Digital Transformation Strategies Enabled by Internet of Things and Big Data Analytics: The Use-Case of Telecommunication Companies in Greece
Abstract
:1. Introduction
2. Theoretical Background
2.1. Internet of Things
2.2. Big Data Analytics
2.3. An Extension of the Technology Acceptance Model
2.3.1. Data Quality
2.3.2. System Quality
2.3.3. Perceived Usefulness
2.3.4. Perceived Ease of Use
2.3.5. Intention to Use Technologies
2.3.6. Perceived Benefits of Technologies
- H1:The quality of the BDA systems/IoT has a positive impact on the perceived benefits.
- H2: Data quality has a positive impact on the perceived benefits of BDA systems/IoT.
- H3: Service quality has a positive effect on the perceived benefits of BDA systems/IoT.
- H4: Perceived ease of use has a positive effect on the user’s attitude towards the BDA systems and IoT.
- H5: The perceived usefulness has a positive effect on the user’s attitude towards the BDA systems and IoT.
- H6: The perceived usefulness has a positive effect on the user’s intention towards the BDA systems and IoT.
- H7: The attitude has a positive effect on the user’s intention towards the BDA systems and IoT.
- H8: Perceived ease of use has a positive effect on the perceived usefulness of BDA systems and IoT.
- H9: Perceived benefits have a positive effect on the perceived usefulness of BDA systems and IoT.
- H10: Perceived benefits have a positive effect on the perceived ease of use of BDA systems and IoT.
3. Methodology
4. Results
4.1. The Case of BDA
4.2. The Case of IoT
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gunasekaran, A.; Papadopoulos, T.; Dubey, R.; Wamba, S.F.; Childe, S.J.; Hazen, B.; Akter, S. Big data and predictive analytics for supply chain and organizational performance. J. Bus. Res. 2017, 70, 308–317. [Google Scholar] [CrossRef]
- Kitsios, F.; Kamariotou, M. Artificial intelligence and business strategy towards digital transformation: A research agenda. Sustainability 2021, 13, 2025. [Google Scholar] [CrossRef]
- Kitsios, F.; Kamariotou, M. Service innovation process digitization: Areas for exploitation and exploration. J. Hosp. Tour. Technol. 2021, 12, 4–18. [Google Scholar] [CrossRef]
- Côrte-Real, N.; Ruivo, P.; Oliveira, T. Leveraging internet of things and big data analytics initiatives in European and American firms: Is data quality a way to extract business value? Inf. Manag. 2020, 57, 103141. [Google Scholar] [CrossRef]
- Kitsios, F.; Kamariotou, M. Beyond Open Data Hackathons: Exploring Digital Innovation Success. Information 2019, 10, 235. [Google Scholar] [CrossRef] [Green Version]
- Kitsios, F.; Kamariotou, M.; Karanikolas, P.; Grigoroudis, E. Digital marketing platforms and customer satisfaction: Identifying eWOM using big data and text mining. Appl. Sci. 2021, 11, 8032. [Google Scholar] [CrossRef]
- Pinochet, L.H.C.; Amorim, G.D.C.B.; Júnior, D.L.; de Souza, C.A. Consequential factors of Big Data’s Analytics Capability: How firms use data in the competitive scenario. J. Enterp. Inf. Manag. 2021, 34, 1406–1428. [Google Scholar] [CrossRef]
- Kitsios, F.; Giatsidis, I.; Kamariotou, M. Digital Transformation and Strategy in the Banking Sector: Evaluating the Acceptance Rate of E-Services. J. Open Innov. Technol. Mark. Complex. 2021, 7, 204. [Google Scholar] [CrossRef]
- Leminen, S.; Rajahonka, M.; Westerlund, M.; Wendelin, R. The future of the Internet of Things: Toward heterarchical ecosystems and service business models. J. Bus. Ind. Mark. 2018, 33, 749–767. [Google Scholar] [CrossRef]
- Marjani, M.; Nasaruddin, F.; Gani, A.; Karim, A.; Hashem, I.A.T.; Siddiqa, A.; Yaqoob, I. Big IoT data analytics: Architecture, opportunities, and open research challenges. IEEE Access 2017, 5, 5247–5261. [Google Scholar]
