Optimisation of Knowledge Management (KM) with Machine Learning (ML) Enabled
Abstract
:1. Introduction
2. Literature Review
2.1. Knowledge Management
2.2. Machine Learning
2.3. Big Data and Machine Learning
3. Methodology
4. Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zanker, M.; Bureš, V. Knowledge Management as a Domain, System Dynamics as a Methodology. Systems 2022, 10, 82. [Google Scholar] [CrossRef]
- Pasher, E.; Ronen, T. The Complete Guide to Knowledge Management: A Strategic Plan to Leverage Your Company’s Intellectual Capital; John Wiley: Hoboken, NJ, USA, 2011; ISBN 978-0-470-88129-3. [Google Scholar]
- Bureš, V.; Otčenášková, T. Contextualisation of the Current Knowledge and Technology Transfer-Related Literature: The Text Analysis; Maci, J., Maresova, P., Firlej, K., Soukal, I., Eds.; University of Hradec Králové: Hradec Králové, Czech Republic, 2021; pp. 134–144. [Google Scholar]
- Gupta, B.; Iyer, L.S.; Aronson, J.E. Knowledge Management: Practices and Challenges. Ind. Manag. Data Syst. 2000, 100, 17–21. [Google Scholar] [CrossRef]
- Lyu, H.; Zhou, Z.; Zhang, Z. Measuring Knowledge Management Performance in Organizations: An Integrative Framework of Balanced Scorecard and Fuzzy Evaluation. Information 2016, 7, 29. [Google Scholar] [CrossRef] [Green Version]
- Nyame, G.; Qin, Z.; Obour Agyekum, K.O.-B.; Sifah, E.B. An ECDSA Approach to Access Control in Knowledge Management Systems Using Blockchain. Information 2020, 11, 111. [Google Scholar] [CrossRef] [Green Version]
- Anshari, M.; Hamdan, M.; Ahmad, N.; Ali, E.; Haidi, H. COVID-19, Artificial Intelligence, Ethical Challenges and Policy Implications. AI Soc 2022. [Google Scholar] [CrossRef]
- Mulyani, M.A.; Yusuf, S.; Siregar, P.; Nurihsan, J.; Razzaq, A.; Anshari, M. Fourth Industrial Revolution and Educational Challenges. In Proceedings of the 2021 International Conference on Information Management and Technology (ICIMTech), Jakarta, Indonesia, 19 August 2021; pp. 245–249. [Google Scholar]
- Azam, M.; Bilal, A.; Khan, W. Knowledge management as a strategy & competitive advantage: A strong influence to success (A survey of knowledge management case studies of different organizations). Public Policy Adm. Res. 2016, 6, 1–15. [Google Scholar]
- Starmind. What Is Tacit Knowledge and How Can Businesses Access It? Available online: https://www.starmind.ai/resources/what-is-tacit-knowledge-and-how-do-you-access-it (accessed on 21 August 2022).
- Omar Sharifuddin bin Syed-Ikhsan, S.; Rowland, F. Benchmarking Knowledge Management in a Public Organisation in Malaysia. Benchmarking Int. J. 2004, 11, 238–266. [Google Scholar] [CrossRef]
- Abbas, J.; Zhang, Q.; Hussain, I.; Akram, S.; Afaq, A.; Shad, M.A. Sustainable Innovation in Small Medium Enterprises: The Impact of Knowledge Management on Organizational Innovation through a Mediation Analysis by Using SEM Approach. Sustainability 2020, 12, 2407. [Google Scholar] [CrossRef] [Green Version]
- Hajric, E. Knowledge Management System and Practices-A Theoretical and Practical Guide for Knowledge Management in Your Organization; Helpjuice: Jacksonville, FL, USA, 2018. [Google Scholar]
- AlQershi, N.; Mokhtar, S.S.M.; Abas, Z.B. Innovative CRM and Performance of SMEs: The Moderating Role of Relational Capital. J. Open Innov. Technol. Mark. Complex. 2020, 6, 155. [Google Scholar] [CrossRef]
- López-Nicolás, C.; Meroño-Cerdán, Á.L. Strategic Knowledge Management, Innovation and Performance. Int. J. Inf. Manag. 2011, 31, 502–509. [Google Scholar] [CrossRef]
- Darroch, J. Knowledge Management, Innovation and Firm Performance. J. Knowl. Manag. 2005, 9, 101–115. [Google Scholar] [CrossRef]
- Bughin, J.; Byers, A.H.; Chui, M. How Social Technologies Are Extending the Organization. Available online: https://www.intec.co.uk/wp-content/uploads/2014/08/Mckinsey-report-_-Soc-Bus-_-21.11.11.pdf (accessed on 9 December 2022).
