3D Reconstruction with Coronary Artery Based on Curve Descriptor and Projection Geometry-Constrained Vasculature Matching
Abstract
:1. Introduction
- We proposed a descriptor called CBOCD which is constructed curved shape with pixel brightness. It can characterize the distortion and overlap of the current point on the curve during projection.
- We used epipolar line constraint to construct the matching cost matrix, and applied the CBOCD descriptor as the step size in the dynamic programming method to find the best matching path globally.
- We used the PALM algorithm combined with the trust region method to optimize the matrix of geometric transformation.
2. Related Work
2.1. Geometric Transformation Optimization
2.2. Point-Pairs Matching
2.3. Curve Descriptor
3. Methodology
3.1. Epipolar Line
3.2. Geometric Transformation Optimization
3.3. CBOCD
- The brightness of the pixel where OPE is located is often lower than the adjacent anterior and posterior pixels.
- OPE is often on the convex arc of the blood vessel.
3.3.1. Curve Preprocessing
3.3.2. Construction of Brightness OPE
3.3.3. The Construction of Curvature OPE
3.4. Dynamic Programming
3.4.1. Construct Vascular Matching Cost Matrix
3.4.2. Optimal Path
3.5. Surface Reconstruction
4. Results
5. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bulant, C.A.; Blanco, P.J.; Clausse, A.; Bezerra, C.; Lima, T.P.; Ávila, L.F.; Lemos, P.A.; Feijóo, R.A. Thermodynamic analogies for the characterization of 3D human coronary arteries. Biomed. Signal Process. Control. 2018, 40, 163–170. [Google Scholar] [CrossRef]
- Chen, S.J.; Hoffmann, K.R.; Carroll, J.D. Computer Assisted Coronary Intervention: 3d Reconstruction and Determination of Optimal Views. In Proceedings of the Computers in Cardiology, Indianapolis, IN, USA, 8–11 September 1996; pp. 117–120. [Google Scholar]
- Radeva, P.; Toledo, R.; von Land, C.; Villanueva, J. 3d Vessel Reconstruction from Biplane Angiograms Using Snakes. In Proceedings of the Computers in Cardiology, Cleveland, OH, USA, 13–16 September 1998; pp. 773–776. [Google Scholar]
- Chen, S.-Y.; Carroll, J.D.; Messenger, J.C. Quantitative analysis of reconstructed 3-d coronary arterial tree and intracoronary devices. IEEE Trans. Med. Imaging 2002, 21, 724–740. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.-Y.; Carroll, J.D. Kinematic and deformation analysis of 4-d coronary arterial trees reconstructed from cine angiograms IEEE Trans. Med. Imaging 2003, 22, 710–721. [Google Scholar] [CrossRef] [PubMed]
- Sprague, K.; Drangova, M.; Lehmann, G.; Slomka, P.; Levin, D.; Chow, B. Coronary X-ray angiographic reconstruction and image orientation. Med. Phys. 2006, 33, 707–718. [Google Scholar] [CrossRef] [PubMed]
- Movassaghi, B.; Rasche, V.; Grass, M.; Viergever, M.A.; Niessen, W.J. A quantitative analysis of 3-D coronary modeling from two or more projection images. IEEE Trans. Med. Imaging 2004, 23, 1517–1531. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Zhang, T.; Ma, J. Optimization of Parameters for 3-D Reconstruction with Uncalibrated Monoplane Angiograms. In Proceedings of the International Conference on Multimedia Technology, Hangzhou, China, 26–28 July 2011; pp. 606–609. [Google Scholar]
