The Deinstitutionalization of Business Support Functions through Artificial Intelligence
Abstract
:1. Introduction
2. Artificial Intelligence and Deinstitutionalization
3. Artificial Intelligence within Business Support Functions
3.1. Human Resource Management
3.2. Supply Chain Management
3.3. Financial Management
4. Discussion
4.1. Diffusion of AI in Business Support Functions
4.2. Implications
4.3. Limitations and Future Avenues
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tschang, F.T.; Almirall, E. Artificial Intelligence as Augmenting Automation: Implications for Employment. Acad. Manag. Perspect. 2021, 35, 642–659. [Google Scholar] [CrossRef]
- Chui, M.; Hall, B.; Singla, A.; Sukhrevsky, A. The State of AI in 2021. 2021. Available online: https://www.mckinsey.com/business-functions/mckinsey-analytics/our-insights/global-survey-the-state-of-ai-in-2021 (accessed on 6 June 2022).
- Agrawal, A.; Gans, J.; Goldfarb, A. Prediction Machines: The Simple Economics of Artificial Intelligence; Havard Business Press: Boston, MA, USA, 2018. [Google Scholar]
- Agrawal, A.; Gans, J.S.; Goldfarb, A. Exploring the impact of artificial Intelligence: Prediction versus judgment. Inf. Econ. Policy 2019, 47, 1–6. [Google Scholar] [CrossRef]
- Raisch, S.; Krakowski, S. Artificial intelligence and management: The automation–augmentation paradox. Acad. Manag. Rev. 2021, 46, 192–210. [Google Scholar] [CrossRef]
- Johnson, P.C.; Laurell, C.; Ots, M.; Sandström, C. Digital innovation and the effects of artificial intelligence on firms’ research and development—Automation or augmentation, exploration or exploitation? Technol. Forecast. Soc. Chang. 2022, 179, 121636. [Google Scholar] [CrossRef]
- Haefner, N.; Wincent, J.; Parida, V.; Gassmann, O. Artificial intelligence and innovation management: A review, framework, and research agenda✰. Technol. Forecast. Soc. Chang. 2021, 162, 120392. [Google Scholar] [CrossRef]
- Di Vaio, A.; Palladino, R.; Hassan, R.; Escobar, O. Artificial intelligence and business models in the sustainable development goals perspective: A systematic literature review. J. Bus. Res. 2020, 121, 283–314. [Google Scholar] [CrossRef]
- Gupta, S.; Modgil, S.; Bhattacharyya, S.; Bose, I. Artificial intelligence for decision support systems in the field of operations research: Review and future scope of research. Ann. Oper. Res. 2022, 308, 215–274. [Google Scholar] [CrossRef]
- Martínez-López, F.J.; Casillas, J. Artificial intelligence-based systems applied in industrial marketing: An historical overview, current and future insights. Ind. Mark. Manag. 2013, 42, 489–495. [Google Scholar] [CrossRef]
- Ransbotham, S.; Khodabandeh, S.; Kiron, D.; Candelon, F.; Chu, M.; LaFountain, B. Expanding AI’s Impact With Organizational Learning. 2020. Available online: https://sloanreview.mit.edu/projects/expanding-ais-impact-with-organizational-learning/ (accessed on 1 June 2022).
- McCarthy, J.; Minsky, M.L.; Rochester, N.; Shannon, C.E. A proposal for the Dartmouth summer research project on artificial intelligence. AI Mag. 2006, 27, 12–14. [Google Scholar]
- Kaplan, A.; Haenlein, M. Siri, Siri, in my hand: Who’s the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence. Bus. Horiz. 2019, 62, 15–25. [Google Scholar] [CrossRef]
- Tambe, P.; Cappelli, P.; Yakubovich, V. Artificial intelligence in human resources management: Challenges and A path forward. Calif. Manag. Rev. 2019, 61, 15–42. [Google Scholar] [CrossRef]
- Bigham, T.; Nair, S.; Soral, S.; Tua, A.; Gallo, V.; Lee, M.; Mews, T.; Fouché, M. AI and Risk Management—Innovating with Confidence; Deloitte: 2018. Available online: https://www2.deloitte.com/content/dam/Deloitte/global/Documents/Financial-Services/deloitte-gx-ai-and-risk-management.pdf (accessed on 13 June 2022).
