A Survey of Machine Learning Assisted Continuous-Variable Quantum Key Distribution
Abstract
:1. Introduction
2. CV-QKD Overview
- 1.
- Alice prepares and transmits states encoded on the signal across a channel (e.g., optical fiber or FSO).
- 2.
- Bob measures or of the signal using his homodyne detector.
- 3.
- Key sifting is performed, whereby Alice and Bob decide which variables are to be used for key generation, discarding any uncorrelated measurements.
- 4.
- Parameter estimation is undertaken to analyze the system parameters (transmissivity and excess noise), from the amount of mutual information shared by Alice and Bob can be determined, as well as how much information Eve has access to.
- 5.
- Information reconciliation is carried out, in which, after the digitization of the symbols (using some pre-assigned scheme), an error correction code is used to correct differences in the keys held by Alice and Bob.
- 6.
- A confirmation protocol (usually via the use of hash functions) is used to bound the probability that the error correction has failed.
- 7.
- Finally, privacy amplification is performed on the keys, shortening their length, to reduce Eve’s information on the key to a pre-assigned negligible level (again, usually via hash functions).
3. Machine Learning Methods
3.1. Regression
3.2. Classification
3.3. Time Evolution
3.4. Unsupervised Learning
4. Gaussian Modulated Coherent State CV-QKD
5. Discretely Modulated CV-QKD
6. Parameter Estimation and Optimization
7. Key Sifting, Reconciliation, and Key Rate Estimation
8. Discussion
8.1. Assumptions
8.2. ML Architecture
9. Suggested Future Work
10. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CNN | Convolutional neural network |
CV-QKD | Continuous-variable quantum key distribution |
DBSCAN | Density-based spatial clustering of applications with noise |
DM | Discretely modulated |
FSO | Free-space optical |
GMCS | Gaussian modulated coherent state |
KF | Kalman filter |
KNN | K-nearest neighbor |
LSTM | Long short-term memory networks |
ML | Machine learning |
MLP | Multi-layer perceptron |
NN | Neural network |
Probability density function | |
PSK | Phase-shift keying |
QAM | Quadrature amplitude modulation |
RLO | Real local oscillator |
RQNN | Recurrent quantum neural network |
SVR | Support vector regression |
TLO | Transmitted local oscillator |
Appendix A. ML-Assisted CV-QKD Literature Summary
Work | Objective | ML Algorithm | Algorithm Comparisons | Channel Type | Assumptions |
---|---|---|---|---|---|
[5] | reduction | Bayesian inference + unscented KF | Standard reference method, extended KF | Optical fiber | Asymptotic key rate, time-domain, experimental, and simulation |
[6] | reduction | Bayesian inference + unscented KF | Constant modulus algorithm | Optical fiber | Asymptotic key rate, time-domain, and experimental |
[7] | reduction | Bayesian inference + unscented KF | - | Optical fiber | Asymptotic key rate, time-domain, and experimental |
[8] | reduction | Bayesian inference + unscented KF | - | Optical fiber | Asymptotic key rate, time-domain, and experimental |
[9] | reduction | Bayesian inference + unscented KF | - | Optical fiber | Asymptotic key rate, time-domain, and experimental |
[10] | reduction | Bayesian inference + unscented KF | - | Optical fiber | Asymptotic and composable key rate, time-domain, and experimental |
[11] | reduction | Bayesian inference + unscented KF | - | Optical fiber | Asymptotic key rate, time-domain, and experimental |
