A Study of Inbound Travelers Experience and Satisfaction at Quarantine Hotels in Indonesia during the COVID-19 Pandemic
Abstract
:1. Introduction
2. Literature Review
2.1. Service Quality and Customer Satisfaction
2.2. Online Review
2.3. Semantic Network Analysis
3. Methodology
3.1. Data Collection
3.2. Data Analysis
4. Results
4.1. Analysis of Word Frequency
4.2. Centrality (Freeman’s Degree and Eigenvector) Analysis
4.3. CONCOR Analysis
4.4. Quantitative Analysis
5. Discussion and Conclusions
5.1. Main Findings of the Study
5.2. Theoretical Implications
5.3. Implications for Management
5.4. Limitations and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Situmorang, R.; Japutra, A. Foreign versus Local Managers: Finding the Perfect Leaders for Multinational Hotel Subsidiaries. Int. J. Hosp. Manag. 2019, 78, 68–77. [Google Scholar] [CrossRef]
- Gössling, S.; Scott, D.; Hall, C.M. Pandemics, tourism and global change: A rapid assessment of COVID-19. J. Sustain. Tour. 2020, 29, 1–20. [Google Scholar] [CrossRef]
- Zenker, S.; Kock, F. The coronavirus pandemic—A critical discussion of a tourism research agenda. Tour. Manag. 2020, 81, 104164. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.Y.; Ma, M.L.; Yu, J. Understanding the Perceived Satisfaction and Revisiting Intentions of Lodgers in a Restricted Service Scenario: Evidence from the Hotel Industry in Quarantine; Springer: Berlin/Heidelberg, Germany, 2021; Volume 15. [Google Scholar] [CrossRef]
- WTTC. Economic Impact Reports. World Travel & Tourism Council. Available online: https://wttc.org/Research/Economic-Impact (accessed on 28 February 2022).
- Statista. Number of International Visitor Arrivals in Indonesia from 2012 to 2021. Available online: https://www.statista.com/statistics/707633/number-of-international-visitor-arrivals-in-indonesia/ (accessed on 11 April 2022).
- PHRI. Quarantine Hotel Jakarta. Perhimpunan Hotel danD-HOTS. Available online: https://quarantinehotelsjakarta.com/ (accessed on 11 April 2022).
- Fauzan, R. PHRI: Program Vaksinasi dan Repatriasi Kunci Pemulihan Sektor Perhotelan. Available online: https://ekonomi.bisnis.com/read/20210826/12/1434479/phri-program-vaksinasi-dan-repatriasi-kunci-pemulihan-sektor-perhotelan (accessed on 11 April 2022).
- Yang, Y.; Mao, Z.; Tang, J. Understanding guest satisfaction with urban hotel location. J. Travel Res. 2018, 57, 243–259. [Google Scholar] [CrossRef]
- Situmorang, H. Karantina Pelaku Perjalanan Berubah-ubah, Ini Penjelasannya. Berita Satu. Available online: https://www.beritasatu.com/kesehatan/858887/karantina-pelaku-perjalanan-berubahubah-ini-penjelasannya (accessed on 3 March 2022).
- Mamun, M.A.; Griffiths, M.D. First COVID-19 suicide case in bangladesh due to fear of COVID-19 and xenophobia: Possible suicide prevention strategies. Asian J. Psychiatry 2020, 51, 102073. [Google Scholar] [CrossRef]
- Nkengasong, J.N.; Mankoula, W. Looming threat of COVID-19 infection in Africa: Act collectively, and fast. Lancet 2020, 395, 841–842. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Morales, A.J.; Gallego, V.; Escalera-Antezana, J.P.; Méndez, C.A.; Zambrano, L.I.; Franco-Paredes, C.; Suárez, J.A.; Rodriguez-Enciso, H.D.; Balbin-Ramon, G.J.; Savio-Larriera, E.; et al. COVID-19 in Latin America: The implications of the first confirmed case in Brazil. Travel Med. Infect. Dis. 2020, 35, 101613. [Google Scholar] [CrossRef]
- Armstrong, G.; Kotler, P. Marketing: An Introduction, 5th ed.; Prentice-Hall: Hoboken, NJ, USA, 2009. [Google Scholar]
- Parasuraman, A.; Zeithaml, V.A.; Berry, L. SERVQUAL: A multiple-item scale for measuring consumer perceptions of service quality. J. Retail. 1988, 64, 12–40. [Google Scholar]
- Parasuraman, A.; Zeithaml, V.A.; Berry, L.L. A conceptual model of service quality and its implications for future research. J. Mark. 1985, 49, 41–50. [Google Scholar] [CrossRef]
- Padma, P.; Ahn, J. Guest satisfaction & dissatisfaction in luxury hotels: An application of big data. Int. J. Hosp. Manag. 2020, 84, 102318. [Google Scholar] [CrossRef]
- Zeithaml, V.A.; Berry, L.L.; Parasuraman, A. The behavioral consequences of service quality. J. Mark. 1996, 602, 31–46. [Google Scholar] [CrossRef]
