gaze. Tour. Stud. 2003, 3, 23–46. [Google Scholar] [CrossRef]
- Hum, N.J.; Chamberlin, P.E.; Hambright, B.L.; Portwood, A.C.; Schat, A.C.; Bevan, J.L. A picture is worth a thousand words: A content analysis of Facebook profile photographs. Comput. Hum. Behav. 2011, 27, 1828–1833. [Google Scholar] [CrossRef]
- Liesch, M. Partnerships and photographs: Community conceptions of Keweenaw National Historical Park. Geogr. Rev. 2011, 101, 497–517. [Google Scholar] [CrossRef]
- Lu, W.; Stepchenkova, S. User-Generated Content as a Research Mode in Tourism and Hospitality Applications: Topics, Methods, and Software. J. Hosp. Mark. Manag. 2015, 24, 119–154. [Google Scholar] [CrossRef]
- Loiacono, E.T.; Watson, R.T.; Goodhue, D.L. WebQual: An instrument for consumer evaluation of web sites. Int. J. Electron. Commer. 2007, 11, 51–87. [Google Scholar] [CrossRef]
- Zhao, S.J.; Zhang, K.Z.K.; Wagner, C.; Chen, H. Investigating the determinants of contribution value in Wikipedia. Int. J. Inf. Manag. 2013, 33, 83–92. [Google Scholar] [CrossRef]
- Beerli, A.; Martín, J.D. Tourists’ characteristics and the perceived image of tourist destinations: A quantitative analysis—A case study of Lanzarote, Spain. Tour. Manag. 2004, 25, 623–636. [Google Scholar] [CrossRef]
- Chen, C.F.; Tseng, W.S. Exploring customer-based airline brand equity: Evidence from Taiwan. Transp. J. 2010, 49, 24–34. [Google Scholar]
- Java, A.; Song, X.; Finin, T.; Tseng, B. Why we twitter: Understanding microblogging usage and communities. In Proceedings of the Ninth WebKDD and First SNA-KDD 2007 Workshop on Web Mining and Social Network Analysis; Association for Computing Machinery: New York, NY, USA, 2007; pp. 56–65. [Google Scholar]
- Li, M.; Cai, L.A.; Lehto, X.Y.; Huang, J. A missing link in understanding revisit intention-the role of motivation and image. J. Travel Tour. Mark. 2010, 27, 335–348. [Google Scholar] [CrossRef]
- Weng, J.; Lim, E.P.; Jiang, J.; He, Q. TwitterRank: Finding topic-sensitive influential twitterers. In WSDM 2010—Proceedings of the 3rd ACM International Conference on Web Search and Data Mining; Association for Computing Machinery: New York, NY, USA, 2010; pp. 261–270. [Google Scholar]
- Lin, K.Y.; Lu, H.P. Intention to continue using facebook fan pages from the perspective of social capital theory. Cyberpsychol. Behav. Soc. Netw. 2011, 14, 565–570. [Google Scholar] [CrossRef]
- Shu, W.; Chuang, Y.H. The perceived benefits of six-degree-separation social networks. Internet Res. 2011, 21, 26–45. [Google Scholar] [CrossRef]
- Sun, M.; Zhang, X.; Ryan, C. Perceiving tourist destination landscapes through Chinese eyes: The case of South Island, New Zealand. Tour. Manag. 2014, 46, 582–595. [Google Scholar] [CrossRef]
- Okazaki, S.; Díaz-Martín, A.M.; Rozano, M.; Menéndez-Benito, H.D. Using twitter to engage with customers: A data mining approach. Internet Res. 2015, 25, 416–434. [Google Scholar] [CrossRef]
- Hollebeek, L.D.; Conduit, J.; Brodie, R.J. Strategic drivers, anticipated and unanticipated outcomes of customer engagement. J. Mark. Manag. 2016, 32, 393–398. [Google Scholar] [CrossRef]
- Hollebeek, L.D.; Malthouse, E.C.; Block, M.P. Sounds of music: Exploring consumers’ musical engagement. J. Consum. Mark. 2016, 33, 417–427. [Google Scholar] [CrossRef]
- Hollebeek, L.D.; Srivastava, R.K.; Chen, T. SD logic–informed customer engagement: Integrative framework, revised fundamental propositions, and application to CRM. J. Acad. Mark. Sci. 2019, 47, 161–185. [Google Scholar] [CrossRef]
- Beckers, S.F.; Van Doorn, J.; Verhoef, P.C. Good, better, engaged? The effect of company-initiated customer engagement behavior on shareholder value. J. Acad. Mark. Sci. 2020, 45, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Dessart, L.; Veloutsou, C.; Morgan-Thomas, A. Consumer engagement in online brand communities: A social media perspective. J. Prod. Brand Manag. 2015, 24, 28–42. [Google Scholar] [CrossRef]
