Learning Static-Adaptive Graphs for RGB-T Image Saliency Detection
Abstract
:1. Introduction
- We construct an adaptive graph by sparse representation and carry out the optimization solution;
- We learn a novel static-adaptive graph model to increase the fusion capacity by considering the spatial connectivity features of graph nodes in RGB-T saliency detection;
- We compare our method with the state-of-the-art methods on an RGB-T dataset with 11 kinds of challenging subsets. The experimental results verify the effectiveness of our method.
2. Related Work
3. Brief Review of Manifold Ranking
4. Static-Adaptive Graph Learning
4.1. Static-Adaptive Graph Construction
- (1)
- Two nodes are directly adjacent;
- (2)
- There is a common edge between two nodes;
- (3)
- Superpixels are on the four boundaries.
4.2. Adaptive Graph Learning Model Formulation
4.3. Optimization
5. RGB-T Salient Detection
Algorithm 1 The Static-Adaptive Graph based RGB-T Salient Detection Produce. |
Require: The static-adaptive graph weight matrix , the indicator vectors of the four boundaries queries , , , . |
|
Ensure: is the saliency map of the static-adaptive graph model for RGB-T saliency detection. |
6. Experiment
6.1. Datasets and Experimental Settings
6.2. Measuring Standard
6.3. Comparison Results
6.4. Analysis of Our Approach
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Q.; Lin, J.; Yuan, Y. Salient band selection for hyperspectral image classification via manifold ranking. IEEE Trans. Neural Netw. Learn. Syst. 2016, 27, 1279–1289. [Google Scholar] [CrossRef]
- Yang, X.; Qian, X.; Xue, Y. Scalable mobile image retrieval by exploring contextual saliency. IEEE Trans. Image Process. 2015, 24, 1709–1721. [Google Scholar] [CrossRef]
- Wen, W.; Zhang, Y.; Fang, Y.; Fang, Z. A novel selective image encryption method based on saliency detection. In Proceedings of the Visual Communications and Image Processing (VCIP), Chengdu, China, 27–30 November 2016; pp. 1–4. [Google Scholar]
- Wen, W.; Zhang, Y.; Fang, Y.; Fang, Z. Image salient regions encryption for generating visually meaningful ciphertext image. Neural Comput. Appl. 2018, 29, 653–663. [Google Scholar] [CrossRef]
- Jacob, H.; Padua, F.L.C.; Lacerda, A.; Pereira, A.C.M. A video summarization approach based on the emulation of bottom-up mechanisms of visual attention. J. Intell. Inf. Syst. 2017, 49, 193–211. [Google Scholar] [CrossRef]
- Zhang, L.; Ai, J.; Jiang, B.; Lu, H.; Li, X. Saliency Detection via Absorbing Markov Chain With Learnt Transition Probability. IEEE Trans. Image Process. 2018, 27, 987–998. [Google Scholar] [CrossRef] [PubMed]
- Borji, A.; Cheng, M.M.; Jiang, H.; Li, J. Salient object detection: A benchmark. IEEE Trans. Image Process. 2015, 24, 5706–5722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tong, N.; Lu, H.; Ruan, X.; Yang, M.H. Salient object detection via bootstrap learning. In Proceedings of the Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 1884–1892. [Google Scholar]
- Zhou, X.; Liu, Z.; Sun, G.; Wang, X. Adaptive saliency fusion based on quality assessment. Multimed. Tools Appl. 2017, 76, 23187–23211. [Google Scholar] [CrossRef]
- Itti, L.; Koch, C.; Niebur, E. A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20, 1254–1259. [Google Scholar] [CrossRef] [Green Version]
- Cheng, M.M.; Mitra, N.J.; Huang, X.; Torr, P.H.; Hu, S.M. Global contrast based salient region detection. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 569–582. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Xu, L.; Wang, X.; Luo, B. Learning Optimal Seeds for Ranking Saliency. Cogn. Comput. 2018, 10, 347–358. [Google Scholar] [CrossRef]
- Hou, Q.; Cheng, M.M.; Hu, X.; Borji, A.; Tu, Z.; Torr, P.H. Deeply supervised salient object detection with short connections. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 3203–3212. [Google Scholar]
- Han, J.; Zhang, D.; Cheng, G.; Liu, N.; Xu, D. Advanced deep-learning techniques for salient and category-specific object detection: A survey. IEEE Signal Process. Mag. 2018, 35, 84–100. [Google Scholar] [CrossRef]
- Li, C.; Zhao, N.; Lu, Y.; Zhu, C.; Tang, J. Weighted Sparse Representation Regularized Graph Learning for RGB-T Object Tracking. In Proceedings of the 25th ACM International Conference on Multimedia, Mountain View, CA, USA, 23–27 October 2017; pp. 1856–1864. [Google Scholar]