[13] | reduction | CNN | KF | Optical fiber | No time-domain, simulation |
[15] | reduction | LSTM | - | Optical fiber | Finite key rate, time-domain, and experimental |
[14] | Noise filtering | LSTM + autoencoder | - | Optical fiber | Finite key rate, time-domain, and simulation |
[12] | Noise filtering | KNN + MLP | - | Optical fiber, FSO | Asymptotic key rate, time-domain, experimental, and simulation |
[16] | Wavefront correction | CNN | - | FSO (satellite-to-ground) | Asymptotic key rate, no time-domain, and simulation |
[21] | State classification | Distance-weighted KNN | - | Optical fiber | Finite key rate, no time-domain, and simulation |
[22] | State classification | Multi-label classification algorithm (KNN) | - | Optical fiber | Asymptotic key rate, no time-domain, and simulation |
[24] | State classification | Quantum KNN | Quadrature PSK, 8PSK | Optical fiber | Asymptotic key rate, no time-domain, and simulation |
[17] | Noise filtering | Bayesian inference + particle smoother | - | Optical fiber | Asymptotic key rate, time-domain, experimental, and simulation |
[18] | Noise filtering | Bayesian inference + particle smoother | - | Optical fiber | Asymptotic key rate, time-domain, and experimental |
[19] | Noise filtering | Bayesian inference + particle smoother | - | Optical fiber | Asymptotic key rate, time-domain, and experimental |
[23] | Modulation format identification | DBSCAN | KNN, BIRCH, and CLARANS | Optical fiber | No time-domain, and simulation |
[20] | Noise filtering | RQNN | KF, MLP | FSO | Time-domain, experimental |
[25] | Parameter estimation | SVR | - | Optical fiber | Finite key rate, time-domain, and experimental |
[26] | Parameter optimization | MLP | - | FSO | No time-domain, simulation |
[55] | Parameter estimation | MLP | Conventional scheme | Optical fiber | Asymptotic key rate, no time-domain |
[28] | Key sifting | Isolation forest | Wiener filter, COPOD, HBOS, LOF, KNN, MCD, ABOD, and PCA | Optical fiber | Finite key rate, no time-domain, and simulation |
[29] | Reconciliation | MLP, deep NN | - | Optical fiber | No time-domain, simulation |
[30] | Key rate estimation | MLP | - | Optical fiber | Asymptotic key rate, no time-domain, and simulation |
[31] | Key rate estimation | MLP + Parzen estimator | - | Optical fiber | Asymptotic key rate, no time-domain, and simulation |
References
- Chen, Z.; Wang, X.; Yu, S.; Li, Z.; Guo, H. Continuous-mode quantum key distribution with digital signal processing. NPJ Quantum Inf. 2023, 9, 28. [Google Scholar] [CrossRef]
- Grosshans, F.; Grangier, P. Continuous variable quantum cryptography using coherent states. Phys. Rev. Lett. 2002, 88, 057902. [Google Scholar] [CrossRef]
- Jouguet, P.; Kunz-Jacques, S.; Diamanti, E.; Leverrier, A. Analysis of imperfections in practical continuous-variable quantum key distribution. Phys. Rev. A 2012, 86, 032309. [Google Scholar] [CrossRef]
- Corvaja, R. Phase-noise limitations in continuous-variable quantum key distribution with homodyne detection. Phys. Rev. A 2017, 95, 022315. [Google Scholar] [CrossRef]
- Chin, H.M.; Jain, N.; Zibar, D.; Andersen, U.L.; Gehring, T. Machine learning aided carrier recovery in continuous-variable quantum key distribution. NPJ Quantum Inf. 2021, 7, 20. [Google Scholar] [CrossRef]
- Chin, H.M.; Hajomer, A.A.; Jain, N.; Andersen, U.L.; Gehring, T. Machine learning based joint polarization and phase compensation for CV-QKD. In Proceedings of the Optical Fiber Communication Conference (OFC), San Diego, CA, USA, 24–28 March 2023; Optica Publishing Group: Washington, DC, USA, 2023. [Google Scholar]