- Groeger, L.; Moroko, L.; Hollebeek, L.D. Capturing value from non-paying consumers’ engagement behaviours: Field evidence and development of a theoretical model. J. Strateg. Mark. 2016, 24, 190–209. [Google Scholar] [CrossRef]
- Brodie, R.J.; Hollebeek, L.D.; Juric, B.; Ilic, A. Customer engagement: Conceptual domain, fundamental propositions, and implications for research. J. Serv. Res. 2011, 14, 252–271. [Google Scholar] [CrossRef]
- Dwivedi, A. A higher-order model of consumer brand engagement and its impact on loyalty intentions. J. Retail. Consum. Serv. 2015, 24, 100–109. [Google Scholar] [CrossRef]
- Baldus, B.J.; Voorhees, C.; Calantone, R. Online brand community engagement: Scale development and validation. J. Bus. Res. 2015, 68, 978–985. [Google Scholar] [CrossRef]
- Belk, R.W. Possessions and the extended self. J. Consum. Res. 1988, 15, 139–168. [Google Scholar] [CrossRef] [Green Version]
- Kristof-Brown, A.L.; Zimmerman, R.D.; Johnson, E.C. Consequences of individuals’ fit at work: A meta-analysis of person-job, person-organization, person-group, and person-supervisor FIT. Pers. Psychol. 2005, 58, 281–342. [Google Scholar] [CrossRef]
- Abrahams, A.S.; Jiao, J.; Fan, W.; Wang, G.A.; Zhang, Z. What’s buzzing in the blizzard of buzz? Automotive component isolation in social media postings. Decis. Support Syst. 2013, 55, 871–882. [Google Scholar] [CrossRef]
- Chua, A.Y.K.; Banerjee, S. Customer knowledge management via social media: The case of Starbucks. J. Knowl. Manag. 2013, 17, 237–249. [Google Scholar] [CrossRef]
- Barbier, G.; Liu, H. Data mining in social media. In Social Network Data Analytics; Springer: Boston, MA, USA, 2011; pp. 327–352. [Google Scholar]
- He, W.; Zha, S.; Li, L. Social media competitive analysis and text mining: A case study in the pizza industry. Int. J. Inf. Manag. 2013, 33, 464–472. [Google Scholar] [CrossRef]
- Cvijikj, I.P.; Michahelles, F. Monitoring trends on Facebook. In Proceedings of the IEEE Ninth International Conference on Dependable, Autonomic and Secure Computing, Sydney, Australia, 12–14 December 2011. [Google Scholar]
- Goorha, S.; Ungar, L. Discovery of significant emerging trends. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, 24–28 July 2010; pp. 57–64. [Google Scholar]
- Manning, C.D.; Surdeanu, M.; Bauer, J.; Finkel, J.; Bethard, S.J.; McClosky, D. The Stanford CoreNLP natural language processing toolkit. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations; Association for Computational Linguistics: Stroudsburg, PA, USA, 2014; pp. 55–60. [Google Scholar]
- Manning, C.D.; Schutze, H. Foundations of Statistical Natural Language Processing; MIT press: Cambridge, MA, USA, 1999. [Google Scholar]
- Pustejovsky, J.; Stubbs, A. Natural Language Annotation for Machine Learning: A Guide to Corpus-building for Applications. In Natural Language Annotation for Machine Learning; O’Reilly Media, Inc.: Newton, MA, USA, 2012. [Google Scholar]
- Kent, M.L.; Taylor, M.; White, W.J. The relationship between Web site design and organizational responsiveness to stakeholders. Public Relat. Rev. 2003, 29, 63–77. [Google Scholar] [CrossRef]
- Campbell, D.E.; Wells, J.D.; Valacich, J.S. Breaking the ice in B2C relationships: Understanding pre-adoption e-commerce attraction. Inf. Syst. Res. 2013, 24, 219–238. [Google Scholar] [CrossRef]
- Kent, R.J.; Kellaris, J.J. Competitive interference effects in memory for advertising: Are familiar brands exempt? J. Mark. Commun. 2001, 7, 159–169. [Google Scholar] [CrossRef]
- Batra, R.; Lehmann, D.R.; Singh, D. The brand personality component of brand goodwill: Some antecedents and consequences. In Brand Equity and Advertising; Psychology Press: Hove, UK, 1993; pp. 83–96. [Google Scholar]