- Mohsin, A.; Hussain, I.; Khan, M.R. Exploring service quality in luxury hotels: Case of Lahore, Pakistan. J. Am. Acad. Bus. 2011, 16, 296–303. [Google Scholar]
- Teng, Y.M.; Wu, K.S.; Wang, W.C.; Xu, D. Assessing the knowledge, attitudes and practices of COVID-19 among quarantine hotel workers in China. Healthcare 2021, 9, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Hew, W.W.L.; Goh, G.G.G.; Yong, M.K. Translating information and awareness of green hotels’ green tech practices into lodgers’ satisfaction and green trust into lodgers’ loyalty. Inf. Int. Interdiscip. J. 2016, 19, 3173–3178. [Google Scholar]
- Hu, N.; Zhang, T.; Gao, B.; Bose, I. What do hotel customers complain about? Text analysis using structural topic model. Tour. Manag. 2019, 72, 417–426. [Google Scholar] [CrossRef]
- Ban, H.J.; Choi, H.; Choi, E.K.; Lee, S.; Kim, H.S. Investigating key attributes in experience and satisfaction of hotel customer using online review data. Sustainability 2019, 11, 6570. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, T.; Fernandes, F. Sharing dissatisfaction online: Analyzing the nature and predictors of hotel guests negative reviews. J. Hosp. Mark. Manag. 2018, 27, 127–150. [Google Scholar] [CrossRef]
- Aicher, J.; Asiimwe, F.; Batchuluun, B.; Hauschild, M.; Martina, Z.; Egger, R. Information and communication technologies in tourism 2016. Inf. Commun. Technol. Tour. 2016, 2016, 369–382. [Google Scholar] [CrossRef] [Green Version]
- Xu, X. Does traveler satisfaction differ in various travel group compositions? Evidence from online reviews. Int. J. Contemp. Hosp. Manag. 2018, 30, 1663–1685. [Google Scholar] [CrossRef]
- Ahani, A.; Nilashi, M.; Yadegaridehkordi, E.; Sanzogni, L.; Tarik, A.R.; Knox, K.; Samad, S.; Ibrahim, O. Revealing customers’ satisfaction and preferences through online review analysis: The case of canary islands hotels. J. Retail. Consum. Serv. 2019, 51, 331–343. [Google Scholar] [CrossRef]
- Litvin, S.W.; Goldsmith, R.E.; Pan, B. Electronic word-of-mouth in hospitality and tourism management. Tour. Manag. 2008, 29, 458–468. [Google Scholar] [CrossRef]
- Banerjee, S.; Chua, A.Y. In search of patterns among travellers’ hotel ratings in tripadvisor. Tour. Manag. 2016, 53, 125–131. [Google Scholar] [CrossRef]
- Gao, B.; Li, X.; Liu, S.; Fang, D. How power distance affects online hotel ratings: The positive moderating roles of hotel chain and reviewers’ travel experience. Tour. Manag. 2018, 65, 176–186. [Google Scholar] [CrossRef]
- Zhao, Y.; Xu, X.; Wang, M. Predicting overall customer satisfaction: Big data evidence from hotel online textual reviews. Int. J. Hosp. Manag. 2019, 76, 111–121. [Google Scholar] [CrossRef]
- Doerfel, M.L. What constitutes semantic network analysis? A comparison of research and methodologies. Connections 1998, 21, 27–36. [Google Scholar]
- Ban, H.; Kim, H. Semantic network analysis of hotel package through the big data. Culin. Sci. Hosp. Res. 2019, 25, 111–119. [Google Scholar] [CrossRef]
- Han, S.-I.; Kim, T.-H.; Lee, J.-H.; Kim, H.-S. A study on the application of SNS big data to the industry in the fourth industrial revolution. Culin. Sci. Hosp. Res. 2017, 23, 1–10. [Google Scholar]
- Carley, K.M. Extracting team mental models through textual analysis. J. Organ. Behav. 1997, 18, 533–558. [Google Scholar] [CrossRef]
- Aralbayeva, S.; Kim, H.-S.; Shuting, T. A study of comparison between restraunt industries in seoul and busan through big data analytics. Culin. Sci. Hosp. Res. 2018, 24, 109–118. [Google Scholar] [CrossRef]
- Kim, H.S.; Noh, Y. Elicitation of design factors through big data analysis of online customer reviews for washing machines. J. Mech. Sci. Technol. 2019, 33, 2785–2795. [Google Scholar] [CrossRef]
- Wasserman, S.; Faust, K. Social Network Analysis: Methods and Applications; Sciences Po University Press: Paris, Fance, 1994. [Google Scholar]
- Huang, N. How to Encourage Guests to Write Hotel Reviews on TripAdvisor, Google, and Facebook. Available online: https://www.pegs.com/blog/how-to-encourage-guests-to-write-hotel-reviews-on-tripadvisor-and-google/ (accessed on 1 February 2022).