- Dwivedi, Y.K.; Hughes, L.; Ismagilova, E.; Aarts, G.; Coombs, C.; Crick, T.; Duan, Y.; Dwivedi, R.; Edwards, J.; Eirug, A.; et al. Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. Int. J. Inf. Manag. 2021, 57, 101994. [Google Scholar] [CrossRef]
- Van Witteloostuijn, A. Bridging behavioral and economic theories of decline: Organizational inertia, strategic competition, and chronic failure. Manag. Sci. 1998, 44, 501–519. [Google Scholar] [CrossRef]
- Maguire, S.; Hardy, C. Discourse and Deinstitutionalization: The Decline of DDT. Acad. Manag. J. 2009, 52, 148–178. [Google Scholar] [CrossRef]
- Kelly, D.; Amburgey, T.L. Organizational Inertia and Momentum: A Dynamic Model of Strategic Change. Acad. Manag. J. 1991, 34, 591–612. [Google Scholar] [CrossRef]
- DiMaggio, P.J.; Powell, W.W. The Iron Cage Revisited: Institutional Isomorphism and Collective Rationality in Organizational Fields. Am. Sociol. Rev. 1983, 48, 147. [Google Scholar] [CrossRef] [Green Version]
- Meyer, J.W.; Rowan, B. Institutionalized Organizations: Formal Structure as Myth and Ceremony. Am. J. Sociol. 1977, 83, 340–363. [Google Scholar] [CrossRef] [Green Version]
- Selznick, P. Leadership in Administration: A Sociological Interpretation; Harper & Row: New York, NY, USA, 1957. [Google Scholar]
- Oliver, C. The Antecedents of Deinstitutionalization. Organ. Stud. 1992, 13, 563–588. [Google Scholar] [CrossRef]
- Hargadon, A.B.; Douglas, Y. When Innovations Meet Institutions: Edison and the Design of the Electric Light. Adm. Sci. Q. 2001, 46, 476–501. [Google Scholar] [CrossRef]
- Steve, B. McKinsey’s Three Horizons Model Defined Innovation for Years. Here’s Why It No Longer Applies. Harv. Bus. Rev. 2019. Available online: https://hbr.org/2019/02/mckinseys-three-horizons-model-defined-innovation-for-years-heres-why-it-no-longer-applies (accessed on 2 June 2022).
- Bloch, M.; Lempres, E. From internal service provider to strategic partner: An interview with the head of Global Business Services at P&G. McKinsey Q. 2008. Available online: https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/from-internal-service-provider-to-strategic-partner-an-interview-with-the-head-of-global-business-services-at-p-and-g (accessed on 14 June 2022).
- Budhwar, P.; Malik, A.; De Silva, M.T.T.; Thevisuthan, P. Artificial intelligence–challenges and opportunities for international HRM: A review and research agenda. Int. J. Hum. Resour. Manag. 2022, 33, 1065–1097. [Google Scholar] [CrossRef]
- Goldfarb, A.; Taska, B.; Teodoridis, F. Artificial Intelligence in Health Care? Evidence from Online Job Postings. AEA Pap. Proc. 2020, 110, 400–404. [Google Scholar] [CrossRef]
- Allal-Chérif, O.; Simón-Moya, V.; Ballester, A.C.C. Intelligent purchasing: How artificial intelligence can redefine the purchasing function. J. Bus. Res. 2021, 124, 69–76. [Google Scholar] [CrossRef]
- Pessach, D.; Singer, G.; Avrahami, D.; Chalutz Ben-Gal, H.; Shmueli, E.; Ben-Gal, I. Employees recruitment: A prescriptive analytics approach via machine learning and mathematical programming. Decis. Support Syst. 2020, 134, 113290. [Google Scholar] [CrossRef] [PubMed]
- Torres, E.N.; Mejia, C. Asynchronous video interviews in the hospitality industry: Considerations for virtual employee selection. Int. J. Hosp. Manag. 2017, 61, 4–13. [Google Scholar] [CrossRef]
- Sitzmann, T.; Weinhardt, J.M. Approaching evaluation from a multilevel perspective: A comprehensive analysis of the indicators of training effectiveness. Hum. Resour. Manag. Rev. 2019, 29, 253–269. [Google Scholar] [CrossRef]
- Nouri, H.; Parker, R.J. Career growth opportunities and employee turnover intentions in public accounting firms. Br. Account. Rev. 2013, 45, 138–148. [Google Scholar] [CrossRef]