- Yang, J.; Wang, Y.; Liu, Y.; Tang, S.; Chen, W. Novel Approach for 3-D Reconstruction of Coronary Arteries from Two Uncalibrated Angiographic Images. IEEE Trans. Image Process. 2009, 18, 1563–1572. [Google Scholar] [CrossRef]
- Bousse, A.; Zhou, J.; Yang, G.; Bellanger, J.J.; Toumoulin, C. Motion compensated tomography reconstruction of coronary arteries in rotational angiography. IEEE Trans. Biomed. Eng. 2009, 56, 1254–1257. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.H.; Shi, X.L.; Wang, Y.Y.; Lv, L.; Wu, J.; Zhang, Y.F. Biplanar Radiographic 3D Reconstruction of Vertebrae Using Non-Stereo Corresponding Points Based on Epipolar Geometry. In Proceedings of the 6th World Congress of Biomechanics, Singapore, 1–6 August 2010; Springer: Berlin/Heidelberg, Germany. [Google Scholar]
- Blondel, C.; Malandain, G.; Vaillant, R.; Ayache, N. Reconstruction of coronary arteries from a single rotational X-ray projection sequence. IEEE Trans. Med. Imag. 2006, 25, 653–663. [Google Scholar] [CrossRef]
- Hansis, E.; Schäfer, D.; Dössel, O.; Grass, M. Projection-based motion compensation for gated coronary artery reconstruction from rotational X-ray angiograms. Phys. Med. Biol. 2008, 53, 3807–3820. [Google Scholar] [CrossRef] [PubMed]
- Liao, R.; Luc, D.; Sun, Y.; Kirchberg, K. 3-D reconstruction of the coronary artery tree frommultiple views of a rotational X-ray angiography. Int. J. Cardiovasc. Imaging 2010, 26, 733–749. [Google Scholar] [CrossRef] [PubMed]
- Freeman, H. On the encoding of arbitrary geometric configurations. IRE Trans. Electron. Computer. 1961, 10, 260–268. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, F.; Hu, Z. MSLD: A Robust Descriptor for Line Matching. Pattern Recognit. 2009, 42, 941–953. [Google Scholar] [CrossRef]
- Belongie, S.; Malik, J.; Puzicha, J. Shape matching and object recognition using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 509–522. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Nayak, K.P.; Hareesha, K.S. Quantification of spinal deformities using combined SCP and geometric 3D reconstruction. Biomed. Signal Process. Control 2017, 31, 181–188. [Google Scholar] [CrossRef]
- Liu, S.; Liu, P.; Li, Z.; Zhang, Y.; Li, W.; Tang, X. A 3D/2D registration of the coronary arteries based on tree topology consistency matching. Biomed. Signal Process. Control 2017, 38, 191–199. [Google Scholar] [CrossRef]
- Zhang, L.; Xiao, X.; Qi, L. On the global convergence, of a parameter-adjusting, Levenberg-Marquardt method. Numer. Algebra Control. Optim. 2015, 5, 25–36. [Google Scholar]
- Galassi, F.; Alkhalil, M.; Lee, R.; Martindale, P.; Kharbanda, R.K.; Channon, K.M.; Grau, V.; Choudhury, R.P. 3D reconstruction of coronary arteries from 2D angiographic projections using non-uniform rational basis splines (NURBS) for accurate modelling of coronary stenoses. PLoS ONE 2018, 13, e0190650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schertler, N.; Tarini, M.; Jakob, W.; Kazhdan, M.; Gumhold, S.; Panozzo, D. Field-aligned online surface reconstruction. ACM Trans. Graph. 2017, 36, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Berger, M.; Levine, J.A.; Nonato, L.G.; Taubin, G.; Silva, C.T. A benchmark for surface reconstruction. ACM Trans. Graph. 2013, 32, 1–7. [Google Scholar] [CrossRef]