- Harris, E.; Strout, E. Keeping Customers. Sales Mark. Manag. 2001, 153, 69. [Google Scholar]
- Guchait, P.; Namasivayam, K.; Lei, P. Knowledge Management in Service Encounters: Impact on Customers’ Satisfaction Evaluations. J. Knowl. Manag. 2011, 15, 513–527. [Google Scholar] [CrossRef] [Green Version]
- Khajouei, H.; Khajouei, R. Identifying and Prioritizing the Tools/Techniques of Knowledge Management Based on the Asian Productivity Organization Model (APO) to Use in Hospitals. Int. J. Med. Inform. 2017, 108, 146–151. [Google Scholar] [CrossRef]
- Zhou, Z.; Liu, Y.; Yu, H.; Ren, L. The Influence of Machine Learning-Based Knowledge Management Model on Enterprise Organizational Capability Innovation and Industrial Development. PLoS ONE 2020, 15, e0242253. [Google Scholar] [CrossRef] [PubMed]
- Lopes, C.M.; Scavarda, A.; Hofmeister, L.F.; Thomé, A.M.T.; Vaccaro, G.L.R. An Analysis of the Interplay between Organizational Sustainability, Knowledge Management, and Open Innovation. J. Clean. Prod. 2017, 142, 476–488. [Google Scholar] [CrossRef]
- Zhong, B.; Wu, H.; Li, H.; Sepasgozar, S.; Luo, H.; He, L. A Scientometric Analysis and Critical Review of Construction Related Ontology Research. Autom. Constr. 2019, 101, 17–31. [Google Scholar] [CrossRef]
- Levy, M.; Hadar, I.; Aviv, I. A Requirements Engineering Methodology for Knowledge Management Solutions: Integrating Technical and Social Aspects. Requir. Eng. 2019, 24, 503–521. [Google Scholar] [CrossRef]
- Alzubi, J.; Nayyar, A.; Kumar, A. Machine Learning from Theory to Algorithms: An Overview. J. Phys. Conf. Ser. 2018, 1142, 012012. [Google Scholar] [CrossRef]
- Hussain, F.; Hussain, R.; Hassan, S.A.; Hossain, E. Machine Learning in IoT Security: Current Solutions and Future Challenges. IEEE Commun. Surv. Tutorials 2020, 22, 1686–1721. [Google Scholar] [CrossRef] [Green Version]
- Anshari, M.; Syafrudin, M.; Fitriyani, N.L. Fourth Industrial Revolution between Knowledge Management and Digital Humanities. Information 2022, 13, 292. [Google Scholar] [CrossRef]
- Simplifying the Difference: Machine Learning vs Deep Learning. Available online: https://www.scs.org.sg/articles/machine-learning-vs-deep-learning (accessed on 9 December 2022).
- Kolisetty, V.; Rajput, D. A Review on the Significance of Machine Learning for Data Analysis in Big Data. Jordanian J. Comput. Inf. Technol. 2019, 6, 41–57. [Google Scholar] [CrossRef]
- Machine Learning Solutions for Knowledge Management. Available online: https://docs.servicenow.com/bundle/quebec-servicenow-platform/page/product/knowledge-management/concept/machine-learning-km.html (accessed on 9 December 2022).