- Erevelles, S.; Fukawa, N.; Swayne, L. Big Data consumer analytics and the transformation of marketing. J. Bus. Res. 2016, 69, 897–904. [Google Scholar] [CrossRef]
- Sestino, A.; Prete, M.I.; Piper, L.; Guido, G. Internet of Things and Big Data as enablers for business digitalization strategies. Technovation 2020, 98, 102173. [Google Scholar] [CrossRef]
- Kitsios, F.; Kamariotou, M. Information Systems Strategy and Innovation: Analyzing Perceptions Using Multiple Criteria Decision Analysis. IEEE Trans. Eng. Manag. 2021, in press. [Google Scholar] [CrossRef]
- Kitsios, F.; Kamariotou, M. Strategizing information systems: An empirical analysis of IT alignment and success in SMEs. Computers 2019, 8, 74. [Google Scholar] [CrossRef] [Green Version]
- Kitsios, F.; Kamariotou, M. Information Systems Strategy and Strategy-as-Practice: Planning Evaluation in SMEs. In Proceedings of the Americas Conference on Information Systems (AMCIS2019), Cancun, Mexico, 15–17 August 2019; pp. 1–10. [Google Scholar]
- Kamariotou, M.; Kitsios, F. Critical Factors of Strategic Information Systems Planning Phases in SMEs. In Information Systems; EMCIS 2018; Springer LNBIP 341; Themistocleous, M., Rupino da Cunha, P., Eds.; Springer Nature: Cham, Switzerland, 2019; pp. 503–517. [Google Scholar]
- Kitsios, F.; Kamariotou, M. Decision Support Systems and Strategic Information Systems Planning for Strategy Implementation. In Strategic Innovative Marketing; Springer Proceedings in Business and, Economics; Kavoura, A., Sakas, D., Tomaras, P., Eds.; Springer: Cham, Switzerland, 2017; pp. 327–332. [Google Scholar]
- Gangwar, H.; Date, H.; Ramaswamy, R. Understanding determinants of cloud computing adoption using an integrated TAM-TOE model. J. Enterp. Inf. Manag. 2015, 28, 107–130. [Google Scholar] [CrossRef]
- Liao, C.H.; Tsou, C.W. User acceptance of computer-mediated communication: The SkypeOut case. Expert Syst. Appl. 2009, 36, 4595–4603. [Google Scholar] [CrossRef]
- Lin, R.; Xie, Z.; Hao, Y.; Wang, J. Improving high-tech enterprise innovation in big data environment: A combinative view of internal and external governance. Int. J. Inf. Manag. 2020, 50, 575–585. [Google Scholar] [CrossRef]
- Yunana, K.; Alfa, A.A.; Misra, S.; Damasevicius, R.; Maskeliunas, R.; Oluranti, J. Internet of Things: Applications, Adoptions and Components-a Conceptual Overview. In Hybrid Intelligent Systems, HIS 2020, Advances in Intelligent Systems and Computing; Abraham, A., Hanne, T., Castillo, O., Gandhi, N., Nogueira Rios, T., Hong, T.P., Eds.; Springer: Cham, Switzerland, 2020; pp. 494–504. [Google Scholar]
- Cranmer, E.E.; Papalexi, M.; tom Dieck, M.C.; Bamford, D. Internet of Things: Aspiration, implementation and contribution. J. Bus. Res. 2022, 139, 69–80. [Google Scholar] [CrossRef]
- Lu, Y.; Papagiannidis, S.; Alamanos, E. Internet of Things: A systematic review of the business literature from the user and organisational perspectives. Technol. Forecast. Soc. Change 2018, 136, 285–297. [Google Scholar] [CrossRef] [Green Version]
- Shoukry, A.; Khader, J.; Gani, S. Improving business process and functionality using IoT based E3-value business model. Electron. Mark. 2021, 31, 17–26. [Google Scholar] [CrossRef]
- Aljumah, A.I.; Nuseir, M.T.; Alam, M.M. Organizational performance and capabilities to analyze big data: Do the ambidexterity and business value of big data analytics matter? Bus. Process Manag. J. 2021, 27, 1088–1107. [Google Scholar] [CrossRef]
- Mikalef, P.; Boura, M.; Lekakos, G.; Krogstie, J. Big data analytics and firm performance: Findings from a mixed-method approach. J. Bus. Res. 2019, 98, 261–276. [Google Scholar] [CrossRef]
