Knowledge Graphs and Explainable AI in Healthcare
Abstract
:1. Introduction
2. State-of-the-Art
3. The Role of Knowledge Graphs in XAI and Healthcare
3.1. Knowledge Graphs and Health Data
3.2. Knowledge Graph Construction in XAI Healthcare
3.3. Knowledge Graphs Application in Healthcare XAI
- Entity/relation extraction: Narrative of patients’ interactions are usually provided in clinical notes in the form of unstructured data and free text in healthcare. This information is transformed into a structured format such as a named entity or common vocabulary. Knowledge graphs are used to represent clinical notes with named entity recognition methods and map them to vocabularies using named entity normalization techniques. They are also used in relation extraction, where the semantic relation is typically extracted between two entities [51]. For example, in a disease knowledge graph, the relationship between disease and other concepts, such as diagnosis or treatment, can be extracted using different relation extraction algorithms.
- Enrichment: Knowledge graphs are employed to enrich datasets with internal or external information and knowledge. The ability to provide a trustable and explainable machine learning model with high prediction accuracy can be improved if the AI system is enriched by additional knowledge.
- Inference and reasoning: Knowledge graphs usually leverage deduction reasoning to help infer new facts and knowledge. Reasoning over a knowledge graph is an evidence-based approach that is more acceptable and interpretable for clinicians. For example, EHR data can be transformed into a semantic net model (patient-centralized) under a knowledge graph to create an EHR data trajectory and reasoning using semantic rules. Designing such a system allows reasoning to identify critical clinical discoveries within EHR data and presents the clinical significance for clinicians to understand the neglected information better [52].
- Explanations and visualizations: The XAI models provide explanations for physicians and healthcare professionals so that the outputs are understandable and transparent. The knowledge graphs help provide more insights into the reasons for model predictions and can also represent the results in graphs. Human-in-the-loop techniques can also be used to validate the results or refine the knowledge graph to achieve high accuracy and better explainability.
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Huang, J.; Shlobin, N.A.; Lam, S.K.; DeCuypere, M. Artificial intelligence applications in pediatric brain tumor imaging: A systematic review. World Neurosurg. 2022, 157, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Wohlin, C. Guidelines for snowballing in systematic literature studies and a replication in software engineering. In Proceedings of the 18th International Conference on Evaluation and Assessment in Software Engineering, London, UK, 13–14 May 2014; pp. 1–10. [Google Scholar]
- Arrieta, A.B.; Díaz-Rodríguez, N.; Del Ser, J.; Bennetot, A.; Tabik, S.; Barbado, A.; García, S.; Gil-López, S.; Molina, D.; Benjamins, R.; et al. Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion 2020, 58, 82–115. [Google Scholar] [CrossRef]
- Amann, J.; Blasimme, A.; Vayena, E.; Frey, D.; Madai, V.I. Explainability for artificial intelligence in healthcare: A multidisciplinary perspective. BMC Med. Inform. Decis. Mak. 2020, 20, 310. [Google Scholar] [CrossRef]
- Adadi, A.; Berrada, M. Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI). IEEE Access 2018, 6, 52138–52160. [Google Scholar] [CrossRef]
- Antoniadi, A.M.; Du, Y.; Guendouz, Y.; Wei, L.; Mazo, C.; Becker, B.A.; Mooney, C. Current challenges and future opportunities for xai in machine learning-based clinical decision support systems: A systematic review. Appl. Sci. 2021, 11, 88. [Google Scholar] [CrossRef]
