CRI-Based Smart Lighting System That Provides Characteristics of Natural Light
Abstract
:1. Introduction
2. Materials and Methods
2.1. Analysis of CRI and CCT Characteristics of Natural and Artificial Lights
2.2. CRI-Based Natural Light Reproduction Smart Lighting System
2.2.1. Natural Light Big Data DB and Artificial Light Property DB
2.2.2. CRI-Based CCT Matching Algorithm
3. Experiments and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bohar, J.; Fernandes, G.E.; Xu, J. Spectral-temporal LED lighting modules for reproducing daily and seasonal solar circadian rhythmicities. In Proceedings of the 2017 IEEE International Conference on Smart Computing (SMARTCOMP), Hong Kong, China, 29–37 May 2017; IEEE: New York, NY, USA, 2017; pp. 1–6. [Google Scholar]
- Doulos, L.T.; Tsangrassoulis, A. The Future of Interior Lighting Is Here. Sustainability 2022, 14, 7044. [Google Scholar] [CrossRef]
- Cho, Y.; Seo, J.; Lee, H.; Choi, S.; Choi, A.; Sung, M.; Hur, Y. Platform design for lifelog-based smart lighting control. Build. Environ. 2020, 185, 107267. [Google Scholar] [CrossRef]
- Kim, Y.H.; Arunkumar, P.; Park, S.H.; Yoon, H.S.; Im, W.B. Tuning the diurnal natural daylight with phosphor converted white LED–Advent of new phosphor blend composition. Mater. Sci. Eng. B 2015, 193, 4–12. [Google Scholar] [CrossRef]
- Ghosh, A.; Norton, B. Interior colour rendering of daylight transmitted through a suspended particle device switchable glazing. Sol. Energy Mater. Sol. Cells 2017, 163, 218–223. [Google Scholar] [CrossRef]
- Kim, K.M.; Kim, Y.W.; Oh, S.T.; Lim, J.H. Development of a natural light reproduction system for maintaining the circadian rhythm. Indoor Built Environ. 2020, 29, 132–144. [Google Scholar] [CrossRef]
- Acosta, I.; León, J.; Bustamante, P. Daylight spectrum index: A new metric to assess the affinity of light sources with daylighting. Energies 2018, 11, 2545. [Google Scholar] [CrossRef]
- International Commission on Illumination. Method of Measuring and Specifying Colour Rendering Properties of Light Sources; Central Bureau of the CIE: Vienna, Austria, 1988. [Google Scholar]
- Liu, J.G.; Tang, W.; Qin, Y.; Sun, G.; Shen, C. Quantitative Analysis of Full Spectrum LEDs for High Quality Lighting. In Proceedings of the 2018 15th China International Forum on Solid State Lighting: International Forum on Wide Bandgap Semiconductors China (SSLChina: IFWS), Shenzhen, China, 23–25 October 2018; IEEE: New York, NY, USA, 2023; pp. 1–5. [Google Scholar]
- Erdmann, D.; Engineer, G.S. Color Rendering Index (CRI). General Electric (GE) 2010, 1–3. [Google Scholar]
- Chen, J.; Zhao, Y.; Mao, Z.; Wang, D.; Bie, L. CaAlSiN3: Eu2+-based color-converting coating application for white LEDs: Reduction of blue-light harm and enhancement of CRI value. Mater. Res. Bull. 2017, 90, 212–217. [Google Scholar] [CrossRef]
- Brainard, G.C.; Hanifin, J.P.; Greeson, J.M.; Byrne, B.; Glickman, G.; Gerner, E.; Rollag, M.D. Action spectrum for melatonin regulation in humans: Evidence for a novel circadian photoreceptor. J. Neurosci. 2001, 21, 6405–6412. [Google Scholar] [CrossRef]
- De Almeida, A.; Santos, B.; Paolo, B.; Quicheron, M. Solid state lighting review–Potential and challenges in Europe. Renew. Sustain. Energy Rev. 2014, 34, 30–48. [Google Scholar] [CrossRef]
- Malik, R.; Mondal, S.; Saha, N.K.; Bhunia, S. A CCT Tunable Daylight-Integrated LED Lighting System for the Improvement of Health and Well-Being of Human Beings. In Proceedings of the 2023 IEEE Sustainable Smart Lighting World Conference & Expo (LS18), Mumbai, India, 8–10 June 2023; IEEE: New York, NY, USA, 2023; pp. 1–5. [Google Scholar]
- “WELL v2 pilot 2023, Q1 2021”, Standard|WELL V2. Available online: https://v2.wellcertified.com/en/v3.1/light/feature/7, (accessed on 10 September 2023).