- Laguir, I.; Gupta, S.; Bose, I.; Stekelorum, R.; Laguir, L. Analytics capabilities and organizational competitiveness: Unveiling the impact of management control systems and environmental uncertainty. Decis. Support Syst. 2022, 156, 113744. [Google Scholar] [CrossRef]
- Mikalef, P.; Pappas, I.O.; Krogstie, J.; Giannakos, M. Big data analytics capabilities: A systematic literature review and research agenda. Inf. Syst. e-Bus. Manag. 2018, 16, 547–578. [Google Scholar] [CrossRef]
- Amado, A.; Cortez, P.; Rita, P.; Moro, S. Research trends on Big Data in Marketing: A text mining and topic modeling based literature analysis. Eur. Res. Manag. Bus. Econ. 2018, 24, 1–7. [Google Scholar] [CrossRef]
- Wang, G.; Gunasekaran, A.; Ngai, E.W. Distribution network design with big data: Model and analysis. Ann. Oper. Res. 2018, 270, 539–551. [Google Scholar] [CrossRef]
- Wang, Y.; Kung, L.; Wang, W.Y.C.; Cegielski, C.G. An integrated big data analytics-enabled transformation model: Application to health care. Inf. Manag. 2018, 55, 64–79. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Kung, L.; Byrd, T.A. Big data analytics: Understanding its capabilities and potential benefits for healthcare organizations. Technol. Forecast. Soc. Change 2018, 126, 3–13. [Google Scholar] [CrossRef]
- Ghasemaghaei, M. Understanding the impact of big data on firm performance: The necessity of conceptually differentiating among big data characteristics. Int. J. Inf. Manag. 2021, 57, 102055. [Google Scholar] [CrossRef]
- Steininger, D.M.; Mikalef, P.; Pateli, A.; Ortiz-de-Guinea, A. Dynamic capabilities in information systems research: A critical review, synthesis of current knowledge, and recommendations for future research. J. Assoc. Inf. Syst. 2022, 23, 447–490. [Google Scholar] [CrossRef]
- Altintas, G.; Ambrosini, V.; Gudergan, S. MNE dynamic capabilities in (un) related diversification. J. Int. Manag. 2022, 28, 100889. [Google Scholar] [CrossRef]
- Korte, A.; Tiberius, V.; Brem, A. Internet of Things (IoT) Technology Research in Business and Management Literature: Results from a Co-Citation Analysis. J. Theor. Appl. Electron. Commer. Res. 2021, 16, 2073–2090. [Google Scholar] [CrossRef]
- De Mauro, A.; Greco, M.; Grimaldi, M. Understanding big data through a systematic literature review: The ITMI model. Int. J. Inf. Technol. Decis. Mak. 2019, 18, 1433–1461. [Google Scholar] [CrossRef]
- Vitari, C.; Raguseo, E. Big data analytics business value and firm performance: Linking with environmental context. Int. J. Prod. Res. 2020, 58, 5456–5476. [Google Scholar] [CrossRef]
- Liu, Y.; Dong, J.; Mei, L.; Shen, R. Digital innovation and performance of manufacturing firms: An affordance perspective. Technovation 2022, 102458. [Google Scholar] [CrossRef]
- Sabani, A. Investigating the influence of transparency on the adoption of e-Government in Indonesia. J. Sci. Technol. Policy Manag. 2020, 12, 236–255. [Google Scholar] [CrossRef]
- Prakash, A.V.; Das, S. Medical practitioner’s adoption of intelligent clinical diagnostic decision support systems: A mixed-methods study. Inf. Manag. 2021, 58, 103524. [Google Scholar] [CrossRef]
- DeLone, W.H.; McLean, E.R. The DeLone and McLean model of information systems success: A ten-year update. J. Manag. Inf. Syst. 2003, 19, 9–30. [Google Scholar]
- Nudurupati, S.S.; Tebboune, S.; Hardman, J. Contemporary performance measurement and management (PMM) in digital economies. Prod. Plan. Control. 2016, 27, 226–235. [Google Scholar] [CrossRef] [Green Version]
- Behl, A. Antecedents to firm performance and competitiveness using the lens of big data analytics: A cross-cultural study. Manag. Decis. 2022, 60, 368–398. [Google Scholar] [CrossRef]
