Research on Small Sample Data-Driven Inspection Technology of UAV for Transmission Line Insulator Defect Detection
Abstract
:1. Introduction
2. Related Work
2.1. Super-Resolution Reconstruction
2.2. Object Detection and Rotated Object Detection
2.3. Insulator Defect Object Detection
3. Proposed Method
3.1. SRGAN Data Augmentation
3.2. Two-Stage Cascading Architecture for Insulator Defect Detection with Rotated Object Detection
4. Experimental Results
4.1. Metric
4.2. Few-Shot Dataset
4.3. Experimental Details and Results of SRGAN
4.4. Experimental Details and Results of Two-Stage Cascading Architecture for Insulator Defect Detection
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Park, K.-C.; Motai, Y.; Yoon, J.R. Acoustic fault detection technique for high-power insulators. IEEE Trans. Ind. Electron. 2017, 64, 9699–9708. [Google Scholar] [CrossRef]
- Zhai, Y.; Wang, D.; Zhang, M.; Wang, J.; Guo, F. Fault detection of insulator based on saliency and adaptive morphology. Multimed. Tools Appl. 2017, 76, 12051–12064. [Google Scholar] [CrossRef]
- Zhao, H.; Dai, R.; Xiao, C. A machine vision system for stacked substrates counting with a robust stripe detection algorithm. IEEE Trans. Syst. Man Cybern. Syst. 2017, 49, 2352–2361. [Google Scholar] [CrossRef]
- Huang, Y.P.; Sithole, L.; Lee, T.-T. Structure from motion technique for scene detection using autonomous drone navigation. IEEE Trans. Syst. Man Cybern. Syst. 2017, 49, 2559–2570. [Google Scholar] [CrossRef]
- Aytekin, Ç.; Rezaeitabar, Y.; Dogru, S.; Ulusoy, L. Railway fastener inspection by real-time machine vision. IEEE Trans. Syst. Man Cybern. Syst. 2015, 45, 1101–1107. [Google Scholar] [CrossRef]
- Deng, C.; Tian, W.; Wang, S.; Zhu, H.S.; Wu, Z.M.; Xiong, Z.W.; Zhong, W. Super-resolution reconstruction of approximate sparsity regularized infrared images. Opt. Precis. Eng. 2014, 22, 1648–1654. [Google Scholar] [CrossRef]
- Peng, Z.H.; Jing, L.; He, Y.M.; Ping, Z. Super-resolution fusion of multi-focus image based on multi-scale sparse dictionary. Opt. Precis. Eng. 2014, 22, 169–176. [Google Scholar] [CrossRef]
- Park, S.C.; Park, M.K.; Kang, M.G. Super resolution image reconstruction: A technical review. IEEE Signal Process. Mag. 2003, 20, 21–35. [Google Scholar] [CrossRef]
- Aftab, H.; Mansoor, A.B.; Asim, M.A. New Single Image Interpolation Technique For Super Resolution. In Proceedings of the IEEE International Multitopic, Karachi, Pakistan, 23–24 December 2008; pp. 592–596. [Google Scholar]
- Hou, H.S.; Andrews, H.C. Cubic spline for image interpolation and digital filtering. IEEE Trans. Signal Process. 1978, 6, 508–517. [Google Scholar]
- Chang, H.; Yeung, D.Y.; Xiong, Y. Super-resolution through neighbor embedding. In Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR, Washington, DC, USA, 27 June–2 July 2004; Volume 1, p. I. [Google Scholar]
- Yang, J.; Wright, J.; Huang, T.; Ma, Y. Image Super-Resojution As Sparse Representation Of Raw Image Patches. In Proceedings of the IEEE Computer Society Conference On Computer Vision And Pattern Recognition, Anchorage, AK, USA, 23–28 June 2008; pp. 1–8. [Google Scholar]
- He, H.; Ch, S.W. Single Image Super—Resolution using Gaussian process regression. In Proceedings of the IEEE Computer Society Conference On Computer Vision And Pattern Recognition, Colorado Springs, CO, USA, 20–25 June 2011; pp. 449–456. [Google Scholar]
- Dong, C.; Loy, C.C.; He, K.; Tang, X. Learning a deep convolutional network for image super-resolution. In Proceedings of the European Conference on Computer Vision (ECCV), Zurich, Switzerland, 5–12 September 2014; Springer: Cham, Switzerland, 2014; pp. 184–199. [Google Scholar]
- Dong, C.; Loy, C.C.; He, K.; Tang, X. Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 295–307. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Lee, J.K.; Lee, K.M. Accurate image super-resolution using very deep convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1646–1654. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Kampffmeyer, M.; Salberg, A.B.; Jenssen, R. Semantic segmentation of small objects and modeling of uncertainty in urban remote sensing images using deep convolutional neural networks. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Las Vegas, NV, USA, 27–30 June 2016; pp. 680–688. [Google Scholar]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. In Proceedings of the 27th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar]
- Girshick, R. Fast R-CNN. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 779–788. [Google Scholar]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A. CSSD: Single shot multibox detector. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 8–16 October 2016; Springer: Cham, Switzerland, 2016; pp. 21–37. [Google Scholar]
- Ma, J.; Shao, W.; Ye, H.; Wang, L.; Wang, H.; Zheng, Y.; Xue, X. Arbitrary-oriented scene text detection via rotation proposals. IEEE Trans. Multimed. 2018, 20, 3111–3122. [Google Scholar] [CrossRef]