- Lecue, F. On the Role of Knowledge Graphs in Explainable AI. Semant. Web 2020, 11, 41–51. [Google Scholar] [CrossRef]
- Tiddi, I.; Schlobach, S. Knowledge Graphs as Tools for Explainable Machine Learning: A Survey. Artif. Intell. 2022, 302, 103627. [Google Scholar] [CrossRef]
- Kejriwal, M. Domain-Specific Knowledge Graph Construction; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Telnov, V.; Korovin, Y. Semantic Web and Interactive Knowledge Graphs as an Educational Technology. In Cloud Computing Security-Concepts and Practice; IntechOpen: Londong, UK, 2020. [Google Scholar]
- Shang, H.; Liu, Z.P. Network-based prioritization of cancer genes by integrative ranks from multi-omics data. Comput. Biol. Med. 2020, 119, 103692. [Google Scholar] [CrossRef]
- Crichton, G.; Guo, Y.; Pyysalo, S.; Korhonen, A. Neural Networks for Link Prediction in Realistic Biomedical Graphs: A Multi-dimensional Evaluation of Graph Embedding-based Approaches. BMC Bioinform. 2018, 19, 176. [Google Scholar] [CrossRef]
- Wang, Q.; Li, M.; Wang, X.; Parulian, N.; Han, G.; Ma, J.; Tu, J.; Lin, Y.; Zhang, R.H.; Liu, W.; et al. COVID-19 Literature Knowledge Graph Construction and Drug Repurposing Report Generation. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Online, 6–11 June 2021; pp. 66–77. [Google Scholar] [CrossRef]
- Drancé, M.; Boudin, M.; Mougin, F.; Diallo, G. Neuro-symbolic XAI for Computational Drug Repurposing. In Proceedings of the 13th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2021)-Volume 2: KEOD, Online, 25–27 October 2021; pp. 220–225. [Google Scholar] [CrossRef]
- Wang, M.; Ma, X.; Si, J.; Tang, H.; Wang, H.; Li, T.; Ouyang, W.; Gong, L.; Tang, Y.; He, X.; et al. Adverse Drug Reaction Discovery Using a Tumor-Biomarker Knowledge Graph. Front. Genet. 2021, 11, 1737. [Google Scholar] [CrossRef]
- Bresso, E.; Monnin, P.; Bousquet, C.; Calvier, F.E.; Ndiaye, N.C.; Petitpain, N.; Smaïl-Tabbone, M.; Coulet, A. Investigating ADR mechanisms with Explainable AI: A feasibility study with knowledge graph mining. BMC Med. Inform. Decis. Mak. 2021, 21, 171–184. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Quan, Z.; Wang, Z.J.; Ma, T.; Zeng, X. KGNN: Knowledge Graph Neural Network for Drug-Drug Interaction Prediction. IJCAI 2020, 380, 2739–2745. [Google Scholar]
- Shang, J.; Xiao, C.; Ma, T.; Li, H.; Sun, J. GAMENet: Graph Augmented Memory Networks for Recommending Medication Combination. In Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence and Thirty-First Innovative Applications of Artificial Intelligence Conference and Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019. AAAI’19/IAAI’19/EAAI’19. [Google Scholar] [CrossRef]
- Gong, F.; Wang, M.; Wang, H.; Wang, S.; Liu, M. SMR: Medical Knowledge Graph Embedding for Safe Medicine Recommendation. Big Data Res. 2021, 23, 100174. [Google Scholar] [CrossRef]
- Cui, L.; Seo, H.; Tabar, M.; Ma, F.; Wang, S.; Lee, D. DETERRENT: Knowledge Guided Graph Attention Network for Detecting Healthcare Misinformation. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Anchorage, AK, USA, 4–8 August 2020; pp. 492–502. [Google Scholar] [CrossRef]
- Kou, Z.; Shang, L.; Zhang, Y.; Wang, D. Hc-Covid. Proc. ACM Hum.-Comput. Interact. 2022, 6, 36. [Google Scholar] [CrossRef]
- Zeng, X.; Tu, X.; Liu, Y.; Fu, X.; Su, Y. Toward Better Drug Discovery with Knowledge Graph. Curr. Opin. Struct. Biol. 2022, 72, 114–126. [Google Scholar] [CrossRef] [PubMed]
- Bayes’ Theorem (Stanford Encyclopedia of Philosophy). Available online: https://plato.stanford.edu/entries/bayes-theorem/ (accessed on 22 September 2022).
