A Hybrid Model for Air Quality Prediction Based on Data Decomposition
Abstract
:1. Introduction
2. Theoretical Foundations
2.1. Sliding Window
2.2. Wavelet Decomposition
2.3. Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN)
2.4. Autoregressive Moving Average Model
2.5. Long Short-Term Memory
2.6. Predictive Effect Evaluation Index
3. Model Construction
3.1. Experimental Environment
3.2. Experimental Data
3.3. Wavelet Decomposition-Long Short Term Memory-Autoregressive Moving Average Prediction Model
3.4. Predicted Results
4. Comparison and Analysis
4.1. Model Comparison
4.2. Case Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, G.; Huang, G.; He, H.; He, H.; Ren, J. Regional Spatiotemporal Collaborative Prediction Model for Air Quality. IEEE Access 2019, 7, 134903–134919. [Google Scholar] [CrossRef]
- Zheng, H.; Cheng, Y.; Li, H. Investigation of Model Ensemble for Fine-Grained Air Quality Prediction. China Commun. 2020, 17, 207–223. [Google Scholar] [CrossRef]
- Li, W.; Lu, C.; Ding, Y. A Systematic Simulating Assessment WithinReach Greenhouse Gas Target by Reducing PM2.5Concentrations in China. Pol. J. Environ. Stud. 2017, 26, 683–698. [Google Scholar] [CrossRef]
- Filipiak-Florkiewicz, A.; Topolska, K.; Florkiewicz, A.; Cieślik, E. Are Environmental Contaminants Responsiblefor ‘Globesity’? Pol. J. Environ. Stud. 2017, 26, 467–478. [Google Scholar] [CrossRef]
- Mahmood, S.; Ali, S.; Qamar, M.A.; Ashraf, M.R.; Atif, M.; Iqbal, M.; Hussain, T. Hard Water and Dyeing Properties:Effect of Pre- and Post-Mordanting on DyeingUsing Eucalyptus Globulus AndCurcuma Longa Extracts. Pol. J. Environ. Stud. 2017, 26, 747–753. [Google Scholar] [CrossRef]
- Liu, H.; Li, Q.; Yu, D.; Gu, Y. Air Quality Index and Air Pollutant Concentration Prediction Based on Machine Learning Algorithms. Appl. Sci. 2019, 9, 4069. [Google Scholar] [CrossRef] [Green Version]
- Appel, K.W.; Pouliot, G.A.; Simon, H.; Sarwar, G.; Pye, H.O.T.; Napelenok, S.L.; Akhtar, F.; Roselle, S.J. Evaluation of Dust and Trace Metal Estimates from the Community Multiscale Air Quality (CMAQ) Model Version 5.0; Atmospheric Sciences: Leeds, UK, 2013. [Google Scholar]
- Woody, M.C.; Wong, H.-W.; West, J.J.; Arunachalam, S. Multiscale Predictions of Aviation-Attributable PM2.5 for U.S. Airports Modeled Using CMAQ with Plume-in-Grid and an Aircraft-Specific 1-D Emission Model. Atmos. Environ. 2016, 147, 384–394. [Google Scholar] [CrossRef]
- Donnelly, A.; Misstear, B.; Broderick, B. Real Time Air Quality Forecasting Using Integrated Parametric and Non-Parametric Regression Techniques. Atmos. Environ. 2015, 103, 53–65. [Google Scholar] [CrossRef]
- Jin, X.-B.; Yang, N.-X.; Wang, X.-Y.; Bai, Y.-T.; Su, T.-L.; Kong, J.-L. Deep Hybrid Model Based on EMD with Classification by Frequency Characteristics for Long-Term Air Quality Prediction. Mathematics 2020, 8, 214. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Lin, H. A Novel Optimal-Hybrid Model for Daily Air Quality Index Prediction Considering Air Pollutant Factors. Sci. Total Environ. 2019, 683, 808–821. [Google Scholar] [CrossRef] [PubMed]
- Salazar, L.; Nicolis, O.; Ruggeri, F.; Kisel’ák, J.; Stehlík, M. Predicting Hourly Ozone Concentrations Using Wavelets and ARIMA Models. Neural Comput. Appl. 2019, 31, 4331–4340. [Google Scholar] [CrossRef] [Green Version]
- Mallat, S.G. Multifrequency Channel Decompositions of Images and Wavelet Models. IEEE Trans. Acoust. Speech Signal Process. 1989, 37, 2091–2110. [Google Scholar] [CrossRef] [Green Version]
- Jiang, F.; He, J.; Tian, T. A Clustering-Based Ensemble Approach with Improved Pigeon-Inspired Optimization and Extreme Learning Machine for Air Quality Prediction. Appl. Soft Comput. 2019, 85, 105827. [Google Scholar] [CrossRef]
- Cabaneros, S.M.; Calautit, J.K.; Hughes, B. Spatial Estimation of Outdoor NO2 Levels in Central London Using Deep Neural Networks and a Wavelet Decomposition Technique. Ecol. Modell. 2020, 424, 109017. [Google Scholar] [CrossRef]
- Liu, H.; Chen, C. Spatial Air Quality Index Prediction Model Based on Decomposition, Adaptive Boosting, and Three-Stage Feature Selection: A Case Study in China. J. Clean. Prod. 2020, 265, 121777. [Google Scholar] [CrossRef]