- Jayakrishnan, M.A.; Mohamad, A.K.B.; Yusof, M.B.M. Understanding holistic view and complexities in big data analytics and business intelligence (BI) towards establishing strategic performance management: A case study. Adv. Sci. Lett. 2018, 24, 1775–1779. [Google Scholar] [CrossRef]
- Ghasemaghaei, M.; Ebrahimi, S.; Hassanein, K. Data analytics competency for improving firm decision making performance. J. Strateg. Inf. Syst. 2018, 27, 101–113. [Google Scholar] [CrossRef]
- Akhtar, M.; Sushil, S. Strategic performance management system in uncertain business environment: An empirical study of the Indian oil industry. Bus. Process Manag. J. 2018, 24, 923–942. [Google Scholar] [CrossRef]
- Ghouchani, B.E.; Jodaki, S.; Joudaki, M.; Balali, A.; Rajabion, L. A model for examining the role of the Internet of Things in the development of e-business. VINE J. Inf. Knowl. Manag. Syst. 2019, 50, 20–33. [Google Scholar]
- Akter, S.; Wamba, S.F.; Gunasekaran, A.; Dubey, R.; Childe, S.J. How to improve firm performance using big data analytics capability and business strategy alignment? Int. J. Prod. Econ. 2016, 182, 113–131. [Google Scholar] [CrossRef] [Green Version]
- Altarawneh, M.; Al-Makhadmeh, A. Big data analytics in auditing and the consequences for audit quality: A study using the technology acceptance model (tam). Corp. Gov. Organ. Organ. Rev. 2022, 6, 64–78. [Google Scholar]
- Mehra, A.; Rajput, S.; Paul, J. Determinants of adoption of latest version smartphones: Theory and evidence. Technol. Forecast. Soc. Change 2022, 175, 121410. [Google Scholar] [CrossRef]
- Jeyaraj, A. A meta-regression of task-technology fit in information systems research. Int. J. Inf. Manag. 2022, 65, 102493. [Google Scholar] [CrossRef]
- Onofrei, G.; Filieri, R.; Kennedy, L. Social media interactions, purchase intention, and behavioural engagement: The mediating role of source and content factors. J. Bus. Res. 2022, 142, 100–112. [Google Scholar] [CrossRef]
- Rahman, N.; Daim, T.; Basoglu, N. Exploring the factors influencing big data technology acceptance. IEEE Trans. Eng. Manag. 2021, 28, 205–222. [Google Scholar]
- Davis, F.D.; Bagozzi, R.P.; Warshaw, P.R. User acceptance of computer technology: A comparison of two theoretical models. Manag. Sci. 1989, 35, 982–1003. [Google Scholar] [CrossRef] [Green Version]
- Levy, S.; Gvili, Y.; Hino, H. Engagement of Ethnic-Minority Consumers with Electronic Word of Mouth (eWOM) on Social Media: The Pivotal Role of Intercultural Factors. J. Theor. Appl. Electron. Commer. Res. 2021, 16, 2608–2632. [Google Scholar] [CrossRef]
- Amoako-Gyampah, K.; Salam, A.F. An extension of the technology acceptance model in an ERP implementation environment. Inf. Manag. 2004, 41, 731–745. [Google Scholar] [CrossRef]
- Gupta, R.; Varma, S.; Bhardwaj, G. A structural equation model to assess the factors influencing employee’s attitude & intention to adopt BYOD (bring your own device). Int. J. Recent Technol. Eng. 2019, 8, 63030–66308. [Google Scholar]
- Grander, G.; da Silva, L.F.; Gonzalez, E.D.R.S. Big data as a value generator in decision support systems: A literature review. Revista Gestão 2021, 28, 205–222. [Google Scholar] [CrossRef]
- Gupta, H.; Yadav, A.K.; Sarpong, S.K.; Khan, S.A.; Sharma, S.C. Strategies to overcome barriers to innovative digitalisation technologies for supply chain logistics resilience during pandemic. Technol. Soc. 2022, 69, 101970. [Google Scholar] [CrossRef]
- Karim, M.S.; Nahar, S.; Demirbag, M. Resource-Based Perspective on ICT Use and Firm Performance: A Meta-analysis Investigating the Moderating Role of Cross-Country ICT Development Status. Technol. Forecast. Soc. Change 2022, 179, 121626. [Google Scholar] [CrossRef]
- Al-Jabri, I.M.; Roztocki, N. Adoption of ERP systems: Does information transparency matter? Telemat. Inform. 2015, 32, 300–310. [Google Scholar] [CrossRef]