- Mehrabad, M.S.; Brojeny, M.F. The development of an expert system for effective selection and appointment of the jobs applicants in human resource management. Comput. Ind. Eng. 2007, 53, 306–312. [Google Scholar] [CrossRef]
- Card, D.; Mas, A.; Moretti, E.; Saez, E. Inequality at Work: The Effect of Peer Salaries on Job Satisfaction. Am. Econ. Rev. 2012, 102, 2981–3003. [Google Scholar] [CrossRef] [Green Version]
- Stringer, C.; Didham, J.; Theivananthampillai, P. Motivation, pay satisfaction, and job satisfaction of front-line employees. Qual. Res. Account. Manag. 2011, 8, 161–179. [Google Scholar] [CrossRef]
- Hammermann, A.; Mohnen, A. Who benefits from benefits? Empirical research on tangible incentives. Rev. Manag. Sci. 2014, 8, 327–350. [Google Scholar] [CrossRef] [Green Version]
- Ross, J.P.; Intindola, M.L.; Boje, D.M. It Was the Best of Times; It Was the Worst of Times: The Expiration of Work–Life Balance. J. Manag. Inq. 2017, 26, 202–215. [Google Scholar] [CrossRef]
- Stock, J.R.; Boyer, S.L. Developing a consensus definition of supply chain management: A qualitative study. Int. J. Phys. Distrib. Logist. Manag. 2009, 39, 690–711. [Google Scholar] [CrossRef]
- Trent, R.J.; Monczka, R.M. International purchasing and global sourcing—what are the differences? J. Supply Chain Manag. 2003, 39, 26–36. [Google Scholar] [CrossRef]
- Zimmer, K.; Fröhling, M.; Schultmann, F. Sustainable supplier management—A review of models supporting sustainable supplier selection, monitoring and development. Int. J. Prod. Res. 2016, 54, 1412–1442. [Google Scholar] [CrossRef]
- Legenvre, H.; Gualandris, J. Innovation sourcing excellence: Three purchasing capabilities for success. Bus. Horiz. 2018, 61, 95–106. [Google Scholar] [CrossRef]
- Fagundes, M.V.C.; Hellingrath, B.; Freires, F.G.M. Supplier Selection Risk: A New Computer-Based Decision-Making System with Fuzzy Extended AHP. Logistics 2021, 5, 13. [Google Scholar] [CrossRef]
- Lu, R.; Hong, S.H. Incentive-based demand response for smart grid with reinforcement learning and deep neural network. Appl. Energy 2019, 236, 937–949. [Google Scholar] [CrossRef]
- Toorajipour, R.; Sohrabpour, V.; Nazarpour, A.; Oghazi, P.; Fischl, M. Artificial intelligence in supply chain management: A systematic literature review. J. Bus. Res. 2021, 122, 502–517. [Google Scholar] [CrossRef]
- Allal-Chérif, O.; Maira, S. Collaboration as an anti-crisis solution: The role of the procurement function. Int. J. Phys. Distrib. Logist. Manag. 2011, 41, 860–877. [Google Scholar] [CrossRef]
- Choi, T.Y.; Krause, D.R. The supply base and its complexity: Implications for transaction costs, risks, responsiveness, and innovation. J. Oper. Manag. 2006, 24, 637–652. [Google Scholar] [CrossRef]
- Chung, M.; Ko, E.; Joung, H.; Kim, S.J. Chatbot e-service and customer satisfaction regarding luxury brands. J. Bus. Res. 2020, 117, 587–595. [Google Scholar] [CrossRef]
- Baryannis, G.; Validi, S.; Dani, S.; Antoniou, G. Supply chain risk management and artificial intelligence: State of the art and future research directions. Int. J. Prod. Res. 2019, 57, 2179–2202. [Google Scholar] [CrossRef]
- van Hoek, R.I.; Weken, H.A.M. How Modular Production can Contribute to Integration in Inbound and Outbound Logistics. Int. J. Logist. Res. Appl. 1998, 1, 39–56. [Google Scholar] [CrossRef]
- Negri, E.; Perotti, S.; Fumagalli, L.; Marchet, G.; Garetti, M. Modelling internal logistics systems through ontologies. Comput. Ind. 2017, 88, 19–34. [Google Scholar] [CrossRef]
- Hengstler, M.; Enkel, E.; Duelli, S. Applied artificial intelligence and trust - The case of autonomous vehicles and medical assistance devices. Technol. Forecast. Soc. Chang. 2016, 105, 105–120. [Google Scholar] [CrossRef]
- Gupta, S.; Jones, E.C. Optimizing supply chain distribution using cloud based autonomous information. Int. J. Supply Chain Manag. 2014, 3, 79–90. [Google Scholar]
