Accelerating Update of Variable Precision Multigranulation Approximations While Adding Granular Structures
Abstract
:1. Introduction
2. Preliminaries
2.1. Rough Set and Variable Precision Rough Set
2.2. Variable Precision Multigranulation Rough Sets
Algorithm 1: A non-incremental algorithm for computing approximations in VPMGRS (NACA). |
3. Accelerating Update of Approximations of VPMGRS
Algorithm 2: An incremental algorithm for updating approximations of VPMGRS while adding multiple granular structures (IAUA). |
4. Experimental Analysis
4.1. Comparison between IAUA and NACA with Different Sizes of Universe
4.2. Comparison between IAUA and NACA with Different Updating Ratios
4.3. Comparison between IAUA and NACA with Changing Values of the Parameter
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hu, Q.H.; Liu, J.F.; Yu, D.R. Mixed feature selection based on granulation and approximation. Knowl. Based Syst. 2008, 21, 294–304. [Google Scholar] [CrossRef]
- Hu, X.M.; Yang, S.X.; Zhu, Y.R. Multiple-attribute decision making based on interval-valued intuitionistic fuzzy generalized weighted heronian mean. Information 2022, 13, 138. [Google Scholar] [CrossRef]
- Yao, Y.Y. Tri-level thinking: Models of three-way decision. Int. J. Mach. Learn. Cybern. 2020, 11, 947–959. [Google Scholar] [CrossRef]
- Liu, D.; Ye, X.Q. A matrix factorization based dynamic granularity recommendation with three-way decisions. Knowl. Based Syst. 2020, 191, 105243. [Google Scholar] [CrossRef]
- Kryszkiewicz, M. Rough set approach to incomplete information systems. Inf. Sci. 1998, 112, 39–49. [Google Scholar] [CrossRef]
- Huang, Q.Q.; Huang, Y.Y.; Li, T.R.; Yang, X. Dynamic three-way neighborhood decision model for multi-dimensional variation of incomplete hybrid data. Inf. Sci. 2022, 597, 358–391. [Google Scholar] [CrossRef]
- Shu, W.H.; Qian, W.B.; Xie, Y.H. Incremental neighborhood entropy-based feature selection for mixed-type data under the variation of feature set. Appl. Intell. 2022, 52, 4792–4806. [Google Scholar] [CrossRef]
- Ge, H.; Yang, C.J.; Xu, Y. Incremental updating three-way regions with variations of objects and attributes in incomplete neighborhood systems. Inf. Sci. 2022, 584, 479–502. [Google Scholar] [CrossRef]
- Chen, H.M.; Li, T.R.; Luo, C.; Horng, S.J.; Wang, G.Y. A decision-theoretic rough set approach for dynamic data mining. IEEE Trans. Fuzzy Syst. 2015, 23, 1958–1970. [Google Scholar] [CrossRef]
- Huang, Y.Y.; Guo, K.J.; Yi, X.W.; Li, Z.; Li, T.R. Matrix representation of the conditional entropy for incremental feature selection on multi-source data. Inf. Sci. 2022, 591, 263–286. [Google Scholar] [CrossRef]
- Lang, G.M.; Li, Q.G.; Cai, M.J.; Fujita, H.; Zhang, H.Y. Related families-based methods for updating reducts under dynamic object sets. Knowl. Inf. Syst. 2019, 60, 1081–1104. [Google Scholar] [CrossRef]
- Yang, L.; Qin, K.Y.; Sang, B.B.; Xu, W.H. Dynamic maintenance of variable precision fuzzy neighborhood three-way regions in interval-valued fuzzy decision system. Int. J. Mach. Learn. Cybern. 2022, 13, 1797–1818. [Google Scholar] [CrossRef]
- Liu, D.; Li, T.R.; Zhang, J.B. Incremental updating approximations in probabilistic rough sets under the variation of attributes. Knowl. Based Syst. 2015, 73, 81–96. [Google Scholar] [CrossRef]
- Hu, C.X.; Zhang, L. Incremental updating probabilistic neighborhood three-way regions with time-evolving attributes. Int. J. Approx. Reason. 2020, 120, 1–23. [Google Scholar] [CrossRef]
- Li, S.Y.; Li, T.R. Incremental update of approximations in dominance-based rough sets approach under the variation of attribute values. Inf. Sci. 2015, 294, 348–361. [Google Scholar] [CrossRef]
- Li, T.R.; Ruan, D.; Geert, W.; Song, J.; Xu, Y. A rough sets based characteristic relation approach for dynamic attribute generalization in data mining. Knowl. Based Syst. 2007, 20, 485–494. [Google Scholar] [CrossRef]