- Wikipedia. Google Travel. Available online: https://en.wikipedia.org/wiki/Google_Travel (accessed on 2 February 2022).
- Borgatti, S.P.; Everett, M.G.; Freeman, L.C. Ucinet for Windows: Software for Social Network Analysis; Analytic Technologies: Harvard, MA, USA, 2002. [Google Scholar]
- Tao, S.; Kim, H.S. Cruising in Asia: What can we dig from online cruiser reviews to understand their experience and satisfaction. Asia Pac. J. Tour. Res. 2019, 24, 514–528. [Google Scholar] [CrossRef]
- Jo, A.; Kim, H.S. A comparison of Starbucks between South Korea and USA through big data analysis. Culin. Sci. Hosp. Res. 2017, 23, 195–205. [Google Scholar]
- Freeman, L.C. Centrality in social networks conceptual clarification. Soc. Netw. 1978, 1, 215–239. [Google Scholar] [CrossRef] [Green Version]
- Allan, M.M. The relationship between service quality and customer satisfaction and retention in Ghana’s luxury hotels. IUP J. Mark. Manag. Hyderabad 2016, 15, 60–83. [Google Scholar]
Hotel Star Rating | Hotel Name | Average Review Rating | Number of Reviews | Std. | Std. Error |
---|---|---|---|---|---|
3-star | Sahid Mutiara Karawaci Hotel Tangerang | 4.2 | 42 | 1.22 | 0.04 |
Blue Sky Petamburan Jakarta | 202 | ||||
Zuri Expres Mangga Dua Hotel Jakarta | 334 | ||||
Holiday Inn Express Jakarta | 310 | ||||
Arcadia by Horison Jakarta | 105 | ||||
4-star | Novotel Tangerang | 4.3 | 403 | 1.04 | 0.02 |
FM 7 Resort Bandara Tangerang | 166 | ||||
Aloft South Jakarta | 335 | ||||
JS Luwansa Hotel Jakarta | 407 | ||||
Aston Kemayoran City Hotel Jakarta | 169 | ||||
Sahid Jaya Lippo Cikarang | 194 | ||||
Java Palace Hotel Cikarang | 142 | ||||
5-star | Ayana Mid Plaza Jakarta | 4.5 | 295 | 1.00 | 0.02 |
Mandarin Oriental Jakarta | 643 | ||||
Grand Mercure Kemayoran Jakarta | 1109 | ||||
Total | 4856 | 1.07 | 0.02 | ||
Average rating = 4.4 | |||||
F = 29.742, p < 0.001 |
Rating | Frequency | Percent | Cumulative Percent |
---|---|---|---|
1 | 265 | 5.5% | 5.5% |
2 | 111 | 2.3% | 7.8% |
3 | 259 | 5.3% | 13.1% |
4 | 808 | 16.7% | 29.8% |
5 | 3413 | 70.2% | 100% |
Total | 4856 | 100% | - |
Average Score 4.4 |
N | Mean | Std. Deviation | Std. Error | 95% Confidence Interval for Mean | Minimum Rating | Maximum Rating | ||
---|---|---|---|---|---|---|---|---|
Lower Score of Rating | Upper Score of Rating | |||||||
3-star | 994 | 4.27 | 1.22 | 0.04 | 4.19 | 4.34 | 1 | 5 |
4-star | 1815 | 4.40 | 1.04 | 0.02 | 4.35 | 4.45 | 2 | 5 |
5-star | 2047 | 4.57 | 1.00 | 0.02 | 4.53 | 4.61 | 2 | 5 |
Total | 4856 | 4.44 | 1.07 | 0.02 | 4.41 | 4.47 | 1 | 5 |
Rank | Words | Frequency | Rank | Words | Frequency |
---|---|---|---|---|---|
1 | hotel | 4227 | 36 | experience | 245 |
2 | good | 2549 | 37 | price | 227 |
3 | room | 2110 | 38 | excellent | 217 |
4 | service | 2023 | 39 | covid | 212 |
5 | food | 1710 | 40 | close | 211 |
6 | clean | 1316 | 41 | bad | 198 |
7 | friendly | 1223 | 42 | fast | 197 |
8 | comfortable | 1213 | 43 | swimming | 194 |
9 | quarantine | 891 | 44 | complete | 194 |