- Watson, H.J. Tutorial: Big Data Analytics: Concepts, Technologies, and Applications. Commun. Assoc. Inf. Syst. 2014, 34, 65. [Google Scholar] [CrossRef]
- Villars, R.L.; Olofson, C.W.; Eastwood, M. Big data: What it is and why you should care. Available online: https://www.admin-magazine.com/HPC/content/download/5604/49345/file/IDC_BigData_whitepaper_final.pdf (accessed on 24 December 2022).
- Syafrudin, M.; Fitriyani, N.; Li, D.; Alfian, G.; Rhee, J.; Kang, Y.-S. An Open Source-Based Real-Time Data Processing Architecture Framework for Manufacturing Sustainability. Sustainability 2017, 9, 2139. [Google Scholar] [CrossRef] [Green Version]
- de Pablos, P.O.; de Pablos, P.O. Electronic Globalized Business and Sustainable Development through IT Management: Strategies and Perspectives; Ordóñez de Pablos, P., Ed.; Business Science Reference: Hershey, PA, USA, 2011; ISBN 978-1-61520-623-0. [Google Scholar]
- Syafrudin, M.; Alfian, G.; Fitriyani, N.; Rhee, J. Performance Analysis of IoT-Based Sensor, Big Data Processing, and Machine Learning Model for Real-Time Monitoring System in Automotive Manufacturing. Sensors 2018, 18, 2946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Semivolos, A.; Anshari, M. The Application of Artificial Intelligence to the Process of Logistic During COVID-19: In Advances in Finance, Accounting, and Economics; Ordóñez de Pablos, P., Zhang, X., Almunawar, M.N., Eds.; IGI Global: Hershey, PA, USA, 2022; pp. 1–11. ISBN 978-1-66845-849-5. [Google Scholar]
- Proffitt, B. Big Data Analytics May Detect Infection before Clinicians. Available online: https://www.computerworld.com/article/2729007/big-data-analytics-may-detect-infection-before-clinicians.amp.html (accessed on 9 December 2022).
- Marr, B. The Awesome Ways Big Data Is Used Today to Change Our World. Available online: https://www.linkedin.com/pulse/20131113065157-64875646-the-awesome-ways-big-data-is-used-today-to-change-our-world (accessed on 9 December 2022).
- Ma, M.; Lin, W.; Pan, D.; Lin, Y.; Wang, P.; Zhou, Y.; Liang, X. Data and Decision Intelligence for Human-in-the-Loop Cyber-Physical Systems: Reference Model, Recent Progresses and Challenges. J. Signal Process. Syst. 2018, 90, 1167–1178. [Google Scholar] [CrossRef]
- Cioffi, R.; Travaglioni, M.; Piscitelli, G.; Petrillo, A.; De Felice, F. Artificial Intelligence and Machine Learning Applications in Smart Production: Progress, Trends, and Directions. Sustainability 2020, 12, 492. [Google Scholar] [CrossRef] [Green Version]
- Ullah, Z.; Al-Turjman, F.; Mostarda, L.; Gagliardi, R. Applications of Artificial Intelligence and Machine Learning in Smart Cities. Comput. Commun. 2020, 154, 313–323. [Google Scholar] [CrossRef]
- Lv, Z.; Lou, R.; Feng, H.; Chen, D.; Lv, H. Novel Machine Learning for Big Data Analytics in Intelligent Support Information Management Systems. ACM Trans. Manag. Inf. Syst. 2022, 13, 1–21. [Google Scholar] [CrossRef]
- Gammack, J.; Akay, H.; Ceylan, C.; Kim, S.-G. Semantic Knowledge Management System for Design Documentation with Heterogeneous Data Using Machine Learning. Procedia CIRP 2022, 109, 95–100. [Google Scholar] [CrossRef]
- Delen, D.; Zaim, H.; Kuzey, C.; Zaim, S. A Comparative Analysis of Machine Learning Systems for Measuring the Impact of Knowledge Management Practices. Decis. Support Syst. 2013, 54, 1150–1160. [Google Scholar] [CrossRef]
- Simon, C.G.K.; Jhanjhi, N.Z.; Goh, W.W.; Sukumaran, S. Applications of Machine Learning in Knowledge Management System: A Comprehensive Review. J. Inf. Knowl. Manag. 2022, 21, 2250017. [Google Scholar] [CrossRef]