- Wang, D.; Wei, S.; Luo, H.; Yue, C.; Grunder, O. A Novel Hybrid Model for Air Quality Index Forecasting Based on Two-Phase Decomposition Technique and Modified Extreme Learning Machine. Sci. Total Environ. 2017, 580, 719–733. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zeng, Y.; Yan, K. A Hybrid Deep Learning Technology for PM2.5 Air Quality Forecasting. Environ. Sci. Pollut. Res. 2021. [Google Scholar] [CrossRef]
- Wu, C.-H.; Lu, C.-C.; Ma, Y.-F.; Lu, R.-S. A New Forecasting Framework for Bitcoin Price with LSTM. In Proceedings of the 2018 IEEE International Conference on Data Mining Workshops (ICDMW), Singapore, 17–20 November 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 168–175. [Google Scholar]
- Ma, J.; Ding, Y.; Gan, V.J.L.; Lin, C.; Wan, Z. Spatiotemporal Prediction of PM2.5 Concentrations at Different Time Granularities Using IDW-BLSTM. IEEE Access 2019, 7, 107897–107907. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, L. Drought Prediction Method Based on an Improved CEEMDAN-QR-BL Model. IEEE Access 2021, 9, 6050–6062. [Google Scholar] [CrossRef]
- Velasco, C.; Lobato, I.N. Frequency Domain Minimum Distance Inference for Possibly Noninvertible and Noncausal ARMA Models. Ann. Statist. 2018, 46. [Google Scholar] [CrossRef]
- Lennon, H.; Yuan, J. Estimation of a Digitised Gaussian ARMA Model by Monte Carlo Expectation Maximisation. Comput. Stat. Data Anal. 2019, 133, 277–284. [Google Scholar] [CrossRef] [Green Version]
- Graves, A. Long Short-Term Memory. In Supervised Sequence Labelling with Recurrent Neural Networks; Studies in Computational Intelligence; Springer: Berlin/Heidelberg, Germany, 2012; Volume 385, pp. 37–45. ISBN 978-3-642-24796-5. [Google Scholar]
Stations | Longitude | Latitude |
---|---|---|
Gongxiaoshe | 118.1662 | 39.6308 |
Shierzhong | 118.1838 | 39.65782 |
Xiaoshan | 118.1997 | 39.6295 |
Wuziju | 118.1853 | 39.6407 |
Taocigongsi | 118.2185 | 39.6679 |
Leidazhan | 118.144 | 39.643 |
Stations | Index | AQI | SO2 | NO2 | CO | O3 | PM10 | PM2.5 |
---|---|---|---|---|---|---|---|---|
Gongxiaoshe | RMSE | 8.9325 | 3.4657 | 4.7523 | 0.2258 | 8.5855 | 11.5951 | 5.9676 |
MAE | 6.0555 | 1.9987 | 3.5679 | 0.1591 | 6.3389 | 7.7954 | 4.1122 | |
R2 | 0.9456 | 0.9728 | 0.9501 | 0.9467 | 0.9802 | 0.9525 | 0.9441 | |
Shierzhong | RMSE | 9.28 | 4.4069 | 5.1125 | 0.2962 | 6.5316 | 12.4035 | 6.069 |
MAE | 6.5033 | 2.5241 | 3.7711 | 0.185 | 4.8603 | 8.3986 | 4.3578 | |
R2 | 0.9478 | 0.9687 | 0.961 | 0.9322 | 0.9872 | 0.9528 | 0.9495 | |
Xiaoshan | RMSE | 8.7925 | 4.3061 | 4.2181 | 0.2541 | 6.554 | 12.9483 | 5.6387 |
MAE | 5.911 | 2.4288 | 3.1313 | 0.1516 | 4.9478 | 9.1704 | 4.1039 | |
R2 | 0.9506 | 0.9619 | 0.9558 | 0.9285 | 0.9885 | 0.9447 | 0.9523 | |
Wuziju | RMSE | 10.4078 | 4.2532 | 5.1094 | 0.2312 | 5.901 | 12.7252 | 5.9236 |
MAE | 6.8036 | 2.4893 | 3.8179 | 0.1381 | 4.2853 | 8.209 | 4.305 | |
R2 | 0.9332 | 0.9574 | 0.9508 | 0.9513 | 0.9886 | 0.9578 | 0.9516 | |
Taocigongsi | RMSE | 8.6066 | 3.1685 | 4.6597 | 0.2251 | 5.9224 | 12.9119 | 5.9849 |
MAE | 5.6633 | 1.9634 | 3.4786 | 0.146 | 4.4979 | 8.602 | 4.2579 | |
R2 | 0.9615 | 0.9735 | 0.9576 | 0.9463 | 0.9886 | 0.9646 | 0.9508 | |
Leidazhan | RMSE | 8.4232 | 3.5518 | 3.4449 | 0.1732 | 6.3126 | 9.7748 | 5.3129 |
MAE | 6.0255 | 2.0302 | 2.4858 | 0.1128 | 4.7903 | 6.2446 | 3.8336 | |
R2 | 0.9438 | 0.9666 | 0.956 | 0.9712 | 0.9885 | 0.9616 | 0.9498 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, S.; Hao, D.; Feng, Y.; Xia, K.; Yang, W. A Hybrid Model for Air Quality Prediction Based on Data Decomposition. Information 2021, 12, 210. https://doi.org/10.3390/info12050210
Fan S, Hao D, Feng Y, Xia K, Yang W. A Hybrid Model for Air Quality Prediction Based on Data Decomposition. Information. 2021; 12(5):210. https://doi.org/10.3390/info12050210
Chicago/Turabian StyleFan, Shurui, Dongxia Hao, Yu Feng, Kewen Xia, and Wenbiao Yang. 2021. "A Hybrid Model for Air Quality Prediction Based on Data Decomposition" Information 12, no. 5: 210. https://doi.org/10.3390/info12050210
APA StyleFan, S., Hao, D., Feng, Y., Xia, K., & Yang, W. (2021). A Hybrid Model for Air Quality Prediction Based on Data Decomposition. Information, 12(5), 210. https://doi.org/10.3390/info12050210