10 | stay | 884 | 45 | airport | 187 |
11 | place | 881 | 46 | floor | 180 |
12 | jakarta | 583 | 47 | water | 179 |
13 | great | 576 | 48 | big | 178 |
14 | breakfast | 558 | 49 | front | 174 |
15 | delicious | 503 | 50 | come | 168 |
16 | spacious | 489 | 51 | wifi | 166 |
17 | time | 467 | 52 | guests | 165 |
18 | location | 433 | 53 | near | 164 |
19 | view | 425 | 54 | people | 155 |
20 | check | 405 | 55 | bed | 153 |
21 | facilities | 402 | 56 | easy | 152 |
22 | strategic | 375 | 57 | bathroom | 144 |
23 | days | 349 | 58 | new | 144 |
24 | parking | 334 | 59 | pandemic | 142 |
25 | pool | 302 | 60 | receptionist | 142 |
26 | best | 297 | 61 | staycation | 139 |
27 | restaurant | 296 | 62 | located | 128 |
28 | star | 295 | 63 | quality | 126 |
29 | helpful | 281 | 64 | cozy | 126 |
30 | recommended | 271 | 65 | health | 124 |
31 | lobby | 250 | 66 | small | 124 |
32 | security | 249 | 67 | reception | 123 |
33 | city | 247 | 68 | amazing | 119 |
34 | area | 247 | 69 | hospitality | 116 |
35 | experience | 245 | 70 | basement | 115 |
No | Word | Frequency | Freeman Degree Centrality | Eigenvector Centrality | |||
---|---|---|---|---|---|---|---|
Freq. | Rank | Coefficient | Rank | Coefficient | Rank | ||
1 | hotel | 4227 | 1 | 20.30 | 1 | 0.39 | 1 |
2 | good | 2549 | 2 | 16.10 | 2 | 0.35 | 2 |
3 | room | 2110 | 3 | 15.78 | 3 | 0.31 | 3 |
4 | service | 2023 | 4 | 13.84 | 4 | 0.31 | 4 |
5 | food | 1710 | 5 | 13.66 | 5 | 0.29 | 5 |
6 | clean | 1316 | 6 | 10.73 | 6 | 0.25 | 6 |
7 | friendly | 1223 | 7 | 10.06 | 7 | 0.23 | 7 |
8 | comfortable | 1213 | 8 | 8.64 | 9 | 0.19 | 8 |
9 | quarantine | 891 | 9 | 7.15 | 10 | 0.16 | 10 |
10 | stay | 884 | 10 | 8.91 | 8 | 0.19 | 9 |
11 | place | 881 | 11 | 5.25 | 14 | 0.12 | 12 |
12 | Jakarta | 583 | 12 | 5.01 | 15 | 0.10 | 17 |
13 | great | 576 | 13 | 4.86 | 16 | 0.11 | 16 |
14 | breakfast | 558 | 14 | 5.78 | 11 | 0.12 | 11 |
15 | delicious | 503 | 15 | 4.72 | 17 | 0.11 | 15 |
16 | spacious | 489 | 16 | 5.44 | 12 | 0.11 | 14 |
17 | time | 467 | 17 | 5.43 | 13 | 0.11 | 13 |
18 | location | 433 | 18 | 3.98 | 21 | 0.08 | 22 |
19 | view | 425 | 19 | 4.10 | 19 | 0.09 | 19 |
20 | check | 405 | 20 | 4.10 | 20 | 0.08 | 21 |
21 | facilities | 402 | 21 | 3.80 | 22 | 0.08 | 20 |
22 | strategic | 375 | 22 | 3.11 | 27 | 0.07 | 27 |
23 | days | 349 | 23 | 4.22 | 18 | 0.09 | 18 |
24 | parking | 334 | 24 | 2.32 | 29 | 0.05 | 30 |
25 | pool | 302 | 25 | 3.74 | 23 | 0.07 | 26 |
26 | best | 297 | 26 | 2.81 | 28 | 0.06 | 28 |
27 | restaurant | 296 | 27 | 3.47 | 24 | 0.07 | 23 |
28 | star | 295 | 28 | 3.26 | 26 | 0.07 | 25 |
29 | helpful | 281 | 29 | 3.28 | 25 | 0.07 | 24 |
30 | recommended | 271 | 30 | 2.23 | 30 | 0.05 | 29 |
Clusters | Extracted Words | Significant Words |
---|---|---|
Reliability | Good/quality/spacious/big/come/great/best/clean/time/bad/recommended/comfortable/delicious/excellent/small/fast/new/amazing | Good/spacious/big/great/best/clean/bad/recommended/comfortable/delicious/excellent/small/fast/new/amazing |