- Tservartsidis, I.; Skandali, C.; Doulos, L.T. The environmental impact of the new version of the Interior Lighting European Norm in Lighting and Circadian Design. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2022; Volume 1123, p. 012032. [Google Scholar]
- Hye Oh, J.; Ji Yang, S.; Rag Do, Y. Healthy, natural, efficient and tunable lighting: Four-package white LEDs for optimizing the circadian effect, color quality and vision performance. Light Sci. Appl. 2014, 3, e141. [Google Scholar] [CrossRef]
- Zhao, Y.; Xue, D.; Wang, J.; Lu, M.; Shen, X.; Gao, X.; William, W.Y.; Bai, X. Smart quantum dot LEDs with simulated solar spectrum for intelligent lighting. Nanotechnology 2020, 31, 505207. [Google Scholar] [CrossRef] [PubMed]
- “Sun Like”, Seoul Semiconductor. Available online: http://www.seoul-semicon.co.kr/kr/technology/SunLike (accessed on 21 July 2023).
- Guerry, E.; Caumon, L.; Zissis, G.; Caumon, C.; Becheras, E. Human Centric Lighting for the benefit of the elderly. In 2021 Joint Conference-11th International Conference on Energy Efficiency in Domestic Appliances and Lighting & 17th International Symposium on the Science and Technology of Lighting (EEDAL/LS: 17); IEEE: New York, NY, USA, 2023; pp. 1–4. [Google Scholar]
- Nie, J.; Zhou, T.; Chen, Z.; Dang, W.; Jiao, F.; Zhan, J.; Chen, Y.; Chen, Y.; Pan, Z.; Kang, X.; et al. Investigation on entraining and enhancing human circadian rhythm in closed environments using daylight-like LED mixed lighting. Sci. Total Environ. 2020, 732, 139334. [Google Scholar] [CrossRef] [PubMed]
- Dai, Q.; Cai, W.; Shi, W.; Hao, L.; Wei, M. A proposed lighting-design space: Circadian effect versus visual illuminance. Build. Environ. 2017, 122, 287–293. [Google Scholar] [CrossRef]
- Oh, S.T.; Ga, D.H.; Lim, J.H. A Method of Generating Real-Time Natural Light Color Temperature Cycle for Circadian Lighting Service. Sensors 2023, 23, 883. [Google Scholar] [CrossRef]
- Lu, P.; Yang, H.; Pei, Y.; Li, J.; Xue, B.; Wang, J.; Li, J. Generation of solar spectrum by using LEDs. In Proceedings of the Fifteenth International Conference on Solid State Lighting and LED-Based Illumination Systems, San Diego, CA, USA, 31 August 2016; SPIE: Bellingham, WA, USA, 2016; Volume 9994, pp. 90–95. [Google Scholar]
- Taki, T.; Strassburg, M. visible LEDs: More than efficient light. ECS J. Solid State Sci. Technol. 2019, 9, 015017. [Google Scholar] [CrossRef]
- Oh, S.T.; Kim, Y.J.; Lim, J.H. A Method to Calculate Color Temperature of Natural Light Using a Representative Trend Line. J. KIISE 2022, 49, 1166–1172. [Google Scholar] [CrossRef]
- Oh, S.T.; Kim, Y.S.; Lim, J.H. A Method of Reproducing the CCT of Natural Light using the Minimum Spectral Power Distribution for each Light Source of LED Lighting. J. Internet Comput. Serv. 2023, 24, 19–26. [Google Scholar]
- Perdahci, C.; Özkan, H. IEDs colours mixing using their SPD and developing of the mathematical model for CCt calculation. Light Eng. 2019, 27, 86–96. [Google Scholar] [CrossRef]
- Jeon, G.W.; Oh, S.T.; Lim, J.H. Algorithm for Judging Anomalies Using Sliding Window to Reproduce the Color Temperature Cycle of Natural Light. J. Korea Multimed. Soc. 2021, 24, 30–39. [Google Scholar]
Category | Irradiance/nm (W/m2) | Light Property | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Time | 380.1 | 380.7 | 381.4 | … | 778.8 | 779.5 | 780.1 | 780.8 | Illuminance | CCT | CRI | … | u | v |