- Li, C.; Zhu, C.; Huang, Y.; Tang, J.; Wang, L. Cross-modal ranking with soft consistency and noisy labels for robust rgb-t tracking. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 808–823. [Google Scholar]
- Li, C.; Liang, X.; Lu, Y.; Zhao, N.; Tang, J. RGB-T object tracking: Benchmark and baseline. Pattern Recognit. 2019, 96, 106977. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Huang, N.; Yao, L.; Zhang, D.; Shan, C.; Han, J. RGB-T salient object detection via fusing multi-level CNN features. IEEE Trans. Image Process. 2019, 29, 3321–3335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harel, J.; Koch, C.; Perona, P. Graph-Based Visual Saliency. Adv. Neural Inf. Process. Syst. 2006, 19, 545–552. [Google Scholar]
- Yang, C.; Zhang, L.; Lu, H.; Ruan, X.; Yang, M.H. Saliency detection via graph-based manifold ranking. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Washington, DC, USA, 23–28 June 2013; pp. 3166–3173. [Google Scholar]
- Sun, J.; Lu, H.; Liu, X. Saliency region detection based on Markov absorption probabilities. IEEE Trans. Image Process. 2015, 24, 1639–1649. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, C.; Lu, H.; Ruan, X.; Yang, M.H. Ranking saliency. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1892–1904. [Google Scholar] [CrossRef]
- Xiao, Y.; Wang, L.; Jiang, B.; Tu, Z.; Tang, J. A global and local consistent ranking model for image saliency computation. J. Vis. Commun. Image Represent. 2017, 46, 199–207. [Google Scholar] [CrossRef]
- Aytekin, Ç.; Iosifidis, A.; Kiranyaz, S.; Gabbouj, M. Learning graph affinities for spectral graph-based salient object detection. Pattern Recognit. J. Pattern Recognit. Soc. 2017, 64, 159–167. [Google Scholar] [CrossRef]
- Li, C.; Cheng, H.; Hu, S.; Liu, X.; Tang, J.; Lin, L. Learning collaborative sparse representation for grayscale-thermal tracking. IEEE Trans. Image Process. 2016, 25, 5743–5756. [Google Scholar] [CrossRef]
- Li, C.; Wang, G.; Ma, Y.; Zheng, A.; Luo, B.; Tang, J. A Unified RGB-T Saliency Detection Benchmark: Dataset, Baselines, Analysis and A Novel Approach. arXiv 2017, arXiv:1701.02829. [Google Scholar]
- Giacomo, C.; Grazia, L.S.; Christian, N.; Rafi, S.; Marcin, W. Optimizing the Organic Solar Cell Manufacturing Process by Means of AFM Measurements and Neural Networks. Energies 2018, 11, 1221. [Google Scholar]
- Huang, Z.; Wang, X.; Huang, L.; Huang, C.; Wei, Y.; Liu, W. CCNet: Criss-Cross Attention for Semantic Segmentation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27–28 October 2019. [Google Scholar]
- Hu, X.; Yang, K.; Fei, L.; Wang, K. ACNet: Attention Based Network to Exploit Complementary Features for RGBD Semantic Segmentation. In Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei, China, 22–25 September 2019; pp. 1440–1444. [Google Scholar]
- Zhang, J.; Yang, K.; Constantinescu, A.; Peng, K.; Müller, K.; Stiefelhagen, R. Trans4Trans: Efficient Transformer for Transparent Object Segmentation to Help Visually Impaired People Navigate in the Real World. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Nashville, TN, USA, 19–25 June 2021; pp. 1760–1770. [Google Scholar]
- Liu, N.; Han, J.; Yang, M.H. PiCANet: Learning Pixel-wise Contextual Attention for Saliency Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 3089–3098. [Google Scholar]
- Liu, Z.; Tan, Y.; He, Q.; Xiao, Y. SwinNet: Swin Transformer drives edge-aware RGB-D and RGB-T salient object detection. IEEE Trans. Circuits Syst. Video Technol. 2021. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, Y.; Tu, Z.; Xiao, Y.; Tang, B. TriTransNet: RGB-D Salient Object Detection with a Triplet Transformer Embedding Network. In Proceedings of the 29th ACM International Conference on Multimedia, New York, NY, USA, 20–24 October 2021; pp. 4481–4490. [Google Scholar]
- Guo, X. Robust Subspace Segmentation by Simultaneously Learning Data Representations and Their Affinity Matrix. In Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015), Buenos Aires, Argentina, 25–31 July 2015; AAAI Press: Palo Alto, CA, USA, 2015; pp. 3547–3553. [Google Scholar]
- Li, C.; Wu, X.; Bao, Z.; Tang, J. ReGLe: Spatially Regularized Graph Learning for Visual Tracking. In Proceedings of the 25th ACM International Conference on Multimedia, Mountain View, CA, USA, 23–27 October 2017; pp. 252–260. [Google Scholar]