- Terán-Bustamante, A.; Martínez-Velasco, A.; Dávila-Aragón, G. Knowledge Management for Open Innovation: Bayesian Networks through Machine Learning. J. Open Innov. Technol. Mark. Complex. 2021, 7, 40. [Google Scholar] [CrossRef]
- Kumar, Y.; Kaur, K.; Singh, G. Machine Learning Aspects and Its Applications Towards Different Research Areas. In Proceedings of the 2020 International Conference on Computation, Automation and Knowledge Management (ICCAKM), Dubai, United Arab Emirates, 9–10 January 2020; pp. 150–156. [Google Scholar]
- Miklosik, A.; Evans, N. Impact of Big Data and Machine Learning on Digital Transformation in Marketing: A Literature Review. IEEE Access 2020, 8, 101284–101292. [Google Scholar] [CrossRef]
- Diaconita, V. Big Data and Machine Learning for Knowledge Management. Available online: https://www.researchgate.net/profile/Irina-Georgescu/publication/264165988_POTENTIAL_OUTPUT_ESTIMATES_USING_A_GREY_PRODUCTION_FUNCTION_APPROACH/links/5c9911ed45851506d72bb134/POTENTIAL-OUTPUT-ESTIMATES-USING-A-GREY-PRODUCTION-FUNCTION-APPROACH.pdf#page=244 (accessed on 24 December 2022).
- Phan, A.-C.; Phan, T.-C.; Trieu, T.-N. A Systematic Approach to Healthcare Knowledge Management Systems in the Era of Big Data and Artificial Intelligence. Appl. Sci. 2022, 12, 4455. [Google Scholar] [CrossRef]
- Kruskal, J.B.; Berkowitz, S.; Geis, J.R.; Kim, W.; Nagy, P.; Dreyer, K. Big Data and Machine Learning—Strategies for Driving This Bus: A Summary of the 2016 Intersociety Summer Conference. J. Am. Coll. Radiol. 2017, 14, 811–817. [Google Scholar] [CrossRef] [PubMed]
- Ford, N. From Information- to Knowledge-Management: The Role of Rule Induction and Neural Net Machine Learning Techniques in Knowledge Generation. J. Inf. Sci. 1989, 15, 299–304. [Google Scholar] [CrossRef]
- Birzniece, I. Artificial Intelligence in Knowledge Management: Overview and Trends. Sci. J. Riga Tech. Univ. Comput. Sci. 2011, 43, 5–11. [Google Scholar] [CrossRef]
- Zbuchea, A.; Vidu, C.; Pinzaru, F. Is Artificial Intelligence Changing Knowledge Management. Available online: https://strategica-conference.ro/wp-content/uploads/2022/04/47.pdf (accessed on 24 December 2022).
- Sahay, S.K.; Goel, N.; Jadliwala, M.; Upadhyaya, S. Advances in Secure Knowledge Management in the Artificial Intelligence Era. Inf. Syst. Front. 2021, 23, 807–810. [Google Scholar] [CrossRef]
- Gacanin, H. Autonomous Wireless Systems with Artificial Intelligence: A Knowledge Management Perspective. IEEE Veh. Technol. Mag. 2019, 14, 51–59. [Google Scholar] [CrossRef]
- Maarif, M.R.; Listyanda, R.F.; Kang, Y.-S.; Syafrudin, M. Artificial Neural Network Training Using Structural Learning with Forgetting for Parameter Analysis of Injection Molding Quality Prediction. Information 2022, 13, 488. [Google Scholar] [CrossRef]
- Prananda, A.R.; Frannita, E.L.; Hutami, A.H.T.; Maarif, M.R.; Fitriyani, N.L.; Syafrudin, M. Retinal Nerve Fiber Layer Analysis Using Deep Learning to Improve Glaucoma Detection in Eye Disease Assessment. Appl. Sci. 2022, 13, 37. [Google Scholar] [CrossRef]
- Leondes, C.T. Expert Systems: The Technology of Knowledge Management and Decision Making for the 21st Century; Leondes, C.T., Ed.; Academic Press: San Diego, CA, USA, 2002; ISBN 978-0-12-443880-4. [Google Scholar]
- Reshi, Y.S.; Khan, R.A. Creating Business Intelligence through Machine Learning: An Effective Business Decision Making Tool. Available online: https://www.iiste.org/Journals/index.php/IKM/article/view/10380/10579 (accessed on 24 December 2022).