- Teng, F.; Yang, W.; Chen, L.; Huang, L.F.; Xu, Q. Explainable Prediction of Medical Codes With Knowledge Graphs. Front. Bioeng. Biotechnol. 2020, 8, 867. [Google Scholar] [CrossRef]
- Zeng, X.; Song, X.; Ma, T.; Pan, X.; Zhou, Y.; Hou, Y.; Zhang, Z.; Li, K.; Karypis, G.; Cheng, F. Repurpose Open Data to Discover Therapeutics for COVID-19 Using Deep Learning. J. Proteome Res. 2020, 19, 4624–4636. [Google Scholar] [CrossRef]
- Díaz-Rodríguez, N.; Lamas, A.; Sanchez, J.; Franchi, G.; Donadello, I.; Tabik, S.; Filliat, D.; Cruz, P.; Montes, R.; Herrera, F. EXplainable Neural-Symbolic Learning (X-NeSyL) methodology to fuse deep learning representations with expert knowledge graphs: The MonuMAI cultural heritage use case. Inf. Fusion 2022, 79, 58–83. [Google Scholar] [CrossRef]
- Pfeifer, B.; Secic, A.; Saranti, A.; Holzinger, A. GNN-SubNet: Disease subnetwork detection with explainable Graph Neural Networks. Bioinformatics 2022, 38, ii120–ii126. [Google Scholar] [CrossRef]
- Li, L.; Wang, P.; Yan, J.; Wang, Y.; Li, S.; Jiang, J.; Sun, Z.; Tang, B.; Chang, T.-H.; Wang, S.; et al. Real-world data medical knowledge graph: Construction and applications. Artif. Intell. Med. 2020, 103, 101817. [Google Scholar] [CrossRef] [PubMed]
- Ciampaglia, G.L.; Shiralkar, P.; Rocha, L.M.; Bollen, J.; Menczer, F.; Flammini, A. Computational Fact Checking from Knowledge Networks. PLoS ONE 2015, 10, e0128193. [Google Scholar] [CrossRef]
- Huynh, V.P.; Papotti, P. A Benchmark for Fact Checking Algorithms Built on Knowledge Bases. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management, Beijing, China, 3–7 November 2019; CIKM ’19. p. 689. [Google Scholar] [CrossRef]
- Admin. Knowledge Graphs: Backbone of Data-Driven Culture in Life Sciences. 2019. Available online: https://www.virtusa.com/perspectives/article/knowledge-graphs-backbone-of-data-driven-culture-in-life-sciences (accessed on 7 August 2022).
- Vailati-Riboni, M.; Palombo, V.; Loor, J.J. What Are Omics Sciences? In Periparturient Diseases of Dairy Cows: A Systems Biology Approach; Ametaj, B.N., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 1–7. [Google Scholar] [CrossRef]
- Maloy, C. Library Guides: Data Resources in the Health Sciences: Clinical Data. 2022. Available online: https://guides.lib.uw.edu/hsl/data/findclin (accessed on 16 July 2022).
