Security Awareness in Smart Homes and Internet of Things Networks through Swarm-Based Cybersecurity Penetration Testing
Abstract
:1. Introduction
2. Related Work
2.1. Exploitable IoT
2.2. Cybersecurity Measures
2.3. Autonomous Penetration Testing
2.4. Research Gaps
2.5. Problem Statement and Research Question
3. Materials and Methods
3.1. Hypotheses
3.2. Research Objectives
3.3. Simulation Environment
3.4. Algorithms
3.4.1. Linear Penetration Testing Algorithm
3.4.2. Queue-Based Swarm Penetration Testing Algorithm
3.4.3. PSO-Based Swarm Penetration Testing Algorithm
3.5. Experiments
3.5.1. Smart Home Scale
3.5.2. Smart Building Scale
4. Results
4.1. Smart Home Scale
4.2. Smart Building Scale
5. Discussion
6. Limitations
7. Conclusions
8. Future Research
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Berte, D.-R. Defining the IoT. Proc. Int. Conf. Bus. Excell. 2018, 12, 118–128. [Google Scholar] [CrossRef]
- Al-Sarawi, S.; Anbar, M.; Abdullah, R.; Al Hawari, A.B. Internet of things market analysis forecasts, 2020–2030. In Proceedings of the 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4), London, UK, 27–28 July 2020; pp. 449–453. [Google Scholar] [CrossRef]
- Kordestani, M.A.; Bourdoucen, H. A Survey on Embedded Open Source System Software for The Internet of Things; Free and Open Source Software Conference (FOSSC-17): Muscat, Oman, 2017; p. 6. [Google Scholar]
- Fraunhofer IOSB Industrial Internet of Things (IioT). Fraunhofer IOSB. Available online: https://www.iosb.fraunhofer.de/en/business-units/automation-digitalization/fields-of-application/industrial-internet-of-things—iiot-.html (accessed on 25 September 2023).
- Kott, A.; Swami, A.; West, B.J. The Internet of Battle Things. Computer 2016, 49, 70–75. [Google Scholar] [CrossRef]
- Neshenko, N.; Bou-Harb, E.; Crichigno, J.; Kaddoum, G.; Ghani, N. Demystifying IoT Security: An Exhaustive Survey on IoT Vulnerabilities and a First Empirical Look on Internet-Scale IoT Exploitations. IEEE Commun. Surv. Tutor. 2019, 21, 2702–2733. [Google Scholar] [CrossRef]
- Miller, C. Lessons learned from hacking a car. IEEE Des. Test 2019, 36, 7–9. [Google Scholar] [CrossRef]
- Block, C.C. Muddy Waters Capital Report. August 2016. Available online: https://d.muddywatersresearch.com/content/uploads/2016/08/MW_STJ_08252016_2.pdf (accessed on 25 September 2023).
- Dobbins, R.; Bjarnason, S. Mirai IoT Botnet Description and DDoS Attack Mitigation; Netscout: Westford, MA, USA, 2016; Available online: https://www.netscout.com/blog/asert/mirai-iot-botnet-description-and-ddos-attack-mitigation (accessed on 25 September 2023).
- You, I.; Kwon, S.; Choudhary, G.; Sharma, V.; Seo, J. An Enhanced LoRaWAN Security Protocol for Privacy Preservation in IoT with a Case Study on a Smart Factory-Enabled Parking System. Sensors 2018, 18, 1888. [Google Scholar] [CrossRef] [PubMed]
- Kaur, G.; Habibi Lashkari, Z.; Habibi Lashkari, A. Understanding Cybersecurity Management in FinTech: Challenges, Strategies, and Trends. In Future of Business and Finance; Springer International Publishing: Cham, Switzerland, 2021; ISBN 978-3-030-79915-1. [Google Scholar]
- Tuan, T.A.; Long, H.V.; Son, L.H.; Kumar, R.; Priyadarshini, I.; Son, N.T.K. Performance evaluation of Botnet DDoS attack detection using machine learning. Evol. Intel. 2020, 13, 283–294. [Google Scholar] [CrossRef]
- Martínez Garre, J.T.; Gil Pérez, M.; Ruiz-Martínez, A. A novel Machine Learning-based approach for the detection of SSH botnet infection. Future Gener. Comput. Syst. 2021, 115, 387–396. [Google Scholar] [CrossRef]
- Panimalar, P. Particle Swarm Optimization Algorithm Based Artificial Neural Network for Botnet Detection. Wirel. Pers. Commun. 2021, 121, 2655–2666. [Google Scholar] [CrossRef]
- Shebli, H.M.Z.A.; Beheshti, B.D. A study on penetration testing process and tools. In Proceedings of the 2018 IEEE Long Island Systems, Applications and Technology Conference (LISAT), Farmingdale, NY, USA, 4 May 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–7. [Google Scholar] [CrossRef]
- Engebretson, P. The Basics of Hacking and Penetration Testing: Ethical Hacking and Penetration Testing Made Easy, 2nd ed.; Elsevie: Amsterdam, The Netherlands, 2013; ISBN 978-0-12-411644-3. [Google Scholar]
- Epling, L.; Hinkel, B.; Hu, Y. Penetration testing in a box. In Proceedings of the 2015 Information Security Curriculum Development Conference, Kennesaw, Georgia, 10 October 2015; ACM: New York, NY, USA, 2015; pp. 1–4. [Google Scholar] [CrossRef]
- Hattersley, L. Raspberry Pi 4, 3A+, Zero W-specs, Benchmarks & Thermal Tests. The MagPi Magazine. Available online: https://magpi.raspberrypi.com/articles/raspberry-pi-specs-benchmarks (accessed on 6 May 2023).
