Design and Analysis of Joint Source-Channel Code System with Fixed-Length Code
Abstract
:1. Introduction
2. Joint Source-Channel Code System
3. Source Block Code Design
3.1. Iterative Convergence and Error-Correction Criterion
Algorithm 1 Binary Switch Algorithm (BSA) |
. |
. |
according to (9). |
Step 4: Rearrange the codewords to provide a minimum cost function by using the BSA: |
; |
according to (9) |
then |
end if |
end for |
end for |
rearranged codewords form the set . Check the minimum Hamming distance of each codeword in . If all the codewords have a minimum Hamming distance , then output the set as the source code. If some codewords have a minimum Hamming distance , remove them from the set . Then, search the codeword of in order, and add the codeword that has a minimum Hamming distance, , into . |
3.2. Design Example
4. Irregular Channel Code for Iterative Source Channel Decoding
4.1. EXIT Chart Analysis for Iterative Source Channel Decoding
4.2. Irregular Channel Code Design
5. Results and Discussion
5.1. Systems Parameters
5.2. Convergence and SER Performance
5.3. Decoding Complexity Analysis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shannon, C.E.; Weaver, W. The Mathematical Theory of Communication; University of Illinois Press: Champaign, IL, USA, 1949. [Google Scholar]
- Bauer, R.; Hagenauer, J. On variable length codes for iterative source/channel decoding. In Proceedings of the DCC 2001, Data Compression Conference, Snowbird, UT, USA, 27–29 March 2001; pp. 273–282. [Google Scholar]
- Hagenauer, J.; Bauer, R. The turbo principle in joint source channel decoding of variable length codes. In Proceedings of the 2001 IEEE Information Theory Workshop (Cat. No.01EX494), Cairns, QLD, Australia, 2–7 September 2001; pp. 33–35. [Google Scholar]
- Clevorn, T.; Brauers, J.; Adrat, M.; Vary, P. Turbo decodulation: Iterative combined demodulation and source-channel decoding. IEEE Commun. Lett. 2005, 9, 820–822. [Google Scholar] [CrossRef]
- Jaspar, X.; Vandendorpe, L. Design and performance analysis of joint source-channel turbo schemes with variable length codes. IEEE Int. Conf. Commun. 2005, 1, 526–530. [Google Scholar]
- Wu, T.Y.; Chen, P.N. On the Design of Variable-Length Error-Correcting Codes. IEEE Trans. Commun. 2013, 61, 3553–3565. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Wu, T.; Chen, P.; Alajaji, F.; Han, Y.S. An Efficient Tree Search Algorithm for the Free Distance of Variable-Length Error-Correcting Codes. IEEE Commun. Lett. 2018, 22, 474–477. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, F.; Li, C.; Varshney, P.K. An Efficient Construction Strategy for Near-Optimal Variable-Length Error-Correcting Codes. IEEE Commun. Lett. 2019, 23, 398–401. [Google Scholar] [CrossRef]
- Chen, Y.-M.; Wu, F.-T.; Li, C.-P.; Varshney, P.K. On the Design of Near-Optimal Variable-Length Error-Correcting Codes for Large Source Alphabets. IEEE Trans. Commun. 2020, 68, 7896–7910. [Google Scholar] [CrossRef]
- Adrat, M.; Vary, P. Iterative Source-Channel Decoding: Improved System Design Using EXIT Charts. EURASIP J. Adv. Signal Process. 2005, 2005, 178541. [Google Scholar] [CrossRef] [Green Version]
- Schmalen, L.; Adrat, M.; Clevorn, T.; Vary, P. EXIT Chart Based System Design for Iterative Source-Channel Decoding with Fixed-Length Codes. IEEE Trans. Commun. 2011, 59, 2406–2413. [Google Scholar] [CrossRef]
- Schmalen, L.; Vary, P. Iterative Source–Channel Decoding with Reduced Error Floors. IEEE J. Sel. Top. Signal Process. 2011, 5, 1577–1587. [Google Scholar] [CrossRef]
- Khalil, A.; Minallah, N.; Awan, M.A.; Khan, H.U.; Khan, A.S.; Rehman, A.U. On the Performance of Wireless Video Communication Using Iterative Joint Source Channel Decoding and Transmitter Diversity Gain Technique. Wirel. Commun. Mob. Comput. 2020, 2020, 88. [Google Scholar] [CrossRef]
- Minallah, N.; Ullah, K.; Ullah, K.; Khan, I.U.; Khattak, K.S. Efficient Wireless Video Communication using Sophisticated Channel Coding and Transmitter Diversity Gain Technique. 2020. Available online: https://assets.researchsquare.com/files/rs-35714/v1_covered.pdf?c=1631836661 (accessed on 10 July 2021).