- Brynjolfsson, E.; Rock, D.; Syverson, C. Artificial Intelligence and the Modern Productivity Paradox: A Clash of Expectations and Statistics. In The Economics of Artificial Intelligence: An Agenda; National Bureau of Economic Research: Cambridge, MA, USA, 2019. [Google Scholar]
- Klumpp, M. Automation and artificial intelligence in business logistics systems: Human reactions and collaboration requirements. Int. J. Logist. Res. Appl. 2018, 21, 224–242. [Google Scholar] [CrossRef]
- Lee, C.S.; Tajudeen, F.P. Usage and impact of artificial intelligence on accounting: Evidence from Malaysian organisations. Asian J. Bus. Account. 2020, 13, 213–239. [Google Scholar] [CrossRef]
- Bryk, A.; Lee, H.; Thibault, P.; Stewien, B. Strategies for Optimizing Your Accounts Payable. 2015. Available online: https://www2.deloitte.com/content/dam/Deloitte/ca/Documents/finance/ca-en-FA-strategies-for-optimizing-your-accounts-payable.pdf (accessed on 3 June 2022).
- Ding, K.; Lev, B.; Peng, X.; Sun, T.; Vasarhelyi, M.A. Machine learning improves accounting estimates: Evidence from insurance payments. Rev. Account. Stud. 2020, 25, 1098–1134. [Google Scholar] [CrossRef]
- Leitner-Hanetseder, S.; Lehner, O.M.; Eisl, C.; Forstenlechner, C. A profession in transition: Actors, tasks and roles in AI-based accounting. J. Appl. Account. Res. 2021, 22, 539–556. [Google Scholar] [CrossRef]
- Petkov, R. Artificial intelligence (AI) and the accounting function—a revisit and a new perspective for developing framework. J. Emerg. Technol. Account. 2020, 17, 99–105. [Google Scholar] [CrossRef]
- Oduware, U. COSO—An Approach to Internal Control Framework; Deloitte: 2015. Available online: https://www2.deloitte.com/za/en/nigeria/pages/audit/articles/financial-reporting/coso-an-approach-to-internal-control-framework.html (accessed on 1 June 2022).
- Brands, K.; Holtzblatt, M. Business Analytics: Transforming the Role of Management Accountants. Manag. Account. Q. 2015, 16, 1–12. Available online: https://www.imanet.org/-/media/fba0ebd670414d25a467d4cff8d0c691.ashx (accessed on 9 June 2022).
- Gentsch, P. Business KI verändert Unternehmen und Märkte. Control. Manag. Rev. 2019, 63, 24–33. [Google Scholar] [CrossRef]
- Elbashir, M.Z.; Collier, P.A.; Sutton, S.G. The role of organizational absorptive capacity in strategic use of business intelligence to support integrated management control systems. Account. Rev. 2011, 86, 155–184. [Google Scholar] [CrossRef]
- Batistič, S.; van der Laken, P. History, Evolution and Future of Big Data and Analytics: A Bibliometric Analysis of Its Relationship to Performance in Organizations. Br. J. Manag. 2019, 30, 229–251. [Google Scholar] [CrossRef] [Green Version]
- Leo, M.; Sharma, S.; Maddulety, K. Machine learning in banking risk management: A literature review. Risks 2019, 7, 29. [Google Scholar] [CrossRef] [Green Version]
- Carol, A. The present and future of financial risk management. J. Financ. Econom. 2005, 3, 3–25. [Google Scholar] [CrossRef] [Green Version]
- Tsai, C.F.; Wu, J.W. Using neural network ensembles for bankruptcy prediction and credit scoring. Expert Syst. Appl. 2008, 34, 2639–2649. [Google Scholar] [CrossRef]
- Raguseo, E.; Vitari, C.; Pigni, F. Profiting from big data analytics: The moderating roles of industry concentration and firm size. Int. J. Prod. Econ. 2020, 229, 107758. [Google Scholar] [CrossRef]
- Sivarajah, U.; Kamal, M.M.; Irani, Z.; Weerakkody, V. Critical analysis of Big Data challenges and analytical methods. J. Bus. Res. 2017, 70, 263–286. [Google Scholar] [CrossRef] [Green Version]
- Plaschke, F.; Seth, I.; Whiteman, R. Bots, Algorithms, and the Future of the Finance Function; McKinsey & Company: 2018. Available online: https://www.mckinsey.com/business-functions/strategy-and-corporate-finance/our-insights/bots-algorithms-and-the-future-of-the-finance-function (accessed on 8 June 2022).