- Terzis, V.; Moridis, C.N.; Economides, A.A. Continuance acceptance of computer based assessment through the integration of user’s expectations and perceptions. Comput. Educ. 2013, 62, 50–61. [Google Scholar] [CrossRef]
- Verma, S.; Bhattacharyya, S.S.; Kumar, S. An extension of the technology acceptance model in the big data analytics system implementation environment. Inf. Processing Manag. 2018, 54, 791–806. [Google Scholar] [CrossRef]
- Toft, M.B.; Schuitema, G.; Thøgersen, J. Responsible technology acceptance: Model development and application to consumer acceptance of Smart Grid technology. Appl. Energy 2014, 134, 392–400. [Google Scholar] [CrossRef]
- Shin, D.H. Demystifying big data: Anatomy of big data developmental process. Telecommun. Policy 2015, 40, 837–854. [Google Scholar] [CrossRef]
- Shin, D.H. Effect of the customer experience on satisfaction with smartphones: Assessing smart satisfaction index with partial least squares. Telecommun. Policy 2015, 39, 627–641. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhao, K.; Stylianou, A. The impacts of information quality and system quality on users’ continuance intention in information-exchange virtual communities: An empirical investigation. Decis. Support Syst. 2013, 56, 513–524. [Google Scholar] [CrossRef]
- Newkirk, H.E.; Lederer, A.L.; Srinivasan, C. Strategic information systems planning: Too little or too much? J. Strateg. Inf. Syst. 2002, 12, 201–228. [Google Scholar] [CrossRef]
- Barlette, Y.; Baillette, P. Big data analytics in turbulent contexts: Towards organizational change for enhanced agility. Prod. Plan. Control. 2022, 33, 105–122. [Google Scholar] [CrossRef]
- Cheng, Y.M. Quality antecedents and performance outcome of cloud-based hospital information system continuance intention. J. Enterp. Inf. Manag. 2020, 33, 654–683. [Google Scholar] [CrossRef]
- Ji-fan Ren, S.; Fosso Wamba, S.; Akter, S.; Dubey, R.; Childe, S.J. Modelling quality dynamics, business value and firm performance in a big data analytics environment. Int. J. Prod. Res. 2016, 55, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Stocchi, L.; Pourazad, N.; Michaelidou, N.; Tanusondjaja, A.; Harrigan, P. Marketing research on Mobile apps: Past, present and future. J. Acad. Mark. Sci. 2021, 50, 195–225. [Google Scholar] [CrossRef]
- Akdim, K.; Casaló, L.V.; Flavián, C. The role of utilitarian and hedonic aspects in the continuance intention to use social mobile apps. J. Retail. Consum. Serv. 2022, 66, 102888. [Google Scholar] [CrossRef]
- Verma, S.; Bhattacharyya, S.S. Perceived strategic value-based adoption of Big Data Analytics in emerging economy: A qualitative approach for Indian firms. J. Enterp. Inf. Manag. 2017, 30, 354–382. [Google Scholar] [CrossRef]
- Yang, S.; Lu, Y.; Gupta, S.; Cao, Y.; Zhang, R. Mobile payment services adoption across time: An empirical study of the effects of behavioral beliefs, social influences, and personal traits. Comput. Hum. Behav. 2012, 28, 129–142. [Google Scholar] [CrossRef]
- Kushwaha, A.K.; Kar, A.K.; Dwivedi, Y.K. Applications of big data in emerging management disciplines: A literature review using text mining. Int. J. Inf. Manag. Data Insights 2021, 1, 100017. [Google Scholar] [CrossRef]
- Perdana, A.; Lee, H.H.; Arisandi, D.; Koh, S. Accelerating data analytics adoption in small and mid-size enterprises: A Singapore context. Technol. Soc. 2022, 69, 101966. [Google Scholar] [CrossRef]
- Venkatesh, V.; Morris, M.G.; Davis, G.B.; Davis, F.D. User acceptance of information technology: Toward a unified view. Manag. Inf. Syst. Q. 2003, 27, 425–478. [Google Scholar] [CrossRef] [Green Version]
Variables | Influence | References |
---|---|---|