- Azimi, S.M.; Vig, E.; Bahmanyar, R.; Körner, M.; Reinartz, P. Towards multi-class object detection in unconstrained remote sensing imagery. In Proceedings of the Asian Conference on Computer Vision, Perth, Australia, 2–6 December 2018; Springer: Cham, Switzerland, 2018; pp. 150–165. [Google Scholar]
- Ding, J.; Xue, N.; Long, Y.; Xia, G.S.; Lu, Q. Learning roi transformer for oriented object detection in aerial images. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 2849–2858. [Google Scholar]
- Yang, X.; Yang, J.; Yan, J.; Zhang, Y.; Zhang, T.; Guo, Z. Towards more robust detection for small, cluttered and rotated objects. In Proceedings of the IEEE International Conference on Computer Vision, Seoul, Korea, 27–28 October 2019; Volume 27, pp. 8232–8241. [Google Scholar]
- Yang, X.; Yan, J.; Ming, Q.; Wang, W.; Zhang, X.; Tian, Q. Rethinking rotated object detection with gaussian wasserstein distance loss. In Proceedings of the International Conference on Machine Learning, Virtual, 18–24 July 2021; pp. 11830–11841. [Google Scholar]
- Yang, X.; Yang, X.; Yang, J.; Ming, Q.; Wang, W.; Tian, Q.; Yan, J. Learning High-Precision Bounding Box for Rotated Object Detection via Kullback-Leibler Divergence. arXiv 2021, arXiv:2106.01883. [Google Scholar]
- Liao, S.L. Research on Key Technologies of Component Detection in Aerial Transmission Line Images. Master’s Thesis, Dalian Maritime University, Dalian, China, 2017. [Google Scholar]
- Wang, W.; Wang, Y.; Han, J.; Liu, Y. Recognition and drop-off detection of insulator based on aerial image. In Proceedings of the 2016 9th international symposium on computational intelligence and design (ISCID), Hangzhou, China, 10–11 December 2016; IEEE: New York, NY, USA, 2016; pp. 162–167. [Google Scholar]
- Qing, C.; Bin, Y.; Run, Y. Research on Convolutional Neural Network Detection and Self-Explosion Recognition of Aerial Insulators. J. Electron. Meas. Instrum. 2017, 2017, 942–943. [Google Scholar]
- Miao, X.; Liu, X.; Chen, J.; Zhuang, S.; Fan, J.; Jiang, H. Insulator detection in aerial images for transmission line inspection using single shot multibox detector. IEEE Access 2019, 7, 9945–9956. [Google Scholar] [CrossRef]
- Tao, X.; Zhang, D.; Wang, Z.; Liu, X.; Zhang, H.; Xu, D. Detection of power line insulator defects using aerial images analyzed with convolutional neural networks. IEEE Trans. Syst. Man Cybern. Syst. 2018, 50, 1486–1498. [Google Scholar] [CrossRef]
- Everingham, M.; Van, G.L.; Williams, C.K.; Winn, J.; Zisserman, A. The Pascal Visual Object Classes (VOC) Challenge. Int. J. Comput. Vis. 2010, 88, 303–338. [Google Scholar] [CrossRef]
- Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. YOLO v4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Liu, Y.; Lu, B.H.; Peng, J.; Zhang, Z. Research on the use of YOLOv5 object detection algorithm in mask wearing recognition. World Sci. Res. J. 2020, 6, 276–284. [Google Scholar]
- Ledig, C.; Theis, L.; Huszár, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.; Wang, Z.; et al. PhotoPhoto-realistic single image super-resolution using a generative adversarial network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4681–4690. [Google Scholar]
- Anwar, S.; Khan, S.; Barnes, N. A deep journey into super-resolution: A survey. ACM Comput. Surv. 2020, 53, 1–34. [Google Scholar] [CrossRef]
Training Set | AP (Average Precision) |
---|---|
aug_1 | 0.291 |
noaug_3 | 0.528 |
aug_3 | 0.613 |
Stage | Algorithm | Detection Object | mAP |
---|---|---|---|
First stage (horizontal detection) | YOLO v5 | Insulator strings | 0.769 |
First stage (rotation detection) | Rotated object detection | Insulator strings | 0.771 |
second stage (input rectangular cropped image) | YOLO v5 | Defective area | 0.848 |
second stage (input rotation cropped image) | YOLO v5 | Defective area | 0.952 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, L.; Chen, L.; Zhu, S.; Tong, W.; Guo, L. Research on Small Sample Data-Driven Inspection Technology of UAV for Transmission Line Insulator Defect Detection. Information 2022, 13, 276. https://doi.org/10.3390/info13060276
Pan L, Chen L, Zhu S, Tong W, Guo L. Research on Small Sample Data-Driven Inspection Technology of UAV for Transmission Line Insulator Defect Detection. Information. 2022; 13(6):276. https://doi.org/10.3390/info13060276
Chicago/Turabian StylePan, Lei, Lan Chen, Shengli Zhu, Wenyan Tong, and Like Guo. 2022. "Research on Small Sample Data-Driven Inspection Technology of UAV for Transmission Line Insulator Defect Detection" Information 13, no. 6: 276. https://doi.org/10.3390/info13060276
APA StylePan, L., Chen, L., Zhu, S., Tong, W., & Guo, L. (2022). Research on Small Sample Data-Driven Inspection Technology of UAV for Transmission Line Insulator Defect Detection. Information, 13(6), 276. https://doi.org/10.3390/info13060276