- Achanta, R.; Shaji, A.; Smith, K.; Lucchi, A.; Fua, P.; Süsstrunk, S. SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 2274–2282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stephen, B.; Neal, P.; Chu, E.; Borja, P.; EcKstein, J. Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers; Now Publishers Inc.: Hanover, MA, USA, 2010; Volume 3, pp. 1–122. [Google Scholar]
- Lin, Z.; Chen, M.; Ma, Y. The Augmented Lagrange Multiplier Method for Exact Recovery of Corrupted Low-Rank Matrices. arXiv 2010, arXiv:1009.5055. [Google Scholar]
- Chen, M.; Ganesh, A.; Lin, Z.; Ma, Y.; Wright, J.; Wu, L. Fast Convex Optimization Algorithms for Exact Recovery of a Corrupted Low-Rank Matrix; Report No. UILU-ENG-09-2214; Coordinated Science Laboratory: Urbana, IL, USA, 2009. [Google Scholar]
- Rahtu, E.; Kannala, J.; Salo, M.; Heikkilä, J. Segmenting salient objects from images and videos. In Proceedings of the European Conference on Computer Vision, Heraklion, Crete, Greece, 5–11 September 2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 366–379. [Google Scholar]
- Qin, Y.; Lu, H.; Xu, Y.; Wang, H. Saliency detection via cellular automata. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 110–119. [Google Scholar]
- Goferman, S.; Zelnik-Manor, L.; Tal, A. Context-aware saliency detection. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 1915–1926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erdem, E.; Erdem, A. Visual saliency estimation by nonlinearly integrating features using region covariances. J. Vis. 2013, 13, 11. [Google Scholar] [CrossRef]
- Tavakoli, H.R.; Rahtu, E.; Heikkilä, J. Fast and efficient saliency detection using sparse sampling and kernel density estimation. In Proceedings of the Scandinavian Conference on Image Analysis, Ystad, Sweden, 23–25 May 2011; Springer: Berlin/Heidelberg, Germany, 2011; pp. 666–675. [Google Scholar]
- Yang, C.; Zhang, L.; Lu, H. Graph-regularized saliency detection with convex-hull-based center prior. IEEE Signal Process. Lett. 2013, 20, 637–640. [Google Scholar] [CrossRef]
Challenge | Description |
---|---|
BSO | The radio of ground truth salient objects over the image is more than 0.26. |
BW | The image pairs are recorded in bad weather, such as snowy, rainy, hazy, or cloudy weather. |
CB | The centers of salient objects are far away from the image center. |
CIB | The salient objects cross the image boundaries. |
IC | The image is cluttered. |
LI | The environmental illumination is low. |
MSO | The number of the salient objects in the image is more than one. |
OF | The image is out of focus. |
SA | The salient objects have similar color or shape to the background. |
SSO | The radio of ground truth salient objects over the image is less the 0.05. |
TC | The salient objects have similar temperature to the background. |
Algorithm | RGB (P↑, R↑, F↑, MAE↓) | Thermal (P↑, R↑, F↑, MAE↓) | RGB-T (P↑, R↑, F↑, MAE↓) |
---|---|---|---|
BR [40] | 0.724, 0.260, 0.411, 0.269 | 0.648, 0.413, 0.488, 0.323 | 0.804, 0.366, 0.520, 0.297 |
CA [41] | 0.592, 0.667, 0.568, 0.163 | 0.623, 0.607, 0.573, 0.225 | 0.648, 0.697, 0.618, 0.195 |
MCI [42] | 0.526, 0.604, 0.485, 0.211 | 0.445, 0.585, 0.435, 0.176 | 0.547, 0.652, 0.515, 0.195 |
NFI [43] | 0.557, 0.639, 0.532, 0.126 | 0.581, 0.599, 0.541, 0.124 | 0.564, 0.665, 0.544, 0.125 |
SS-KDE [44] | 0.581, 0.554, 0.532, 0.122 | 0.510, 0.635, 0.497, 0.132 | 0.528, 0.656, 0.515, 0.127 |
GMR [20] | 0.644, 0.603, 0.587, 0.172 | 0.700, 0.574, 0.603, 0.232 | 0.694, 0.624, 0.615, 0.202 |
GR [45] | 0.621, 0.582, 0.534, 0.197 | 0.639, 0.544, 0.545, 0.199 | 0.705, 0.593, 0.600, 0.199 |
MTMR [26] | -, -, -, - | -, -, -, - | 0.716, 0.713, 0.680, 0.107 |
ours | 0.697, 0.536, 0.603, 0.107 | 0.715, 0.569, 0.629, 0.112 | 0.804, 0.627, 0.716, 0.095 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Z.; Tang, J.; Zhou, A.; Liu, H. Learning Static-Adaptive Graphs for RGB-T Image Saliency Detection. Information 2022, 13, 84. https://doi.org/10.3390/info13020084
Xu Z, Tang J, Zhou A, Liu H. Learning Static-Adaptive Graphs for RGB-T Image Saliency Detection. Information. 2022; 13(2):84. https://doi.org/10.3390/info13020084
Chicago/Turabian StyleXu, Zhengmei, Jin Tang, Aiwu Zhou, and Huaming Liu. 2022. "Learning Static-Adaptive Graphs for RGB-T Image Saliency Detection" Information 13, no. 2: 84. https://doi.org/10.3390/info13020084
APA StyleXu, Z., Tang, J., Zhou, A., & Liu, H. (2022). Learning Static-Adaptive Graphs for RGB-T Image Saliency Detection. Information, 13(2), 84. https://doi.org/10.3390/info13020084