- Bastiani, L.; Paolicchi, F.; Faggioni, L.; Martinelli, M.; Gerasia, R.; Martini, C.; Cornacchione, P.; Ceccarelli, M.; Chiappino, D.; Della Latta, D.; et al. Patient Perceptions and Knowledge of Ionizing Radiation from Medical Imaging. JAMA Netw. Open 2021, 4, e2128561. [Google Scholar] [CrossRef] [PubMed]
Paraments | LAO/RAO (Degree) | CAUD/CRAN (Degree) | SID (mm) | SOD (mm) | |
---|---|---|---|---|---|
Images | |||||
Data.1 | (a) | 45.5 | −28.2 | 1200 | 749 |
(b) | −24.8 | −27 | 1147 | 844 | |
Data.2 | (c) | 45.2 | 0 | 1028 | 759.4 |
(d) | 0.9 | 33 | 1064 | 766.4 | |
Data.3 | (e) | −21.6 | −21 | 1075 | 782.7 |
(f) | 44.3 | −28.8 | 1118 | 785 |
Items | Before Optimization (mm) | After Optimization (mm) | Time (ms) | Number of Iterations | |
---|---|---|---|---|---|
Methods | |||||
Data.1 | Optimize 1 | 77.5235 | 0.00188 | 16303 | 695 |
Optimize 2 | 1.69251 | 690 | 164 | ||
Optimize 3 | 238 | 54 | |||
Data.2 | Optimize 1 | 1853.77 | 15929 | 695 | |
Optimize 2 | 589 | 157 | |||
Optimize 3 | 119 | 27 | |||
Data.3 | Optimize 1 | 44539.9 | 16027 | 695 | |
Optimize 2 | 1.65073 | 522 | 130 | ||
Optimize 3 | 142 | 32 |
Items | Maximum | Minimum | Mean | RMS | 3D | ||
---|---|---|---|---|---|---|---|
Methods | |||||||
Data.1 | (a) | Match 1 | 1.90582 | 0.00175 | 0.79173 | 0.49422 | 83.1266 |
Match 2 | 0.70741 | 0.00123 | 0.13104 | 0.1651 | 4.2336 | ||
Match 3 | 0.6653 | 0.06917 | 0.12584 | 1.99264 | |||
(b) | Match 1 | 1.74575 | 0.0016 | 0.73019 | 0.4522 | / | |
Match 2 | 0.66112 | 0.00116 | 0.12136 | 0.1535 | / | ||
Match 3 | 0.62295 | 0.06439 | 0.11788 | / | |||
Data.2 | (c) | Match 1 | 5.66455 | 0.0334 | 2.72141 | 1.83636 | 824.806 |
Match 2 | 1.06809 | 0.00136 | 0.22034 | 0.29041 | 10.4045 | ||
Match 3 | 0.80592 | 0.09791 | 0.19193 | 3.64186 | |||
(d) | Match 1 | 5.76568 | 0.0333 | 2.76739 | 1.87068 | / | |
Match 2 | 1.07169 | 0.00135 | 0.22205 | 0.29158 | / | ||
Match 3 | 0.81107 | 0.09869 | 0.19298 | / | |||
Data.3 | (e) | Match 1 | 3.31963 | 0.00151 | 1.35754 | 1.09306 | 350.884 |
Match 2 | 0.09431 | 0.02394 | 0.01995 | 0.11051 | |||
Match 3 | 0.079089 | 0.02334 | 0.0186 | 0.10128 | |||
(f) | Match 1 | 3.51223 | 0.00161 | 1.43727 | 1.15846 | / | |
Match 2 | 0.09964 | 0.02519 | 0.02092 | / | |||
Match 3 | 0.08201 | 0.02456 | 0.01947 | / |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tong, J.; Xu, S.; Wang, F.; Qi, P. 3D Reconstruction with Coronary Artery Based on Curve Descriptor and Projection Geometry-Constrained Vasculature Matching. Information 2022, 13, 38. https://doi.org/10.3390/info13010038
Tong J, Xu S, Wang F, Qi P. 3D Reconstruction with Coronary Artery Based on Curve Descriptor and Projection Geometry-Constrained Vasculature Matching. Information. 2022; 13(1):38. https://doi.org/10.3390/info13010038
Chicago/Turabian StyleTong, Jijun, Shuai Xu, Fangliang Wang, and Pengjia Qi. 2022. "3D Reconstruction with Coronary Artery Based on Curve Descriptor and Projection Geometry-Constrained Vasculature Matching" Information 13, no. 1: 38. https://doi.org/10.3390/info13010038
APA StyleTong, J., Xu, S., Wang, F., & Qi, P. (2022). 3D Reconstruction with Coronary Artery Based on Curve Descriptor and Projection Geometry-Constrained Vasculature Matching. Information, 13(1), 38. https://doi.org/10.3390/info13010038