- Laroche, M.; Habibi, M.R.; Richard, M.O. To be or not to be in social media: How brand loyalty is affected by social media? Int. J. Inf. Manag. 2013, 33, 76–82. [Google Scholar] [CrossRef]
- Godey, B.; Manthiou, A.; Pederzoli, D.; Rokka, J.; Aiello, G.; Donvito, R.; Singh, R. Social media marketing efforts of luxury brands: Influence on brand equity and consumer behavior. J. Bus. Res. 2016, 69, 5833–5841. [Google Scholar] [CrossRef]
- Vargo, S.L.; Lusch, R.F. Institutions and axioms: An extension and update of service-dominant logic. J. Acad. Mark. Sci. 2016, 44, 5–23. [Google Scholar] [CrossRef]
- Christodoulides, G.; Jevons, C.; Bonhomme, J. Memo to marketers: Quantitative evidence for change—How user-generated content really affects brands. J. Advert. Res. 2012, 52, 53–64. [Google Scholar] [CrossRef]
- Michaelidou, N.; Siamagka, N.T.; Christodoulides, G. Usage, barriers and measurement of social media marketing: An exploratory investigation of small and medium B2B brands. Ind. Mark. Manag. 2011, 40, 1153–1159. [Google Scholar] [CrossRef] [Green Version]
- Keller, K.L. Reflections on customer-based brand equity: Perspectives, progress, and priorities. Ams Rev. 2016, 6, 1–16. [Google Scholar] [CrossRef]
- Fatma, M.; Khan, I.; Rahman, Z. How does corporate association influence consumer brand loyalty? Mediating role of brand identification. J. Prod. Brand Manag. 2016, 25, 629–641. [Google Scholar] [CrossRef]
- Brodie, R.J.; Ilic, A.; Juric, B.; Hollebeek, L. Consumer engagement in a virtual brand community: An exploratory analysis. J. Bus. Res. 2013, 66, 105–114. [Google Scholar] [CrossRef]
- Verleye, K.; Gemmel, P.; Rangarajan, D. Managing Engagement Behaviors in a Network of Customers and Stakeholders: Evidence From the Nursing Home Sector. J. Serv. Res. 2014, 17, 68–84. [Google Scholar] [CrossRef]
- Anderl, E.; Schumann, J.H.; Kunz, W. Helping Firms Reduce Complexity in Multichannel Online Data: A New Taxonomy-Based Approach for Customer Journeys. J. Retail. 2016, 92, 185–203. [Google Scholar] [CrossRef]
- Hoyer, W.D.; Chandy, R.; Dorotic, M.; Krafft, M.; Singh, S.S. Consumer cocreation in new product development. J. Serv. Res. 2010, 13, 283–296. [Google Scholar] [CrossRef]
- Matzler, K.; Pichler, E.; Füller, J.; Mooradian, T.A. Personality, person-brand fit, and brand community: An investigation of individuals, brands, and brand communities. J. Mark. Manag. 2011, 27, 874–890. [Google Scholar] [CrossRef]
- Mantzaris, A.V. Uncovering nodes that spread information between communities in social networks. EPJ Data Sci. 2014, 3, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Laflin, P.; Ainley, F.; Otley, A.; Mantzaris, A.V.; Higham, D.J. Demonstration of dynamic targeting in an online social medium. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin/Heidelberg, Germany, 2012; Volume 7710, pp. 539–542. [Google Scholar]
- Laflin, P.; Mantzaris, A.V.; Ainley, F.; Otley, A.; Grindrod, P.; Higham, D.J. Discovering and validating influence in a dynamic online social network. Soc. Netw. Anal. Min. 2013, 3, 1311–1323. [Google Scholar] [CrossRef]
ID | Hypothesis | Hypothesis Verification |
---|---|---|
H1. | Luxury fashion brands actively use key image cues when packaging information for their fan pages, and these cues impact community participation in the form of likes, comments, and shares. | Established |
H1a. | Luxury fashion brands actively use key image cues when packaging information for their fan pages, and these cues impact community participation in the form of likes. | Established |
H1b. | Luxury fashion brands actively use key image cues when packaging information for their fan pages, and these cues impact community participation in the form of comments. | Established |
H1c. | Luxury fashion brands actively use key image cues when packaging information for their fan pages, and these cues impact community participation in the form of shares. | Established |