- Khan, H.U.; Minallah, N.; Masood, A.; Khalil, A.; Frnda, J.; Nedoma, J. Performance Analysis of Sphere Packed Aided Differential Space-Time Spreading with Iterative Source-Channel Detection. Sensors 2021, 21, 5461. [Google Scholar] [CrossRef] [PubMed]
- Minallah, N.; Butt, M.F.U.; Khan, I.U.; Ahmed, I.; Khattak, K.S.; Qiao, G.; Liu, S. Analysis of Near-Capacity Iterative Decoding Schemes for Wireless Communication Using EXIT Charts. IEEE Access 2020, 8, 124424–124436. [Google Scholar] [CrossRef]
- Minallah, N.; Ahmed, I.; Frnda, J.; Khattak, K.S. Averting BER Floor with Iterative Source and Channel Decoding for Layered Steered Space-Time Codes. Sensors 2021, 21, 6502. [Google Scholar] [CrossRef]
- Bocharova, I.E.; Fabregas, A.G.i.; Kudryashov, B.D.; Martinez, A.; Campo, A.T.; Vazquez-Vilar, G. Low-complexity fixed-to-fixed joint source-channel coding. In Proceedings of the 8th International Symposium on Turbo Codes and Iterative Information Processing (ISTC), Bremen, Germany, 18–22 August 2014; pp. 132–136. [Google Scholar]
- Dong, Y.; Niu, K.; Dai, J.; Wang, S.; Yuan, Y. Joint source and channel coding using double polar codes. IEEE Commun. Lett. 2021, 25, 2810–2814. [Google Scholar] [CrossRef]
- He, J.; Wang, L.; Chen, P. A joint source and channel coding scheme base on simple protograph structured codes. In Proceedings of the 2012 International Symposium on Communications and Information Technologies (ISCIT), Gold Coast, QLD, Australia, 2–5 October 2012; pp. 65–69. [Google Scholar]
- Chen, C.; Wang, L.; Xiong, Z. Matching criterion between source statistics and source coding rate. IEEE Commun. Lett. 2015, 19, 1504–1507. [Google Scholar] [CrossRef]
- Wu, C.; Chung, W. Iterative source-channel decoding design using distortion based index assignment and joint redundant information. In Proceedings of the SiPS 2013, Taipei, Taiwan, 16–18 October 2013; pp. 95–99. [Google Scholar]
- Tuchler, M.; Hagenauer, J. EXIT charts of irregular codes. In Proceedings of the Conference on Information Sciences and Systems, Prineton University, Prineton, NJ, USA, 20–22 March 2002. [Google Scholar]
- Minallah, N.; Ullah, K.; Frnda, J.; Cengiz, K.; Javed, M.A. Transmitter Diversity Gain Technique Aided Irregular Channel Coding for Mobile Video Transmission. Entropy 2021, 23, 235. [Google Scholar] [CrossRef] [PubMed]
- Schmalen, L.; Vary, P. Error resilient turbo compression of source codec parameters using inner irregular codes. In Proceedings of the 2010 International ITG Conference on Source and Channel Coding (SCC), Siegen, Germany, 18–21 January 2010; pp. 1–6. [Google Scholar]
- Maunder, R.G.; Hanzo, L. Near-capacity irregular variable length coding and irregular unity rate coding. IEEE Trans. Wirel. Commun. 2009, 8, 5500–5507. [Google Scholar] [CrossRef]
- Hanzo, L. Near-Capacity Variable-Length Coding: Regular and EXIT-Chart-Aided Irregular Designs; John Wiley & Sons: Hoboken, NJ, USA, 2010; Volume 20. [Google Scholar]
- Maunder, R.G.; Zhang, W.; Wang, T.; Hanzo, L. A Unary Error Correction Code for the Near-Capacity Joint Source and Channel Coding of Symbol Values from an Infinite Set. IEEE Trans. Commun. 2013, 61, 1977–1987. [Google Scholar] [CrossRef] [Green Version]
- Ashikhmin, A.; Kramer, G.; Brink, S.T. Extrinsic information transfer functions: Model and erasure channel properties. IEEE Trans. Inf. Theory 2004, 50, 2657–2673. [Google Scholar] [CrossRef]