- Florez Cardenas, M.; Acar, G. Ethical Hacking of a Smart Fridge: Evaluating the Cybersecurity of an IoT Device through Gray Box Hacking, no. 2021:451. In TRITA-EECS-EX. KTH; School of Electrical Engineering and Computer Science (EECS): Islamabad, Pakistan, 2021; p. 46. [Google Scholar]
- Radholm, F.; Abefelt, N. Ethical Hacking of an IoT-device: Threat Assessment and Penetration Testing: A Survey on Security of a Smart Refrigerator no. 2020:476. In TRITA-EECS-EX. KTH; School of Electrical Engineering and Computer Science (EECS): Islamabad, Pakistan, 2020; p. 66. [Google Scholar]
- Majchrowicz, M.; Duch, P. Analysis of Tizen Security Model and Ways of Bypassing It on Smart TV Platform. Appl. Sci. 2021, 11, 12031. [Google Scholar] [CrossRef]
- Beyer, U.; Doll, T.; Schiller, T. Armed Conflicts in the 21st Century; Self-Publishing: Germany, 2022; ISBN 979-8849427249. [Google Scholar]
- Merat, N.; Seppelt, B.; Louw, T.; Engström, J.; Lee, J.D.; Johansson, E.; Green, C.A.; Katazaki, S.; Monk, C.; Itoh, M.; et al. The “Out-of-the-Loop” concept in automated driving: Proposed definition, measures and implications. Cogn. Tech. Work. 2019, 21, 87–98. [Google Scholar] [CrossRef]
- Abu-Dabaseh, F.; Alshammari, E. Automated Penetration Testing: An Overview. In Computer Science & Information Technology; Academy & Industry Research Collaboration Center (AIRCC): Amman, Jordan, 2018; pp. 121–129. [Google Scholar] [CrossRef]
- Grammatikis, P.R.; Sarigiannidis, P.; Dalamagkas, C.; Spyridis, Y.; Lagkas, T.; Efstathopoulos, G.; Sesis, A.; Pavon, I.L.; Burgos, R.T.; Diaz, R.; et al. SDN-Based Resilient Smart Grid: The SDN-microSENSE Architecture. Digital 2021, 1, 173–187. [Google Scholar] [CrossRef]
- Radoglou-Grammatikis, P.; Sarigiannidis, P.; Iturbe, E.; Rios, E.; Martinez, S.; Sarigiannidis, A.; Eftathopoulos, G.; Spyridis, Y.; Sesis, A.; Vakakis, N.; et al. SPEAR SIEM: A Security Information and Event Management system for the Smart Grid. Comput. Netw. 2021, 193, 108008. [Google Scholar] [CrossRef]
- Phillips, C.; Swiler, L.P. A graph-based system for network-vulnerability analysis. In Proceedings of the 1998 Workshop on New Security Paradigms—NSPW ’98, Charlottesville, VA, USA, 26 September 1998; ACM Press: New York, NY, USA, 1998; pp. 71–79. [Google Scholar] [CrossRef]
- Sabur, A.; Chowdhary, A.; Huang, D.; Alshamrani, A. Toward scalable graph-based security analysis for cloud networks. Comput. Netw. 2022, 206, 108795. [Google Scholar] [CrossRef]
- Kachare, G.P.; Choudhary, G.; Shandilya, S.K.; Sihag, V. Sandbox Environment for Real Time Malware Analysis of IoT Devices. In Communications in Computer and Information Science; Springer: Berlin/Heidelberg, Germany, 2022; Volume 1604. [Google Scholar] [CrossRef]
- Skinner, B.F. Science and Human Behavior; Simon and Schuster: New York, NY, USA, 1965. [Google Scholar]
- Sutton, R.S.; Barto, A.G. Reinforcement Learning, Second Edition: An Introduction; MIT Press: Cambridge, MA, USA, 2018. [Google Scholar]
- Chowdhary, A.; Huang, D.; Mahendran, J.S.; Romo, D.; Deng, Y.; Sabur, A. Autonomous Security Analysis and Penetration Testing. In Proceedings of the 2020 16th International Conference on Mobility, Sensing and Networking (MSN), Tokyo, Japan, 19 December 2020; pp. 508–515. [Google Scholar] [CrossRef]
- Schwartz, J. Autonomous Penetration Testing using Reinforcement Learning; The University of Queensland. arXiv 2018, arXiv:1905.05965. [Google Scholar]