- Yang, X.; Liu, D.; Yang, X.B.; Liu, K.Y.; Li, T.R. Incremental fuzzy probability decision-theoretic approaches to dynamic three-way approximations. Inf. Sci. 2021, 550, 71–90. [Google Scholar] [CrossRef]
- Chen, H.M.; Li, T.R.; Ruan, D.; Lin, J.H.; Hu, C.X. A rough-set-based incremental approach for updating approximations under dynamic maintenance environments. IEEE Trans. Knowl. Data Eng. 2013, 25, 274–284. [Google Scholar] [CrossRef]
- Niu, J.J.; Chen, D.G.; Li, J.H.; Wang, H. A dynamic rule-based classification model via granular computing. Inf. Sci. 2022, 584, 325–341. [Google Scholar] [CrossRef]
- Huang, J.X.; Yu, P.Q.; Li, W.K. Updating the reduct in fuzzy β-covering via matrix approaches while adding and deleting some objects of the universe. Information 2020, 11, 3. [Google Scholar] [CrossRef]
- Hao, C.; Li, J.H.; Fan, M.; Liu, W.Q.; Tsang, E.C.C. Optimal scale selection in dynamic multi-scale decision tables based on sequential three-way decisions. Inf. Sci. 2017, 415, 213–232. [Google Scholar] [CrossRef]
- Li, S.Y.; Li, T.R.; Liu, D. Dynamic maintenance of approximations in dominance based rough set approach under the variation of the object set. Int. J. Intell. Syst. 2013, 28, 729–751. [Google Scholar] [CrossRef]
- Luo, C.; Li, T.R.; Zhang, Y.; Hamido, F. Matrix approach to decision-theoretic rough sets for evolving data. Knowl. Based Syst. 2016, 99, 123–134. [Google Scholar] [CrossRef]
- Zhang, J.B.; Li, T.R.; Ruan, D. Neighborhood rough sets for dynamic data mining. Int. J. Intell. Syst. 2012, 27, 317–342. [Google Scholar] [CrossRef]
- Luo, C.; Li, T.R.; Chen, H.M.; Lu, L. Fast algorithms for computing rough approximations in set-valued decision systems while updating criteria values. Inf. Sci. 2015, 299, 221–242. [Google Scholar] [CrossRef]
- Chen, H.M.; Li, T.R.; Qiao, S.J.; Ruan, D. A rough set based dynamic maintenance approach for approximations in coarsening and refining attribute values. Int. J. Intell. Syst. 2010, 25, 1005–1026. [Google Scholar] [CrossRef]
- Zadeh, L.A. Towards a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets Syst. 1997, 90, 111–127. [Google Scholar] [CrossRef]
- Yao, Y. Three-way granular computing, rough sets, and formal concept analysis. Int. J. Approx. Reason. 2020, 116, 106–125. [Google Scholar] [CrossRef]
- Yao, Y.Y. The geometry of three-way decision. Appl. Intell. 2021, 51, 6298–6325. [Google Scholar] [CrossRef]
- Qian, Y.H.; Liang, J.Y.; Dang, C.Y. Incomplete multigranulation rough set. IEEE Trans. Syst. Man Cybern. Part A 2010, 40, 420–431. [Google Scholar] [CrossRef]
- Sun, B.Z.; Ma, W.M.; Chen, X.T. Variable precision multigranulation rough fuzzy set approach to multiple attribute group decision-making based on λ-similarity relation. Comput. Ind. Eng. 2019, 127, 326–343. [Google Scholar] [CrossRef]
- Zhang, C.; Li, D.Y.; Liang, J.Y.; Wang, B.L. MAGDM-oriented dual hesitant fuzzy multigranulation probabilistic models based on MULTIMOORA. Int. J. Mach. Learn. Cybern. 2021, 12, 1219–1241. [Google Scholar] [CrossRef]
- Qian, Y.H.; Liang, J.Y.; Yao, Y.Y.; Dang, C.Y. MGRS: A multi-granulation rough set. Inf. Sci. 2010, 180, 949–970. [Google Scholar] [CrossRef]
- Qian, Y.H.; Li, S.Y.; Liang, J.Y.; Shi, Z.Z.; Wang, F. Pessimistic rough set based decisions: A multigranulation fusion strategy. Inf. Sci. 2014, 264, 196–210. [Google Scholar] [CrossRef]
- Zhan, J.M.; Xu, W.H. Two types of coverings based multigranulation rough fuzzy sets and applications to decision making. Artif. Intell. Rev. 2020, 53, 167–198. [Google Scholar] [CrossRef]
- Zhang, C.; Ding, J.J.; Zhan, J.M.; Li, D.Y. Incomplete three-way multi-attribute group decision making based on adjustable multigranulation Pythagorean fuzzy probabilistic rough sets. Int. J. Approx. Reason. 2022, 147, 40–59. [Google Scholar] [CrossRef]
- Li, J.H.; Huang, C.C.; Qi, J.J.; Qian, Y.H.; Liu, W.Q. Three-way cognitive concept learning via multi-granularity. Inf. Sci. 2017, 378, 244–263. [Google Scholar] [CrossRef]