- Rhem, A.J. AI Ethics and Its Impact on Knowledge Management. AI Ethics 2021, 1, 33–37. [Google Scholar] [CrossRef]
- Fitriyani, N.L.; Syafrudin, M.; Ulyah, S.M.; Alfian, G.; Qolbiyani, S.L.; Anshari, M. A Comprehensive Analysis of Chinese, Japanese, Korean, US-PIMA Indian, and Trinidadian Screening Scores for Diabetes Risk Assessment and Prediction. Mathematics 2022, 10, 4027. [Google Scholar] [CrossRef]
- Kadaba, N.; Nygard, K.E.; Juell, P.L. Integration of Adaptive Machine Learning and Knowledge-Based Systems for Routing and Scheduling Applications. Expert Syst. Appl. 1991, 2, 15–27. [Google Scholar] [CrossRef]
- Lounis, H. Knowledge-Based Systems Verification: A Machine Learning-Based Approach. Expert Syst. Appl. 1995, 8, 381–389. [Google Scholar] [CrossRef]
- Adriaans, P. From Knowledge-Based to Skill-Based Systems: Sailing as a Machine Learning Challenge. In Knowledge Discovery in Databases: PKDD 2003; Lecture Notes in Computer Science; Lavrač, N., Gamberger, D., Todorovski, L., Blockeel, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2003; Volume 2838, pp. 1–8. ISBN 978-3-540-20085-7. [Google Scholar]
- Tontiwachwuthikul, P.; Chan, C.W.; Zeng, F.; Liang, Z.; Sema, T.; Min, C. Recent Progress and New Developments of Applications of Artificial Intelligence (AI), Knowledge-Based Systems (KBS), and Machine Learning (ML) in the Petroleum Industry. Petroleum 2020, 6, 319–320. [Google Scholar] [CrossRef]
- Brahami, M.; Zahra, A.F.; Mohammed, S.; Semaoune, K.; Matta, N. Forecasting Supply Chain Demand Approach Using Knowledge Management Processes and Supervised Learning Techniques. Int. J. Inf. Syst. Supply Chain. Manag. 2022, 15, 1–21. [Google Scholar] [CrossRef]
- dos Santos Vieira, R.; do Nascimento, H.A.D.; da Silva, W.B. The Application of Machine Learning to Problems in Graph Drawing a Literature Review. Available online: https://www.researchgate.net/profile/Hugo-Nascimento-7/publication/273945668_The_Application_of_Machine_Learning_to_Problems_in_Graph_Drawing_A_Literature_Review/links/5510b4b40cf2a8dd79beaa22/The-Application-of-Machine-Learning-to-Problems-in-Graph-Drawing-A-Literature-Review.pdf (accessed on 24 December 2022).
- Onwujekwe, G.; Osei-Bryson, K.M.; Ngwum, N. A Framework for Capturing and Analyzing Unstructured and Semi-Structured Data for a Knowledge Management System. Available online: https://arxiv.org/ftp/arxiv/papers/2007/2007.07102.pdf (accessed on 24 December 2022).