- Confido, A.; Ntagiou, E.V.; Wallum, M. Reinforcing Penetration Testing Using AI. In Proceedings of the 2022 IEEE Aerospace Conference (AERO), Big Sky, MT, USA, 5–12 March 2022; IEEE: Piscataway, NJ, USA; pp. 1–15. [Google Scholar] [CrossRef]
- Baillie, C.; Standen, M.; Schwartz, J.; Docking, M.; Bowman, D.; Kim, J. CybORG: An. Autonomous Cyber Operations Research Gym. arXiv 2020, arXiv:2002.10667. [Google Scholar]
- Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.; Schulman, J.; Tang, J.; Zaremba, W. OpenAI Gym. arXiv 2016, arXiv:1606.01540. [Google Scholar]
- Standen, M.; Lucas, M.; Bowman, D.; Richer, T.J.; Kim, J.; Marriott, D. CybORG: A Gym for the Development of Autonomous Cyber Agents. arxiv 2021, arXiv:2108.09118. [Google Scholar]
- Hammar, K.; Stadler, R. Finding Effective Security Strategies through Reinforcement Learning and Self-Play; IEEE: Izmir, Turkey, 2020. [Google Scholar] [CrossRef]
- Campbell, R.G. Autonomous Network Defence Using Multi-Agent Reinforcement Learning and Self-Play. Master of Science; San Jose State University: San Jose, CA, USA, 2022. [Google Scholar] [CrossRef]
- Cengiİz, E.; Gök, M. Reinforcement Learning Applications in Cyber Security: A Review. SAUJS 2023, 27, 481–503. [Google Scholar] [CrossRef]
- Mondesire, S. CyberSim. 2023. Available online: https://github.com/DrMondesire/cybersim (accessed on 25 September 2023).
- Scarfone, K.A.; Souppaya, M.P.; Cody, A.; Orebaugh, A.D. NIST SP 800-115; Technical Guide to Information Security Testing and Assessment; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2008. [Google Scholar] [CrossRef]
- Chen, Q.; Peng, Y.; Zhang, M.; Yin, Q. Application Analysis on PSO Algorithm in the Discrete Optimization Problems. J. Phys. Conf. Ser. 2021, 2078, 012018. [Google Scholar] [CrossRef]
- Kulkarni, K.V. 14 Common Network Ports you Should Know|Opensource.com. Available online: https://opensource.com/article/18/10/common-network-ports (accessed on 4 May 2023).
- Ab Wahab, M.N.; Nefti-Meziani, S.; Atyabi, A. A Comprehensive Review of Swarm Optimization Algorithms. PLoS ONE 2015, 10, e0122827. [Google Scholar] [CrossRef]
- Chakraborty, A.; Kar, A.K. Nature-Inspired Computing and Optimization: Theory and Applications; Patnaik, S., Yang, X.-S., Nakamatsu, K., Eds.; Modeling and Optimization in Science and Technologies; Springer International Publishing: Cham, Switzerland, 2017; Volume 10, ISBN 978-3-319-50919-8. [Google Scholar]
- Karaboga, D. An Idea Based on Honey Bee Swarm for Numerical Optimization; Erciyes University: Kayseri, Turkey, 2005. [Google Scholar]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef]
- Meraihi, Y.; Gabis, A.B.; Mirjalili, S.; Ramdane-Cherif, A. Grasshopper Optimization Algorithm: Theory, Variants, and Applications. IEEE Access 2021, 9, 50001–50024. [Google Scholar] [CrossRef]
- Mell, P.; Grance, T. NIST SP 800-51; Use of the Common Vulnerabilities and Exposures (CVE) Vulnerability Naming Scheme; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2002. [Google Scholar] [CrossRef]
- Laud, A.D. Theory and Application of Reward Shaping in Reinforcement Learning; University of Illinois at Urbana-Champaign: Champaign, IL, USA, 2004; p. 102. [Google Scholar]
- Kuwabara, Y.; Yokotani, T.; Mukai, H. Hardware emulation of IoT devices and verification of application behavior. In Proceedings of the 2017 23rd Asia-Pacific Conference on Communications (APCC), Perth, Australia, 11 December 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Okano, M.T. IOT and Industry 4.0: The Industrial New Revolution. Int. Conf. Manag. Inf. Systems. 2017, 25, 26. [Google Scholar]