- Bahl, L.; Cocke, J.; Jelinek, F.; Raviv, J. Optimal decoding of linear codes for minimizing symbol error rate (corresp.). IEEE Trans. Inf. Theory 1974, 20, 284–287. [Google Scholar] [CrossRef] [Green Version]
- Jaspar, X.; Guillemot, C.; Vandendorpe, L. Joint Source–Channel Turbo Techniques for Discrete-Valued Sources: From Theory to Practice. Proc. IEEE 2007, 95, 1345–1361. [Google Scholar] [CrossRef]
- El-Hajjar, M.; Hanzo, L. EXIT Charts for System Design and Analysis. IEEE Commun. Surv. Tutor. 2014, 16, 127–153. [Google Scholar] [CrossRef] [Green Version]
- Schreckenbach, F.; Gortz, N.; Hagenauer, J.; Bauch, G. Optimization of symbol mappings for bit-interleaved coded Modulation with iterative decoding. IEEE Commun. Lett. 2003, 7, 593–595. [Google Scholar] [CrossRef]
- Nguyen, H.V.; Xu, C.; Ng, S.X.; Hanzo, L. Near-Capacity Wireless System Design Principles. IEEE Commun. Surv. Tutor. 2015, 17, 1806–1833. [Google Scholar] [CrossRef] [Green Version]
- Jaspar, X.; Vandendorpe, L. Joint source-channel codes based on irregular turbo codes and variable length codes. IEEE Trans. Commun. 2008, 56, 1824–1835. [Google Scholar] [CrossRef]
Length | Code Rate | Codewords in Decimal | Minimum Hamming Distance |
---|---|---|---|
0.75 | 24, 3, 6, 3, 18, 29, 15, 10, 9, 30, 5, 20, 27, 12, 0, 17 | 2 | |
0.63 | 6, 23, 51, 10, 30, 17, 43, 56, 39, 12, 3, 36, 29, 0, 45, 54 | 2 | |
0.54 | 41, 21, 2, 79, 86, 12, 125, 65, 100, 115, 88, 62, 27, 106, 39, 48 | 3 | |
0.47 | 120, 102, 85, 75, 51, 45, 30, 0, 135, 153, 170, 180, 204, 210, 225, 255 | 4 |
Source Code | Channel Code | SNR for an Open Tunnel | |
---|---|---|---|
Regular RNSC code | (7, 4) | 8.2 dB | |
Irregular RNSC code | Subcodes (3, 2), (7, 6) Optimum weights [0.36, 064] | 7.8 dB |
Scheme | Source Code | Source Code Rate | Channel Code | Channel Code Rate | Overall Rate |
---|---|---|---|---|---|
SSCC | Huffman | 0.99 | Rate-3/5 Turbo code | 2/3 | 0.66 |
VLC-IrRNSC | 0.64 | Irregular RNSC code | 33/32 | 0.66 | |
LBC-RSC | 0.75 | RSC code | 8/9 | 0.66 | |
LBC-IrRNSC | 0.63 | Irregular RNSC code | 22/21 | 0.66 | |
0.63 | Irregular RNSC code | 22/21 | 0.66 |
Source Code | Irregular RNSC Channel Code | Bit SNR for an Open Tunnel |
---|---|---|
Subcodes (3, 2), (6, 7) optimum weights [0.86, 0.14] | 4.6 dB | |
Subcodes (3, 2), (7, 6) optimum weights [0.08, 0.92] | 4.6 dB | |
Subcodes (3, 2), (7, 6) optimum weights [0.36, 064] | 4.2 dB |
Scheme | Convergence Threshold |
---|---|
SSCC | 5.2 dB |
LBC-RSC | 4.8 dB |
VLC-IrRNSC | 4.6 dB |
LBC-IrRNSC | 4.6 dB |
4.2 dB |
Scheme | Decoding Time (s) | ||
---|---|---|---|
4 dB | 4.5 dB | 5 dB | |
SSCC | 24.8 | 26.8 | 22.3 |
VLC-IrRNSC | 161.4 | 217.9 | 122.5 |
11.6 | 19.5 | 12.5 | |
12.4 | 16.1 | 10.5 | |
13.3 | 11.4 | 8.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bao, H.; Zhang, C.; Gao, S. Design and Analysis of Joint Source-Channel Code System with Fixed-Length Code. Information 2022, 13, 281. https://doi.org/10.3390/info13060281
Bao H, Zhang C, Gao S. Design and Analysis of Joint Source-Channel Code System with Fixed-Length Code. Information. 2022; 13(6):281. https://doi.org/10.3390/info13060281
Chicago/Turabian StyleBao, Han, Can Zhang, and Shaoshuai Gao. 2022. "Design and Analysis of Joint Source-Channel Code System with Fixed-Length Code" Information 13, no. 6: 281. https://doi.org/10.3390/info13060281
APA StyleBao, H., Zhang, C., & Gao, S. (2022). Design and Analysis of Joint Source-Channel Code System with Fixed-Length Code. Information, 13(6), 281. https://doi.org/10.3390/info13060281