- Thakur, N.; Parameshachari, B.D. Human-Computer Interaction and Beyond: Advances Towards Smart and Interconnected Environments (Part I); Thakur, N., Parameshachari, B.D., Eds.; Bentham Science Publishers: Sharjah, the United Arab Emirates, 2021; ISBN 978-981-4998-81-9. [Google Scholar]
- Nonaka, I.; Takeuchi, H. The Knowledge-Creating Company: How Japanese Companies Create the Dynamics of Innovation; Oxford University Press: New York, NY, USA, 1995; ISBN 978-0-19-509269-1. [Google Scholar]
- Line, N.D.; Dogru, T.; El-Manstrly, D.; Buoye, A.; Malthouse, E.; Kandampully, J. Control, Use and Ownership of Big Data: A Reciprocal View of Customer Big Data Value in the Hospitality and Tourism Industry. Tour. Manag. 2020, 80, 104106. [Google Scholar] [CrossRef]
- Bresciani, S.; Ciampi, F.; Meli, F.; Ferraris, A. Using Big Data for Co-Innovation Processes: Mapping the Field of Data-Driven Innovation, Proposing Theoretical Developments and Providing a Research Agenda. Int. J. Inf. Manag. 2021, 60, 102347. [Google Scholar] [CrossRef]
- Anshari, M.; Almunawar, M.N.; Lim, S.A.; Al-Mudimigh, A. Customer Relationship Management and Big Data Enabled: Personalization & Customization of Services. Appl. Comput. Inform. 2019, 15, 94–101. [Google Scholar] [CrossRef]
- Al-Jarrah, O.Y.; Yoo, P.D.; Muhaidat, S.; Karagiannidis, G.K.; Taha, K. Efficient Machine Learning for Big Data: A Review. Big Data Res. 2015, 2, 87–93. [Google Scholar] [CrossRef]
- Siregar, Z.M.E.; Suryana, E.A.; Ahman, E.; Senen, S.H. Does Knowledge Management Enhance Innovation: A Literature Review. Available online: https://www.researchgate.net/profile/Zulkifli-Siregar/publication/336995121_Does_Knowledge_Management_Enhance_Innovation_A_Literature_Review/links/5dbe957f4585151435e2705b/Does-Knowledge-Management-Enhance-Innovation-A-Literature-Review.pdf (accessed on 25 December 2022).
- Abubakar, A.M.; Elrehail, H.; Alatailat, M.A.; Elçi, A. Knowledge Management, Decision-Making Style and Organizational Performance. J. Innov. Knowl. 2019, 4, 104–114. [Google Scholar] [CrossRef]
- Dahbur, K.; Bashabsheh, Z.; Bashabsheh, D. Assessment of Security Awareness: A Qualitative and Quantitative Study. Available online: http://americanscholarspress.us/journals/IMR/pdf/IMR-1-2017.%20pdf/IMR-v13n1art4.pdf (accessed on 25 December 2022).
- Ishwarappa; Anuradha, J. A Brief Introduction on Big Data 5Vs Characteristics and Hadoop Technology. Procedia Comput. Sci. 2015, 48, 319–324. [Google Scholar] [CrossRef] [Green Version]
- Younas, M. Research Challenges of Big Data. Serv. Oriented Comput. Appl. 2019, 13, 105–107. [Google Scholar] [CrossRef] [Green Version]
- Salkuti, S.R. A Survey of Big Data and Machine Learning. Int. J. Electr. Comput. Eng. 2020, 10, 575. [Google Scholar] [CrossRef] [Green Version]
- Rutledge, R.B.; Chekroud, A.M.; Huys, Q.J. Machine Learning and Big Data in Psychiatry: Toward Clinical Applications. Curr. Opin. Neurobiol. 2019, 55, 152–159. [Google Scholar] [CrossRef]
- Tyagi, A.K.; Rekha, G. Machine Learning with Big Data. In Proceedings of the International Conference on Sustainable Computing in Science, Technology and Management (SUSCOM), Jaipur, India, 26–28 February 2019. [Google Scholar] [CrossRef]
- Najafabadi, M.M.; Villanustre, F.; Khoshgoftaar, T.M.; Seliya, N.; Wald, R.; Muharemagic, E. Deep Learning Applications and Challenges in Big Data Analytics. J. Big Data 2015, 2, 1. [Google Scholar] [CrossRef] [Green Version]
- Jurado, J.L.; CastañoTrochez, A.; Ordoñez, H.; Ordoñez, A. Knowledge Transfer in Software Companies Based on Machine Learning. In Trends and Applications in Software Engineering. In Advances in Intelligent Systems and Computing; Mejia, J., Muñoz, M., Rocha, Á., A. Calvo-Manzano, J., Eds.; Springer International Publishing: Cham, Switzerland, 2020; Volume 1071, pp. 131–140. ISBN 978-3-030-33546-5. [Google Scholar]