H2. | Fast fashion brands actively use key image cues when packaging information for their fan pages, and these cues impact community participation in the form of likes, comments, and shares. | Partially established |
H2a. | Fast fashion brands actively use key image cues when packaging information for their fan pages, and these cues impact community participation in the form of likes. | Not established |
H2b. | Fast fashion brands actively use key image cues when packaging information for their fan pages, and these cues impact community participation in the form of comments. | Established |
H2c. | Fast fashion brands actively use key image cues when packaging information for their fan pages, and these cues impact community participation in the form of shares. | Not established |
(a) | ||||||||||||
Luxury Fashion Brands | R | R2 | Adjusted R2 | F Change | ∆F | Durbin- Watson | B | Standard Error | Beta | T | Sig. | |
Chanel | Likes | 0.190 | 0.036 | 0.035 | 0.036 | 34.587 | 1.337 | 7689.184 | 1307.446 | 0.190 | 5.881 | 0.000 |
Comments | 0.132 | 0.017 | 0.016 | 0.017 | 16.387 | 1.488 | 100.256 | 24.766 | 0.132 | 4.048 | 0.000 | |
Shares | 0.153 | 0.023 | 0.022 | 0.023 | 21.981 | 1.461 | 902.988 | 192.602 | 0.153 | 4.688 | 0.000 | |
Hermès | Likes | 0.042 | 0.002 | 0.001 | 0.002 | 1.942 | 1.858 | −265.680 | 190.664 | −0.042 | −1.393 | 0.164 |
Comments | 0.037 | 0.001 | 0.000 | 0.001 | 1.530 | 1.694 | −3.940 | 3.185 | −0.037 | −1.237 | 0.216 | |
Shares | 0.047 | 0.002 | 0.001 | 0.002 | 2.461 | 1.953 | −112.075 | 71.444 | −0.047 | −1.569 | 0.117 | |
LV | Likes | 0.162 | 0.026 | 0.026 | 0.026 | 191.209 | 1.768 | 2685.782 | 194.230 | 0.162 | 13.828 | 0.000 |
Comments | 0.158 | 0.025 | 0.025 | 0.025 | 180.952 | 1.664 | 31.560 | 2.346 | 0.158 | 13.452 | 0.000 | |
Shares | 0.162 | 0.026 | 0.026 | 0.026 | 191.040 | 1.781 | 130.064 | 9.410 | 0.162 | 13.822 | 0.000 | |
(b) | ||||||||||||
Fast Fashion Brands | R | R2 | Adjusted R2 | F Change | ∆F | Durbin- Watson | B | Standard Error | Beta | T | Sig. | |
adidas | Likes | 0.012a | 0.000 | 0.000 | 0.627 | 0.428 | 1.868 | 149.759 | 189.104 | 0.012 | 0.792 | 0.428 |
Comments | 0.014a | 0.000 | 0.000 | 0.821 | 0.365 | 1.688 | −2.838 | 3.132 | −0.014 | −0.906 | 0.365 | |
Shares | 0.022a | 0.001 | 0.000 | 2.147 | 0.143 | 1.705 | 25.057 | 17.099 | 0.022 | 1.465 | 0.143 | |
NIKE | Likes | 0.001a | 0.000 | −0.001 | 0.001 | 0.976 | 1.347 | −16.397 | 535.541 | −0.001 | −0.031 | 0.976 |
Comments | 0.059a | 0.003 | 0.003 | 5.151 | 0.023 | 1.880 | 101.934 | 44.913 | 0.059 | 2.270 | 0.023 | |
Shares | 0.015a | 0.000 | 0.000 | 0.312 | 0.576 | 1.836 | 79.192 | 141.726 | 0.015 | 0.559 | 0.576 | |
ZARA | Likes | 0.008a | 0.000 | 0.000 | 0.152 | 0.696 | 0.958 | 24.658 | 63.210 | 0.008 | 0.390 | 0.696 |
Comments | 0.110a | 0.012 | 0.012 | 32.156 | 0.000 | 1.542 | −8.276 | 1.459 | −0.110 | −5.671 | 0.000 | |
Shares | 0.123a | 0.015 | 0.015 | 40.736 | 0.000 | 1.035 | −12.799 | 2.005 | −0.123 | −6.382 | 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y. A Social Media Mining and Ensemble Learning Model: Application to Luxury and Fast Fashion Brands. Information 2021, 12, 149. https://doi.org/10.3390/info12040149
Chen Y. A Social Media Mining and Ensemble Learning Model: Application to Luxury and Fast Fashion Brands. Information. 2021; 12(4):149. https://doi.org/10.3390/info12040149
Chicago/Turabian StyleChen, Yulin. 2021. "A Social Media Mining and Ensemble Learning Model: Application to Luxury and Fast Fashion Brands" Information 12, no. 4: 149. https://doi.org/10.3390/info12040149
APA StyleChen, Y. (2021). A Social Media Mining and Ensemble Learning Model: Application to Luxury and Fast Fashion Brands. Information, 12(4), 149. https://doi.org/10.3390/info12040149