- Hajomer, A.A.; Mani, H.; Jain, N.; Chin, H.M.; Andersen, U.L.; Gehring, T. Continuous-Variable Quantum Key Distribution Over 60 km Optical Fiber with Real Local Oscillator. In Proceedings of the European Conference on Optical Communication (ECOC), Basel, Switzerland, 18–22 September 2022; Optica Publishing Group: Washington, DC, USA, 2022. [Google Scholar]
- Hajomer, A.A.; Derkach, I.; Jain, N.; Chin, H.M.; Andersen, U.L.; Gehring, T. Long-distance continuous-variable quantum key distribution over 100 km fiber with local local oscillator. arXiv 2023, arXiv:2305.08156. [Google Scholar]
- Hajomer, A.A.; Jain, N.; Mani, H.; Chin, H.M.; Andersen, U.L.; Gehring, T. Modulation leakage-free continuous-variable quantum key distribution. NPJ Quantum Inf. 2022, 8, 136. [Google Scholar] [CrossRef]
- Jain, N.; Chin, H.M.; Mani, H.; Lupo, C.; Nikolic, D.S.; Kordts, A.; Pirandola, S.; Pedersen, T.B.; Kolb, M.; Ömer, B.; et al. Practical continuous-variable quantum key distribution with composable security. Nat. Commun. 2022, 13, 4740. [Google Scholar] [CrossRef]
- Jain, N.; Derkach, I.; Chin, H.M.; Filip, R.; Andersen, U.L.; Usenko, V.C.; Gehring, T. Modulator vulnerability in continuous-variable quantum key distribution. In Proceedings of the Emerging Imaging and Sensing Technologies for Security and Defence VII, International Society for Optics and Photonics, SPIE, Birmingham UK, 7–8 December 2022. [Google Scholar]
- Liang, K.; Chai, G.; Cao, Z.; Wang, Q.; Wang, L.; Peng, J. Machine Learning assisted excess noise suppression for continuous-variable quantum key distribution. arXiv 2022, arXiv:2207.10444. [Google Scholar]
- Xing, Z.; Li, X.; Ruan, X.; Luo, Y.; Zhang, H. Phase Compensation for Continuous Variable Quantum Key Distribution Based on Convolutional Neural Network. Photonics 2022, 9, 463. [Google Scholar] [CrossRef]
- Zhang, H.; Luo, Y.; Zhang, L.; Ruan, X.; Huang, D. Neural Network-Powered Nonlinear Compensation Framework for High-Speed Continuous Variable Quantum Key Distribution. IEEE Photonics J. 2022, 14, 1–8. [Google Scholar] [CrossRef]
- Zhang, Z.K.; Liu, W.Q.; Qi, J.; He, C.; Huang, P. Automatic phase compensation of a continuous-variable quantum-key-distribution system via deep learning. Phys. Rev. A 2023, 107, 062614. [Google Scholar] [CrossRef]
- Long, N.K.; Malaney, R.; Grant, K.J. Phase Correction using Deep Learning for Satellite-to-Ground CV-QKD. arXiv 2023, arXiv:2305.18737. [Google Scholar]
- Kleis, S.; Rueckmann, M.; Schaeffer, C.G. Continuous-variable quantum key distribution with a real local oscillator and without auxiliary signals. arXiv 2019, arXiv:1908.03625. [Google Scholar]
- Rückmann, M.; Kleis, S.; Schaeffer, C.G.; Zibar, D. Machine Learning in Quantum Communication. In Proceedings of the OSA Advanced Photonics Congress (AP) 2020 (IPR, NP, NOMA, Networks, PVLED, PSC, SPPCom, SOF), Washington, DC, USA, 13–16 July 2020; Optica Publishing Group: Washington, DC, USA, 2020. [Google Scholar]
- Rückmann, M.; Kleis, S.; Schaeffer, C.G. 17 GBd Sub-Photon Level Heterodyne Detection for CV-QKD Enabled by Machine Learning. In Proceedings of the Optical Fiber Communication Conference (OFC), San Diego, CA, USA, 8–12 March 2020; Optica Publishing Group: Washington, DC, USA, 2020. [Google Scholar]
- Lu, W.; Huang, C.; Hou, K.; Shi, L.; Zhao, H.; Li, Z.; Qiu, J. Recurrent neural network approach to quantum signal: Coherent state restoration for continuous-variable quantum key distribution. Quantum Inf. Process. 2018, 17, 1–14. [Google Scholar] [CrossRef]