Tangible | Bed/food/pool/star/facilities/guests/swimming/water/hotel/lobby/breakfast/restaurant/parking/view/basement/wifi/room/bathroom | Bed/food/pool/star/facilities/guests/swimming/water/hotel/lobby/breakfast/restaurant/parking/view/basement/wifi/room/bathroom |
Location | Jakarta/easy/strategic/cozy/place/airport/area/located/location/near/city/close | Jakarta/strategic/place/airport/area/located/location/near/city/close |
Quarantine | Price/experience/stay/health/quarantine/days/pandemic/covid/floor/complete/hospitality/staycation | Price/experience/stay/health/quarantine/days/pandemic/covid/complete/hospitality |
Assurance | Check/helpful/security/staffs/front/receptionist/service/friendly/reception/people | Check/helpful/security/staffs/front/receptionist/service/friendly/reception/people |
Factor | Words | Factor Loading | Eigen Value | Cumulative Variance |
---|---|---|---|---|
Accommodation | room | 0.968 | 3.050 | 16.050 |
clean | 0.967 | |||
come | 0.963 | |||
Tangible | pool | 0.813 | 2.123 | 27.225 |
swimming | 0.794 | |||
breakfast | 0.628 | |||
fast | 0.612 | |||
Quarantine | airport | 0.763 | 1.940 | 37.437 |
water | 0.739 | |||
quarantine | 0.584 | |||
days | 0.474 | |||
Frontline | receptionist | 0.907 | 1.786 | 46.837 |
reception | 0.904 | |||
Assurance | staffs | 0.757 | 1.657 | 55.558 |
friendly | 0.717 | |||
helpful | 0.596 | |||
Location | strategic | 0.760 | 1.554 | 63.735 |
location | 0.752 | |||
close | 0.435 | |||
KMO (Kaiser Meyer Olkin) = 0.677 | ||||
Bartlett’s chi square (p) = 65,934.718 (p < 0.0001) |
Model | Unstandardized Coefficients | Standardized Coefficients | t | |
---|---|---|---|---|
β | Std. Error | Beta | ||
(Constant) | 4.482 | 0.011 | 416.975 | |
Accommodation | 0.858 | 0.060 | 0.863 | 14.250 * |
Tangible | −2.144 | 0.066 | −2.159 | −32.451 * |
Quarantine | 0.939 | 0.101 | 0.943 | 9.279 * |
Frontline | −0.335 | 0.048 | −0.335 | −6.953 * |
Assurance | −1.828 | 0.108 | −1.838 | −16.887 * |
Location | 2.962 | 0.081 | 2.987 | 36.460 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Handani, N.D.; Riswanto, A.L.; Kim, H.-S. A Study of Inbound Travelers Experience and Satisfaction at Quarantine Hotels in Indonesia during the COVID-19 Pandemic. Information 2022, 13, 254. https://doi.org/10.3390/info13050254
Handani ND, Riswanto AL, Kim H-S. A Study of Inbound Travelers Experience and Satisfaction at Quarantine Hotels in Indonesia during the COVID-19 Pandemic. Information. 2022; 13(5):254. https://doi.org/10.3390/info13050254
Chicago/Turabian StyleHandani, Narariya Dita, Aura Lydia Riswanto, and Hak-Seon Kim. 2022. "A Study of Inbound Travelers Experience and Satisfaction at Quarantine Hotels in Indonesia during the COVID-19 Pandemic" Information 13, no. 5: 254. https://doi.org/10.3390/info13050254
APA StyleHandani, N. D., Riswanto, A. L., & Kim, H. -S. (2022). A Study of Inbound Travelers Experience and Satisfaction at Quarantine Hotels in Indonesia during the COVID-19 Pandemic. Information, 13(5), 254. https://doi.org/10.3390/info13050254