- Sow, D.; Turaga, D.S.; Schmidt, M. Mining of Sensor Data in Healthcare: A Survey. In Managing and Mining Sensor Data; Aggarwal, C.C., Ed.; Springer: Boston, MA, USA, 2013; pp. 459–504. [Google Scholar] [CrossRef]
- Nicholson, D.N.; Greene, C.S. Constructing Knowledge Graphs and Their Biomedical Applications. Comput. Struct. Biotechnol. J. 2020, 18, 1414–1428. [Google Scholar] [CrossRef]
- Wang, H.; Huang, H.; Ding, C.; Nie, F. Predicting Protein-Protein Interactions from Multimodal Biological Data Sources via Nonnegative Matrix Tri-Factorization. In Proceedings of Research in Computational Molecular Biology; Chor, B., Ed.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 314–325. [Google Scholar]
- Wu, Q.; Wang, Z.; Li, C.; Ye, Y.; Li, Y.; Sun, N. Protein Functional Properties Prediction in Sparsely-label PPI Networks through Regularized Non-negative Matrix Factorization. BMC Syst. Biol. 2015, 9, S9. [Google Scholar] [CrossRef]
- Alshahrani, M.; Khan, M.A.; Maddouri, O.; Kinjo, A.R.; Queralt-Rosinach, N.; Hoehndorf, R. Neuro-symbolic Representation Learning on Biological Knowledge Graphs. Bioinformatics 2017, 33, 2723–2730. [Google Scholar] [CrossRef] [Green Version]
- Trivodaliev, K.; Josifoski, M.; Kalajdziski, S. Deep Learning the Protein Function in Protein Interaction Networks. In Proceedings of the ICT Innovations 2018. Engineering and Life Sciences, Ohrid, Macedonia, 17–19 September 2018; Kalajdziski, S., Ackovska, N., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 185–197. [Google Scholar]
- Wu, F.X.; Shen, Z.; Zhang, Y.H.; Han, K.; Nandi, A.K.; Honig, B.; Huang, D.S. miRNA-Disease Association Prediction with Collaborative Matrix Factorization. Complexity 2017, 2017, 2498957. [Google Scholar] [CrossRef]
- Yang, K.; Wang, N.; Liu, G.; Wang, R.; Yu, J.; Zhang, R.; Chen, J.; Zhou, X. Heterogeneous Network Embedding for Identifying Symptom Candidate Genes. J. Am. Med Inform. Assoc. 2018, 25, 1452–1459. [Google Scholar] [CrossRef]
- Xu, B.; Liu, Y.; Yu, S.; Wang, L.; Dong, J.; Lin, H.; Yang, Z.; Wang, J.; Xia, F. A Network Embedding Model for Pathogenic Genes Prediction by Multi-path Random Walking on Heterogeneous Network. BMC Med. Genom. 2019, 12, 188. [Google Scholar] [CrossRef]
- Wang, X.; Gong, Y.; Yi, J.; Zhang, W. Predicting Gene-disease Associations from the Heterogeneous Network using Graph Embedding. In Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine (BIBM), San Diego, CA, USA, 18–21 November 2019; pp. 504–511. [Google Scholar] [CrossRef]
- Wang, M.; Liu, M.; Liu, J.; Wang, S.; Long, G.; Qian, B. Safe Medicine Recommendation via Medical Knowledge Graph Embedding. arXiv 2017, arXiv:1710.05980. [Google Scholar]
- Zhao, C.; Jiang, J.; Guan, Y.; Guo, X.; Hen, B. EMR-based Medical Knowledge Representation and Inference via Markov Random Fields and Distributed Representation Learning. Artif. Intell. Med. 2018, 87, 49–59. [Google Scholar] [CrossRef]
- Choi, E.; Bahadori, M.T.; Song, L.; Stewart, W.F.; Sun, J. GRAM: Graph-based Attention Model for Healthcare Representation Learning. In Proceedings of the International Conference on Knowledge Discovery & Data Mining, Halifax, NS, Canada, 13–17 August 2017; pp. 787–795. [Google Scholar]
- Wang, S.; Chang, X.; Li, X.; Long, G.; Yao, L.; Sheng, Q.Z. Diagnosis Code Assignment Using Sparsity-Based Disease Correlation Embedding. IEEE Trans. Knowl. Data Eng. 2016, 28, 3191–3202. [Google Scholar] [CrossRef]
- Sarker, M.K. Towards Explainable Artificial Intelligence (XAI) Based on Contextualizing Data with Knowledge Graphs. Ph.D. Thesis, Kansas State University, Manhattan, KS, USA, 2020. [Google Scholar]