- Li, J.; Guo, Y.; Wang, X.; Xie, C.; Zhang, L.; Huang, D. Discrete-modulated continuous-variable quantum key distribution with a machine-learning-based detector. Opt. Eng. 2018, 57, 066109. [Google Scholar] [CrossRef]
- Liao, Q.; Xiao, G.; Zhong, H.; Guo, Y. Multi-label learning for improving discretely-modulated continuous-variable quantum key distribution. New J. Phys. 2020, 22, 083086. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, P.; Guo, Y.; Zhang, L.; Huang, D. Blind modulation format identification using the DBSCAN algorithm for continuous-variable quantum key distribution. JOSA B 2019, 36, B51–B58. [Google Scholar] [CrossRef]
- Liao, Q.; Liu, J.; Huang, A.; Huang, L.; Fei, Z.; Fu, X. High-rate discretely-modulated CV-QKD using quantum machine learning. arXiv 2023, arXiv:2308.03283. [Google Scholar]
- Liu, W.; Huang, P.; Peng, J.; Fan, J.; Zeng, G. Integrating machine learning to achieve an automatic parameter prediction for practical continuous-variable quantum key distribution. Phys. Rev. A 2018, 97, 022316. [Google Scholar] [CrossRef]
- Su, Y.; Guo, Y.; Huang, D. Parameter Optimization Based BPNN of Atmosphere Continuous-Variable Quantum Key Distribution. Entropy 2019, 21, 908. [Google Scholar] [CrossRef]
- Luo, H.; Zhang, L.; Qin, H.; Sun, S.; Huang, P.; Wang, Y.; Wu, Z.; Guo, Y.; Huang, D. Beyond universal attack detection for continuous-variable quantum key distribution via deep learning. Phys. Rev. A 2022, 105, 042411. [Google Scholar] [CrossRef]
- Jin, D.; Guo, Y.; Wang, Y.; Li, Y.; Huang, D. Key-sifting algorithms for continuous-variable quantum key distribution. Phys. Rev. A 2021, 104, 012616. [Google Scholar] [CrossRef]
- Xie, J.; Zhang, L.; Wang, Y.; Huang, D. Deep Neural Network Based Reconciliation for CV-QKD. Photonics 2022, 9, 110. [Google Scholar] [CrossRef]
- Zhou, M.G.; Liu, Z.P.; Liu, W.B.; Li, C.L.; Bai, J.L.; Xue, Y.R.; Fu, Y.; Yin, H.L.; Chen, Z.B. Neural network-based prediction of the secret-key rate of quantum key distribution. Sci. Rep. 2022, 12, 8879. [Google Scholar] [CrossRef]
- Liu, Z.P.; Zhou, M.G.; Liu, W.B.; Li, C.L.; Gu, J.; Yin, H.L.; Chen, Z.B. Automated machine learning for secure key rate in discrete-modulated continuous-variable quantum key distribution. Opt. Express 2022, 30, 15024–15036. [Google Scholar] [CrossRef]
- Huang, W.; Mao, Y.; Xie, C.; Huang, D. Quantum hacking of free-space continuous-variable quantum key distribution by using a machine-learning technique. Phys. Rev. A 2019, 100, 012316. [Google Scholar] [CrossRef]
- Zheng, Y.; Shi, H.; Pan, W.; Wang, Q.; Mao, J. Quantum Hacking on an Integrated Continuous-Variable Quantum Key Distribution System via Power Analysis. Entropy 2021, 23, 176. [Google Scholar] [CrossRef]
- Mao, Y.; Huang, W.; Zhong, H.; Wang, Y.; Qin, H.; Guo, Y.; Huang, D. Detecting quantum attacks: A machine learning based defense strategy for practical continuous-variable quantum key distribution. New J. Phys. 2020, 22, 083073. [Google Scholar] [CrossRef]
- Mao, Y.; Wang, Y.; Huang, W.; Qin, H.; Huang, D.; Guo, Y. Hidden-Markov-model-based calibration-attack recognition for continuous-variable quantum key distribution. Phys. Rev. A 2020, 101, 062320. [Google Scholar] [CrossRef]
- He, Z.; Wang, Y.; Huang, D. Wavelength attack recognition based on machine learning optical spectrum analysis for the practical continuous-variable quantum key distribution system. J. Opt. Soc. Am. B 2020, 37, 1689–1697. [Google Scholar] [CrossRef]