7:01:49 | 0.014 | 0.013 | 0.013 | … | 0.019 | 0.019 | 0.019 | 0.019 | 2006.94 | 7624.16 | 97.2476 | … | 0.18951 | 0.46086 |
7:02:51 | 0.014 | 0.014 | 0.013 | … | 0.023 | 0.023 | 0.023 | 0.023 | 2123.88 | 7200.16 | 96.7116 | … | 0.19223 | 0.46367 |
7:03:56 | 0.016 | 0.015 | 0.015 | … | 0.464 | 0.465 | 0.464 | 0.467 | 13,486.7 | 3079.48 | 94.5417 | … | 0.24740 | 0.52138 |
… | … | … | … | … | … | … | … | … | … | … | … | … | … | … |
12:14:54 | 0.726 | 0.710 | 0.674 | … | 1.141 | 1.140 | 1.137 | 1.134 | 114,441. | 5584.46 | 99.2556 | … | 0.20481 | 0.47827 |
… | … | … | … | … | … | … | … | … | … | … | … | … | … | … |
17:37:05 | 0.013 | 0.013 | 0.012 | … | 0.291 | 0.291 | 0.292 | 0.294 | 5929.68 | 3063.80 | 88.0367 | … | 0.25087 | 0.51070 |
17:38:08 | 0.012 | 0.012 | 0.011 | … | 0.270 | 0.270 | 0.271 | 0.272 | 5262.98 | 3077.25 | 87.0122 | … | 0.25081 | 0.50910 |
Category | Daily CCT Cycle | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Onset of spring | Time | 8:03 | 8:04 | 8:05 | 8:06 | … | 12:43 | 12:44 | … | 17:33 | 17:34 | 17:35 | 17:36 |
(‘2022.02.10) | CCT | 3703.55 | 3698.30 | 3699.96 | 3707.33 | … | 5579.75 | 5565.10 | … | 3575.91 | 3570.23 | 3582.91 | 3610.59 |
… | … | … | … | … | … | … | … | … | … | … | … | … | … |
Major cold | Time | 8:03 | 8:04 | 8:05 | 8:06 | … | 12:28 | 12:29 | … | 16:49 | 16:50 | 16:51 | 16:52 |
(‘2021.12.22) | CCT | 3399.75 | 3184.36 | 3148.35 | 3175.98 | … | 5151.65 | 5170.22 | … | 3265.02 | 3259.90 | 3289.13 | 3303.31 |
LED Control Level | Irradiance/nm (W/m2) | Light Property | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ch1 | Ch2 | Ch3 | Ch4 | 380 | 381 | 382 | … | 778 | 779 | 780 | Illum | CCT | CRI | … |
0 | 0 | 0 | 16 | 1.37 × 10−7 | 8.68 × 10−8 | 3.33 × 10−7 | … | 4.42 × 10−6 | 4.60 × 10−6 | 4.30 × 10−6 | 9.121396 | 5642.514 | 97.02109 | … |
0 | 0 | 0 | 32 | 1.58 × 10−6 | 1.84 × 10−6 | 1.60 × 10−6 | … | 2.11 × 10−5 | 2.09 × 10−5 | 2.07 × 10−5 | 41.14666 | 5637.386 | 97.12691 | … |
0 | 0 | 0 | 64 | 4.24 × 10−6 | 3.96 × 10−6 | 3.63 × 10−6 | … | 4.88 × 10−5 | 4.79 × 10−5 | 4.53 × 10−5 | 91.1695 | 5640.55 | 97.12795 | … |
… | … | … | … | … | … | … | … | … | … | … | … | … | … | … |
208 | 32 | 0 | 0 | 2.24 × 10−5 | 1.97 × 10−5 | 2.38 × 10−5 | … | 0.000356 | 0.000346 | 0.000342 | 677.8072 | 4590.438 | 96.31683 | … |
… | … | … | … | … | … | … | … | … | … | … | … | … | … | … |
240 | 0 | 0 | 0 | 2.19 × 10−5 | 2.36 × 10−5 | 2.21 × 10−5 | … | 0.000398 | 0.000387 | 0.000387 | 756.5922 | 4497.759 | 96.26328 | … |
255 | 0 | 0 | 0 | 2.55 × 10−5 | 2.38 × 10−5 | 2.66 × 10−5 | … | 0.00046 | 0.000447 | 0.000439 | 871.5025 | 4500.924 | 96.24231 | … |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, S.-T.; Lim, J.-H. CRI-Based Smart Lighting System That Provides Characteristics of Natural Light. Information 2023, 14, 628. https://doi.org/10.3390/info14120628
Oh S-T, Lim J-H. CRI-Based Smart Lighting System That Provides Characteristics of Natural Light. Information. 2023; 14(12):628. https://doi.org/10.3390/info14120628
Chicago/Turabian StyleOh, Seung-Taek, and Jae-Hyun Lim. 2023. "CRI-Based Smart Lighting System That Provides Characteristics of Natural Light" Information 14, no. 12: 628. https://doi.org/10.3390/info14120628
APA StyleOh, S. -T., & Lim, J. -H. (2023). CRI-Based Smart Lighting System That Provides Characteristics of Natural Light. Information, 14(12), 628. https://doi.org/10.3390/info14120628