Device No. | IP | Port | Service | Vulnerability |
---|---|---|---|---|
1 | 192.168.0.1 | NONE | ping | NONE |
2 | 192.168.0.2 | NONE | ping | NONE |
3 | 192.168.0.20 | 443 | apache | sql injection |
3 | 192.168.0.20 | 22 | ssh | NONE |
3 | 192.168.0.20 | 43 | whois | NONE |
4 | 192.168.0.21 | NONE | ping | NONE |
5 | 192.168.0.22 | 22 | ssh | password crack |
6 | 192.168.0.23 | NONE | ssh | NONE |
7 | 192.168.0.24 | 80 | apache | NONE |
8 | 192.168.0.30 | 80 | apache | NONE |
9 | 192.168.0.31 | 80 | apache | NONE |
10 | 192.168.0.32 | 80 | apache | sql injection |
11 | 192.168.0.40 | NONE | ping | NONE |
12 | 192.168.0.60 | NONE | ping | NONE |
13 | 192.168.0.61 | NONE | ping | NONE |
14 | 192.168.0.62 | NONE | ping | NONE |
15 | 192.168.0.63 | NONE | ping | NONE |
16 | 192.168.0.64 | NONE | ping | NONE |
17 | 192.168.0.65 | NONE | ping | NONE |
18 | 192.168.0.66 | NONE | ping | NONE |
19 | 192.168.0.67 | NONE | ping | NONE |
20 | 192.168.0.68 | NONE | ping | NONE |
21 | 192.168.0.69 | NONE | ping | NONE |
22 | 192.168.0.101 | 3306 | mysql | default password |
22 | 192.168.0.101 | 43 | whois | NONE |
23 | 192.168.0.102 | 43 | whois | NONE |
24 | 192.168.0.110 | 43 | whois | NONE |
25 | 192.168.0.111 | 43 | whois | NONE |
26 | 192.168.0.200 | NONE | ping | NONE |
27 | 192.168.0.201 | NONE | ping | NONE |
28 | 192.168.0.202 | NONE | ping | NONE |
29 | 192.168.0.203 | NONE | ping | NONE |
30 | 192.168.0.204 | NONE | ping | NONE |
Port No. | Usage |
---|---|
20 | File Transfer Protocol (FTP) |
21 | File Transfer Protocol (FTP) |
22 | Secure Shell (SSH) |
23 | Telnet |
25 | Simple Mail Transfer Protocol (SMTP) |
53 | Domain Name System (DNS) service |
80 | Hypertext Transfer Protocol (HTTP) |
8080 | Hypertext Transfer Protocol (HTTP) |
110 | Post Office Protocol (POP3) |
119 | Network News Transfer Protocol (NNTP) |
123 | Network Time Protocol (NTP) |
143 | Internet Message Access Protocol (IMAP) |
161 | Simple Network Management Protocol (SNMP) |
194 | Internet Relay Chat (IRC) |
443 | HTTP Secure (HTTPS) HTTP over TLS/SSL |
3306 | MySQL |
20 | File Transfer Protocol (FTP) |
21 | File Transfer Protocol (FTP) |
22 | Secure Shell (SSH) |
23 | Telnet |
25 | Simple Mail Transfer Protocol (SMTP) |
Action | Success Probability |
---|---|
ping | 0.95 |
port scan | 0.95 |
netstat | 0.95 |
sql injection | 0.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schiller, T.; Caulkins, B.; Wu, A.S.; Mondesire, S. Security Awareness in Smart Homes and Internet of Things Networks through Swarm-Based Cybersecurity Penetration Testing. Information 2023, 14, 536. https://doi.org/10.3390/info14100536
Schiller T, Caulkins B, Wu AS, Mondesire S. Security Awareness in Smart Homes and Internet of Things Networks through Swarm-Based Cybersecurity Penetration Testing. Information. 2023; 14(10):536. https://doi.org/10.3390/info14100536
Chicago/Turabian StyleSchiller, Thomas, Bruce Caulkins, Annie S. Wu, and Sean Mondesire. 2023. "Security Awareness in Smart Homes and Internet of Things Networks through Swarm-Based Cybersecurity Penetration Testing" Information 14, no. 10: 536. https://doi.org/10.3390/info14100536
APA StyleSchiller, T., Caulkins, B., Wu, A. S., & Mondesire, S. (2023). Security Awareness in Smart Homes and Internet of Things Networks through Swarm-Based Cybersecurity Penetration Testing. Information, 14(10), 536. https://doi.org/10.3390/info14100536