- Al-Mohammed, H.A.; Al-Ali, A.; Yaacoub, E.; Abualsaud, K.; Khattab, T. Detecting Attackers during Quantum Key Distribution in IoT Networks using Neural Networks. In Proceedings of the 2021 IEEE Globecom Workshops, Madrid, Spain, 7–11 December 2021. [Google Scholar]
- Liao, Q.; Wang, Z.; Liu, H.; Mao, Y.; Fu, X. Detecting practical quantum attacks for continuous-variable quantum key distribution using density-based spatial clustering of applications with noise. Phys. Rev. A 2022, 106, 022607. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, Y.; Zhang, L.; Mao, Y.; Luo, H.; Guo, Y.; Huang, D. Sifting scheme for continuous-variable quantum key distribution with short samples. J. Opt. Soc. Am. B 2022, 39, 694–704. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, H.; Liao, Q.; Mao, Y.; Guo, Y. Ensemble learning for failure prediction of underwater continuous variable quantum key distribution with discrete modulations. Phys. Lett. A 2021, 419, 127694. [Google Scholar] [CrossRef]
- Guo, Y.; Yin, P.; Huang, D. One-Pixel Attack for Continuous-Variable Quantum Key Distribution Systems. Photonics 2023, 10, 129. [Google Scholar] [CrossRef]
- Li, S.; Yin, P.; Zhou, Z.; Tang, J.; Huang, D.; Zhang, L. Dictionary Learning Based Scheme for Adversarial Defense in Continuous-Variable Quantum Key Distribution. Entropy 2023, 25, 499. [Google Scholar] [CrossRef]
- Huang, D.; Liu, S.; Zhang, L. Secure Continuous-Variable Quantum Key Distribution with Machine Learning. Photonics 2021, 12, 511. [Google Scholar] [CrossRef]
- Wallnöfer, J.; Melnikov, A.A.; Dür, W.; Briegel, H.J. Machine learning for long-distance quantum communication. PRX Quantum 2020, 1, 010301. [Google Scholar] [CrossRef]
- Kundu, N.K.; McKay, M.R.; Mallik, R.K. Machine-learning-based parameter estimation of gaussian quantum states. IEEE Trans. Quantum Eng. 2021, 3, 1–13. [Google Scholar] [CrossRef]
- Xiao, T.; Huang, J.; Fan, J.; Zeng, G. Continuous-variable quantum phase estimation based on machine learning. Sci. Rep. 2019, 9, 12410. [Google Scholar] [CrossRef]
- Xu, J.; Mao, Y.; Chen, Y.; Xu, X.; Guo, Y. Machine Learning Assisted Prediction for Free-Space Continuous Variable Quantum Teleportation. IEEE Photonics J. 2022, 14, 1–7. [Google Scholar] [CrossRef]
- Gerry, C.; Knight, P.L. Introductory Quantum Optics; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Laudenbach, F.; Pacher, C.; Fung, C.H.F.; Poppe, A.; Peev, M.; Schrenk, B.; Hentschel, M.; Walther, P.; Hübel, H. Continuous-Variable Quantum Key Distribution with Gaussian Modulation—The Theory of Practical Implementations. Adv. Quantum Technol. 2018, 1, 1800011. [Google Scholar] [CrossRef]
- Diamanti, E.; Leverrier, A. Distributing secret keys with quantum continuous variables: Principle, security and implementations. Entropy 2015, 17, 6072–6092. [Google Scholar] [CrossRef]
- Lin, J.; Upadhyaya, T.; Lütkenhaus, N. Asymptotic security analysis of discrete-modulated continuous-variable quantum key distribution. Phys. Rev. X 2019, 9, 041064. [Google Scholar] [CrossRef]
- Leverrier, A.; Grangier, P. Unconditional security proof of long-distance continuous-variable quantum key distribution with discrete modulation. Phys. Rev. Lett. 2009, 102, 180504. [Google Scholar] [CrossRef] [PubMed]
- Leverrier, A.; Grangier, P. Continuous-variable quantum-key-distribution protocols with a non-Gaussian modulation. Phys. Rev. A 2011, 83, 042312. [Google Scholar] [CrossRef]