Data quality | Perceived benefits | [39] |
System quality | Perceived benefits | [40,43,44] |
Perceived ease of use | Perceived usefulness Attitude | [55,61] |
Perceived usefulness | Intention | [50,51,52] |
Perceived benefits | Perceived ease of use Perceived usefulness | [43,44] |
Attitude | Intention | [40] |
Variables | Mean | Std. Deviation | N |
---|---|---|---|
System quality | 3.6478 | 0.7958 | 172 |
Data quality | 3.7113 | 0.8109 | 172 |
Service quality | 3.6569 | 0.8435 | 172 |
Perceived ease of use | 3. 6406 | 0.8487 | 172 |
Perceived usefulness | 3.7220 | 0.8400 | 172 |
Perceived benefits | 4.1434 | 0.7326 | 172 |
Attitude | 4.1889 | 0.8078 | 172 |
Intention to use | 4.0116 | 0.7722 | 172 |
Model | Independent Variables | β | Adjusted R2 | F |
---|---|---|---|---|
1: dependent variable (perceived benefits) | 0.684 | 49.276 *** | ||
System quality | −0.101 | |||
Data quality | 0.808 *** | |||
Service quality | −0.035 | |||
2: dependent variable (attitude) | 0.592 | 52.215 *** | ||
Perceived ease of use | 0.508 *** | |||
Perceived usefulness | 0.121 | |||
3: dependent variable (intention to use) | 0.712 | 423.600 *** | ||
Perceived usefulness | 0.771 *** | |||
Attitude | 0.845 *** | |||
4: dependent variable (Perceived usefulness) | 0.787 | 633.525*** | ||
Perceived ease of use | 0.888 *** | |||
Perceived benefits | 0.621 *** | |||
5: dependent variable (Perceived ease of use) | 0.589 | 90.424 *** | ||
Perceived benefits | 0.589 *** |
Variables | Mean | Std. Deviation | N |
---|---|---|---|
System quality | 3.4177 | 0.8173 | 172 |
Data quality | 3.4651 | 0.8097 | 172 |
Service quality | 3.4689 | 0.8091 | 172 |
Perceived ease of use | 3.4767 | 0.8105 | 172 |
Perceived usefulness | 3.4860 | 0.8357 | 172 |
Perceived benefits | 4.0310 | 0.7691 | 172 |
Attitude | 4.0116 | 0.7703 | 172 |
Intention to use | 3.8720 | 0.7805 | 172 |
Model | Independent Variables | β | Adjusted R2 | F |
---|---|---|---|---|
1: dependent variable (perceived benefits) | 0.627 | 36.271 *** | ||
System quality | −0.017 | |||
Data quality | 0.201 | |||
Service quality | 0.455 * | |||
2: dependent variable (attitude) | 0.615 | 103.505 *** | ||
Perceived ease of use | 0.546 *** | |||
Perceived usefulness | 0.615 *** | |||
3: dependent variable (intention to use) | 0.638 | 302.178 *** | ||
Perceived usefulness | 0.665 *** | |||
Attitude | 0.800 *** | |||
4: dependent variable (Perceived usefulness) | 0.854 | 102.767 *** | ||
Perceived ease of use | 0.925 *** | |||
Perceived benefits | 0.614 *** | |||
5: dependent variable (Perceived ease of use) | 0.592 | 91.771 *** | ||
Perceived benefits | 0.592 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moumtzidis, I.; Kamariotou, M.; Kitsios, F. Digital Transformation Strategies Enabled by Internet of Things and Big Data Analytics: The Use-Case of Telecommunication Companies in Greece. Information 2022, 13, 196. https://doi.org/10.3390/info13040196
Moumtzidis I, Kamariotou M, Kitsios F. Digital Transformation Strategies Enabled by Internet of Things and Big Data Analytics: The Use-Case of Telecommunication Companies in Greece. Information. 2022; 13(4):196. https://doi.org/10.3390/info13040196
Chicago/Turabian StyleMoumtzidis, Ilias, Maria Kamariotou, and Fotis Kitsios. 2022. "Digital Transformation Strategies Enabled by Internet of Things and Big Data Analytics: The Use-Case of Telecommunication Companies in Greece" Information 13, no. 4: 196. https://doi.org/10.3390/info13040196
APA StyleMoumtzidis, I., Kamariotou, M., & Kitsios, F. (2022). Digital Transformation Strategies Enabled by Internet of Things and Big Data Analytics: The Use-Case of Telecommunication Companies in Greece. Information, 13(4), 196. https://doi.org/10.3390/info13040196