- Dou, H.L.; Yang, X.B.; Fan, J.Y.; Xu, S.P. The models of variable precision multigranulation rough sets. In Proceedings of the International Conference on Rough Sets and Knowledge Technology, Lecture Notes in Computer Science, Chengdu, China, 17–20 August 2012; Springer: Berlin/Heidelberg, Germany, 2012; Volume 7414, pp. 465–473. [Google Scholar]
- Hu, C.X.; Zhang, L. A dynamic framework for updating neighborhood multigranulation approximations with the variation of objects. Inf. Sci. 2020, 519, 382–406. [Google Scholar] [CrossRef]
- Hu, C.X.; Zhang, L. Dynamic dominance-based multigranulation rough sets approaches with evolving ordered data. Int. J. Mach. Learn. Cybern. 2021, 12, 17–38. [Google Scholar] [CrossRef]
- Ju, H.R.; Yang, X.B.; Song, X.N.; Qi, Y.S. Dynamic updating multigranulation fuzzy rough set: Approximations and reducts. Int. J. Mach. Learn. Cybern. 2014, 5, 981–990. [Google Scholar] [CrossRef]
- Xu, W.H.; Yuan, K.H.; Li, W.T. Dynamic updating approximations of local generalized multigranulation neighborhood rough set. Appl. Intell. 2022, 52, 9148–9173. [Google Scholar] [CrossRef]
- Yang, X.B.; Qi, Y.S.; Yu, H.L.; Song, X.N.; Yang, J.Y. Updating multigranulation rough approximations with increasing of granular structures. Knowl. Based Syst. 2014, 64, 59–69. [Google Scholar] [CrossRef]
- Li, W.T.; Xu, W.H.; Zhang, X.Y.; Zhang, J. Updating approximations with dynamic objects based on local multigranulation rough sets in ordered information systems. Artif. Intell. Rev. 2022, 55, 1821–1855. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Li, J.R.; Mi, J.S. Dynamic updating approximations approach to multi-granulation interval-valued hesitant fuzzy information systems with time-evolving attributes. Knowl. Based Syst. 2022, 238, 107809. [Google Scholar] [CrossRef]
- Mi, J.S.; Wu, W.Z.; Zhang, W.X. Approaches to knowledge reductions based on variable precision rough sets model. Inf. Sci. 2004, 159, 255–272. [Google Scholar] [CrossRef]
- Liu, D. The effectiveness of three-way classification with interpretable perspective. Inf. Sci. 2021, 567, 237–255. [Google Scholar] [CrossRef]
- Ziarko, W. Variable precision rough set model. J. Comput. Syst. Sci. 1993, 46, 39–59. [Google Scholar] [CrossRef] [Green Version]
- Pawlak, Z. Rough Sets. Int. J. Comput. Inf. Sci. 1982, 11, 341–356. [Google Scholar] [CrossRef]
- Pawlak, Z.; Skowron, A. Rough sets: Some extensions. Inf. Sci. 2007, 177, 28–40. [Google Scholar] [CrossRef]
U | d | ||||
---|---|---|---|---|---|
1 | 1 | 1 | 1 | 1 | |
2 | 3 | 2 | 2 | 2 | |
2 | 1 | 2 | 2 | 2 | |
1 | 1 | 3 | 1 | 1 | |
1 | 1 | 3 | 1 | 2 | |
2 | 2 | 3 | 1 | 2 | |
3 | 2 | 1 | 3 | 1 | |
3 | 2 | 3 | 3 | 1 |
U | ||||
---|---|---|---|---|
1 | 2 | 2 | 1 | |
2 | 1 | 2 | 1 | |
1 | 1 | 3 | 1 | |
1 | 2 | 1 | 2 | |
2 | 1 | 3 | 3 | |
3 | 1 | 3 | 2 | |
3 | 3 | 1 | 3 | |
3 | 3 | 1 | 3 |
ID | Data Sets | # Objects | # Attributes | # Classes |
---|---|---|---|---|
1 | Sonar | 208 | 60 | 2 |
2 | SPECTF | 267 | 44 | 2 |
3 | Ionosphere | 351 | 34 | 2 |
4 | Libras | 360 | 90 | 15 |
5 | Dermatology | 366 | 33 | 6 |
6 | Wdbc | 569 | 30 | 2 |
7 | Diabetic | 1151 | 19 | 2 |
8 | Segmentation | 2310 | 19 | 7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Hu, C. Accelerating Update of Variable Precision Multigranulation Approximations While Adding Granular Structures. Information 2022, 13, 541. https://doi.org/10.3390/info13110541
Li C, Hu C. Accelerating Update of Variable Precision Multigranulation Approximations While Adding Granular Structures. Information. 2022; 13(11):541. https://doi.org/10.3390/info13110541
Chicago/Turabian StyleLi, Changchun, and Chengxiang Hu. 2022. "Accelerating Update of Variable Precision Multigranulation Approximations While Adding Granular Structures" Information 13, no. 11: 541. https://doi.org/10.3390/info13110541
APA StyleLi, C., & Hu, C. (2022). Accelerating Update of Variable Precision Multigranulation Approximations While Adding Granular Structures. Information, 13(11), 541. https://doi.org/10.3390/info13110541