- Djordjevic, I.B. Optimized-eight-state CV-QKD protocol outperforming Gaussian modulation based protocols. IEEE Photonics J. 2019, 11, 1–10. [Google Scholar] [CrossRef]
- Luo, H.; Wang, Y.J.; Ye, W.; Zhong, H.; Mao, Y.Y.; Guo, Y. Parameter estimation of continuous variable quantum key distribution system via artificial neural networks. Chin. Phys. B 2022, 31, 020306. [Google Scholar] [CrossRef]
- Jouguet, P.; Kunz-Jacques, S.; Diamanti, E. Preventing calibration attacks on the local oscillator in continuous-variable quantum key distribution. Phys. Rev. A 2013, 87, 062313. [Google Scholar] [CrossRef]
- Wang, T.; Huang, P.; Zhou, Y.; Liu, W.; Zeng, G. Pilot-multiplexed continuous-variable quantum key distribution with a real local oscillator. Phys. Rev. A 2018, 97, 012310. [Google Scholar] [CrossRef]
- Kish, S.P.; Villaseñor, E.; Malaney, R.; Mudge, K.A.; Grant, K.J. Use of a local local oscillator for the satellite-to-earth channel. In Proceedings of the IEEE International Conference on Communications, Montreal, QC, Canada, 14–23 June 2021. [Google Scholar]
- Garcia-Callejo, A.; Ruiz-Chamorro, A.; Cano, D.; Fernandez, V. A Review on Continuous-Variable Quantum Key Distribution Security. In Proceedings of the International Conference on Ubiquitous Computing and Ambient Intelligence, Córdoba, Spain, 29 November–2 December 2022; Springer: Berlin/Heidelberg, Germany, 2022; pp. 1073–1085. [Google Scholar]
- Marie, A.; Alleaume, R. Self-coherent phase reference sharing for continuous-variable quantum key distribution. Phys. Rev. A 2017, 95, 012316. [Google Scholar] [CrossRef]
- Shao, Y.; Wang, H.; Pi, Y.; Huang, W.; Li, Y.; Liu, J.; Yang, J.; Zhang, Y.; Xu, B. Phase noise model for continuous-variable quantum key distribution using a local local oscillator. Phys. Rev. A 2021, 104, 032608. [Google Scholar] [CrossRef]
- Villaseñor, E.; Malaney, R.; Mudge, K.A.; Grant, K.J. Atmospheric effects on satellite-to-ground quantum key distribution using coherent states. In Proceedings of the IEEE Global Communications Conference, Taipei, Taiwan, 7–11 December 2020. [Google Scholar]
- Sarker, I.H. Machine learning: Algorithms, real-world applications and research directions. SN Comput. Sci. 2021, 2, 160. [Google Scholar]
- Liao, Q.; Guo, Y.; Huang, D.; Huang, P.; Zeng, G. Long-distance continuous-variable quantum key distribution using non-Gaussian state-discrimination detection. New J. Phys. 2018, 20, 023015. [Google Scholar] [CrossRef]
- Okey, O.D.; Maidin, S.S.; Lopes Rosa, R.; Toor, W.T.; Carrillo Melgarejo, D.; Wuttisittikulkij, L.; Saadi, M.; Zegarra Rodríguez, D. Quantum key distribution protocol selector based on machine learning for next-generation networks. Sustainability 2022, 14, 15901. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Long, N.K.; Malaney, R.; Grant, K.J. A Survey of Machine Learning Assisted Continuous-Variable Quantum Key Distribution. Information 2023, 14, 553. https://doi.org/10.3390/info14100553
Long NK, Malaney R, Grant KJ. A Survey of Machine Learning Assisted Continuous-Variable Quantum Key Distribution. Information. 2023; 14(10):553. https://doi.org/10.3390/info14100553
Chicago/Turabian StyleLong, Nathan K., Robert Malaney, and Kenneth J. Grant. 2023. "A Survey of Machine Learning Assisted Continuous-Variable Quantum Key Distribution" Information 14, no. 10: 553. https://doi.org/10.3390/info14100553
APA StyleLong, N. K., Malaney, R., & Grant, K. J. (2023). A Survey of Machine Learning Assisted Continuous-Variable Quantum Key Distribution. Information, 14(10), 553. https://doi.org/10.3390/info14100553