- Sekkal, H.; Amrous, N.; Bennani, S. Knowledge Management and Reuse in Virtual Learning Communities. Int. J. Emerg. Technol. Learn. 2019, 14, 23. [Google Scholar] [CrossRef] [Green Version]
- Anshari, M.; Hamdan, M. Understanding Knowledge Management and Upskilling in Fourth Industrial Revolution: Transformational Shift and SECI Model. VINE J. Inf. Knowl. Manag. Syst. 2022, 52, 373–393. [Google Scholar] [CrossRef]
- Anshari, M.; Nurmaini, S.; Lim, S.A.; Caesarendra, W. Big Data and Big Challenge for Knowledge Management. In Proceedings of the 2019 International Conference on Electrical Engineering and Computer Science (ICECOS), Batam Island, Indonesia, 2–3 October 2019; pp. 19–23. [Google Scholar]
Authors & Year | Summary of Findings |
---|---|
Lv et al. (2021) [42], Gammack et al. (2022) [43], Delen et al. (2013) [44], Simon et al. (2022) [45], Terán-Bustamante et al. (2021) [46], Kumar et al. (2020) [47] | ML with AI support KMS can reach a high accuracy while ensuring the error, with apparent acceleration effect. |
Miklosik and Evans (2020) [48], Diaconita (2014) [49], Phan et al. (2022) [50], Kruskal et al. (2017) [51] | The impact of big data and machine learning (ML) on digital transformation. Design knowledge base to grow towards big data using ML. |
Ford (1989) [52], Birzniece (2011) [53], Zbuchea et al. (2019) [54], Sahay et al. (2021) [55], Gacanin (2019) [56], Maarif et al. (2022) [57], Prananda et al. (2022) [58] | Developments in artificial intelligence is increasingly possible to store not only information but also knowledge as an exploitable resource. |
Leondes (2001) [59], Reshi and Khan (2014) [60], Rhem (2021) [61], Anshari et al. (2022) [7], Fitriyani et al. (2022) [62] | Linking machine learning with business intelligence is crucial not just for business decision-making but also for the entirety of business intelligence and new knowledge creation. |
Kadaba et al. (1991) [63], Lounis (1995) [64], Adriaans (2003) [65], Tontiwachwuthikul et al. (2021) [66] | The combination of knowledge-based systems, artificial intelligence, and adaptive genetic searches is shown to be synergistic. |
Terán-Bustamante et al. (2021) [46], Brahami et al. (2022) [67], Kumar et al. (2020) [47] | Knowledge management through Bayesian networks with machine learning techniques allows for the generation of value. |
dos Santos Vieira et al. (2015) [68], Onwujekwe et al. (2020) [69], Thakur and Parameshachari (2022) [70] | Data visualisation, machine learning, and KM. Unstructured data using machine learning techniques and integrates into knowledge management systems. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anshari, M.; Syafrudin, M.; Tan, A.; Fitriyani, N.L.; Alas, Y. Optimisation of Knowledge Management (KM) with Machine Learning (ML) Enabled. Information 2023, 14, 35. https://doi.org/10.3390/info14010035
Anshari M, Syafrudin M, Tan A, Fitriyani NL, Alas Y. Optimisation of Knowledge Management (KM) with Machine Learning (ML) Enabled. Information. 2023; 14(1):35. https://doi.org/10.3390/info14010035
Chicago/Turabian StyleAnshari, Muhammad, Muhammad Syafrudin, Abby Tan, Norma Latif Fitriyani, and Yabit Alas. 2023. "Optimisation of Knowledge Management (KM) with Machine Learning (ML) Enabled" Information 14, no. 1: 35. https://doi.org/10.3390/info14010035
APA StyleAnshari, M., Syafrudin, M., Tan, A., Fitriyani, N. L., & Alas, Y. (2023). Optimisation of Knowledge Management (KM) with Machine Learning (ML) Enabled. Information, 14(1), 35. https://doi.org/10.3390/info14010035