- Candelon, F.; di Carlo, R.C.; Mills, S. Why AI Needs a Social License; Boston Consulting Group: 2022. Available online: https://www.bcg.com/publications/2022/why-a-social-license-is-needed-for-artificial-intelligence (accessed on 7 June 2022).
- Bhave, D.P.; Teo, L.H.; Dalal, R.S. Privacy at Work: A Review and a Research Agenda for a Contested Terrain. J. Manag. 2020, 46, 127–164. [Google Scholar] [CrossRef]
- Alicke, K.; Dilda, V.; Görner, S.; Mori, L.; Rebuffel, P.; Reiter, S.; Samek, R. Succeeding in the AI Supply-Chain Revolution; McKinsey & Company: 2021. Available online: https://www.mckinsey.com/industries/metals-and-mining/our-insights/succeeding-in-the-ai-supply-chain-revolution (accessed on 10 June 2022).
- Glikson, E.; Woolley, A.W. Human trust in artificial intelligence: Review of empirical research. Acad. Manag. Ann. 2020, 14, 627–660. [Google Scholar] [CrossRef]
- Edlich, A.; Ip, F.; Whiteman, R. How Bots, Algorithms, and Artificial Intelligence Are Reshaping the Future of Corporate Support Functions. 2018. Available online: https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/McKinsey%20Digital/Our%20Insights/How%20bots%20algorithms%20ai%20are%20reshaping/How-bots-algorithms-and-artificial-intelligence-are-reshaping-future-of-corporate-support-functions.pdf (accessed on 14 June 2022).
- Deloitte. Talent and Workforce Effects in the Age of AI Insights from Deloitte’s State of AI in the Enterprise; Deloitte Insights: 2020. Available online: https://www2.deloitte.com/content/dam/insights/us/articles/6546_talent-and-workforce-effects-in-the-age-of-ai/DI_Talent-and-workforce-effects-in-the-age-of-AI.pdf (accessed on 3 June 2022).
- Janssen, M.; Brous, P.; Estevez, E.; Barbosa, L.S.; Janowski, T. Data governance: Organizing data for trustworthy Artificial Intelligence. Gov. Inf. Q. 2020, 37, 101493. [Google Scholar] [CrossRef]
- Yablonsky, S. AI-driven platform enterprise maturity: From human led to machine governed. Kybernetes 2021, 50, 2753–2789. [Google Scholar] [CrossRef]
- Confente, I.; Siciliano, G.G.; Gaudenzi, B.; Eickhoff, M. Effects of data breaches from user-generated content: A corporate reputation analysis. Eur. Manag. J. 2019, 37, 492–504. [Google Scholar] [CrossRef]
- Gwebu, K.L.; Wang, J.; Wang, L. The Role of Corporate Reputation and Crisis Response Strategies in Data Breach Management. J. Manag. Inf. Syst. 2018, 35, 683–714. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bauer, J.C.; Wolff, M. The Deinstitutionalization of Business Support Functions through Artificial Intelligence. Information 2022, 13, 352. https://doi.org/10.3390/info13080352
Bauer JC, Wolff M. The Deinstitutionalization of Business Support Functions through Artificial Intelligence. Information. 2022; 13(8):352. https://doi.org/10.3390/info13080352
Chicago/Turabian StyleBauer, Jan Christian, and Michael Wolff. 2022. "The Deinstitutionalization of Business Support Functions through Artificial Intelligence" Information 13, no. 8: 352. https://doi.org/10.3390/info13080352
APA StyleBauer, J. C., & Wolff, M. (2022). The Deinstitutionalization of Business Support Functions through Artificial Intelligence. Information, 13(8), 352. https://doi.org/10.3390/info13080352