- Percha, B.; Altman, R.B. A Global Network of Biomedical Relationships Derived from Text. Bioinformatics 2018, 34, 2614–2624. [Google Scholar] [CrossRef]
- Névéol, A.; Islamaj Doğan, R.; Lu, Z. Semi-automatic Semantic Annotation of PubMed Queries: A Study on Quality, Efficiency, Satisfaction. J. Biomed. Inform. 2011, 44, 310–318. [Google Scholar] [CrossRef]
- Haq, H.U.; Kocaman, V.; Talby, D. Deeper Clinical Document Understanding Using Relation Extraction. arXiv 2021, arXiv:2112.13259. [Google Scholar]
- Shang, Y.; Tian, Y.; Zhou, M.; Zhou, T.; Lyu, K.; Wang, Z.; Xin, R.; Liang, T.; Zhu, S.; Li, J. EHR-Oriented Knowledge Graph System: Toward Efficient Utilization of Non-Used Information Buried in Routine Clinical Practice. IEEE J. Biomed. Health Inform. 2021, 25, 2463–2475. [Google Scholar] [CrossRef]
- Song, B.; Li, F.; Liu, Y.; Zeng, X. Deep Learning Methods for Biomedical Named Entity Recognition: A Survey and Qualitative Comparison. Briefings Bioinform. 2021, 22, bbab282. [Google Scholar] [CrossRef]
- Zhao, S.; Qin, B.; Liu, T.; Wang, F. Biomedical Knowledge Graph Refinement with Embedding and Logic Rules. arXiv 2020, arXiv:2012.01031. [Google Scholar]
- Phan, N.; Dou, D.; Wang, H.; Kil, D.; Piniewski, B. Ontology-based Deep Learning for Human Behavior Prediction with Explanations in Health Social Networks. Inf. Sci. 2017, 384, 298–313. [Google Scholar] [CrossRef] [PubMed]
- Cassiman, J. How Are Knowledge Graphs and Machine Learning Related? 2022. Available online: https://blog.ml6.eu/how-are-knowledge-graphs-and-machine-learning-related-ff6f5c1760b5 (accessed on 26 August 2022).
- Hamilton, W.L.; Ying, R.; Leskovec, J. Representation Learning on Graphs: Methods and Applications. arXiv 2017, arXiv:1709.05584. [Google Scholar]
- Grover, A.; Leskovec, J. node2vec: Scalable Feature Learning for Networks. In Proceedings of the International Conference on Knowledge Discovery & Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 855–864. [Google Scholar] [CrossRef]
- Bordes, A.; Usunier, N.; Garcia-Duran, A.; Weston, J.; Yakhnenko, O. Translating Embeddings for Modeling Multi-relational Data. Proceedings of Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 5–10 December 2013; Burges, C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2013; Volume 26. [Google Scholar]
- Han, H.; Liu, X. The Challenges of Explainable AI in Biomedical Data Science. BMC Bioinform. 2022, 22, 443. [Google Scholar] [CrossRef] [PubMed]
- de Bruijn, H.; Warnier, M.; Janssen, M. The Perils and Pitfalls of Explainable AI: Strategies for Explaining Algorithmic Decision-Making. Gov. Inf. Q. 2022, 39, 101666. [Google Scholar] [CrossRef]
Knowledge Graph Application | Article(s) |
---|---|
Detecting healthcare misinformation | [20,21] |
Adverse drug reactions | [15,16] |
Drug re-purposing | [14] |
Feature extraction for disease coding process | [24] |
Drug-disease association and drug-target interaction | [13,22,25] |
Minimizing the knowledge gap | |
between healthcare experts and AI-based models | [26] |
Drug-drug interactions | [17,22] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajabi, E.; Kafaie, S. Knowledge Graphs and Explainable AI in Healthcare. Information 2022, 13, 459. https://doi.org/10.3390/info13100459
Rajabi E, Kafaie S. Knowledge Graphs and Explainable AI in Healthcare. Information. 2022; 13(10):459. https://doi.org/10.3390/info13100459
Chicago/Turabian StyleRajabi, Enayat, and Somayeh Kafaie. 2022. "Knowledge Graphs and Explainable AI in Healthcare" Information 13, no. 10: 459. https://doi.org/10.3390/info13100459
APA StyleRajabi, E., & Kafaie, S. (2022). Knowledge Graphs and Explainable AI in Healthcare. Information, 13(10), 459. https://doi.org/10.3390/info13100459