Distributed Cross-Domain Optimization for Software Defined Industrial Internet of Things
Abstract
:1. Introduction
- A distributed SDIIoT architecture design based on multi-domain SDN is proposed, which supports cross-domain interconnection of large-scale heterogeneous networks. This architecture leverages SDN controllers and IIoT gateways to control the underlying network devices for efficient resource management. The industrial infrastructure is deployed in the lower three layers of the architecture, namely the terminal layer, the relay layer, and the access layer. Such a layered deployment reduces the energy consumption in communications, thus achieving the green IIoT.
- A joint optimization of real-time data delivery, multi-path routing and limited resource allocation to maximize the total utilities of domains, in a setting where several SDN domain controllers operate in parallel. The reason for joint optimization is to improve the satisfaction of IIoT users by optimizing resource allocation. The joint optimization problem can be formulated as a multi-block problem with coupling constraints. The problem is difficult to be solved directly due to the time-varying and confidential nature of network information and the large number of domains and flows.
- A distributed algorithm based on the proximal symmetric ADMM is designed to solve the above optimization problem while meeting user privacy expectations. At each time slot, the problem is decomposed into several intra-domain subproblems that can be solved in parallel. These subproblems are updated serially with the slack variables, thus enabling intra- and inter-domain communication in IIoT networks. Finally, numerical simulations show that the designed algorithm can be applied to large-scale networks with multiple requests. Moreover, through numerical simulations, we illustrate the impact of data timeliness, multi-path routing, and resource constraints on the rate utility.
2. Hierarchical Multi-Domain SD-IIoT Architecture
2.1. SD-Industrial Terminal Access Layer
2.2. SD-Industrial Communication Network Layer
2.3. SD-Industrial Distributed Control Layer
2.4. SD-Industrial Application Layer
3. System Model
3.1. Flow Conservation Model
3.2. Link Capacity Model
3.3. Real-Time Delivery Constraint
3.4. Energy Consumption Model
3.5. Utility Function
4. Problem Formulation and Distributed Optimization
4.1. Joint Optimization Problem
4.2. Distributed Optimization via Prox-SADMM
Algorithm1: The Prox-SADMM algorithm |
5. Performance Analysis
5.1. Impact of Network Constraints on the Rate Utility
5.2. Impact of the Network Scale on the Convergence
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sisinni, E.; Saifullah, A.; Han, S.; Jennehag, U.; Gidlund, M. Industrial internet of things: Challenges, opportunities, and directions. IEEE Trans. Ind. Inform. 2018, 14, 4724–4734. [Google Scholar] [CrossRef]
- Cortés-Leal, A.; Cárdenas, C.; Del-Valle-Soto, C. Maintenance 5.0: Towards a Worker-in-the-Loop Framework for Resilient Smart Manufacturing. Appl. Sci. 2022, 12, 11330. [Google Scholar] [CrossRef]
- Tange, K.; De Donno, M.; Fafoutis, X.; Dragoni, N. A systematic survey of industrial Internet of Things security: Requirements and fog computing opportunities. IEEE Commun. Surv. Tutor. 2020, 22, 2489–2520. [Google Scholar] [CrossRef]
- Mao, W.; Zhao, Z.; Chang, Z.; Min, G.; Gao, W. Energy-efficient industrial internet of things: Overview and open issues. IEEE Trans. Ind. Inform. 2021, 17, 7225–7237. [Google Scholar] [CrossRef]
- Jin, Z.; Zhang, C.; Jin, Y.; Zhang, L.; Su, J. A resource allocation scheme for joint optimizing energy-consumption and delay in collaborative edge computing-based industrial IoT. IEEE Trans. Ind. Inform. 2021, 18, 6236–6243. [Google Scholar] [CrossRef]
- Vitturi, S.; Zunino, C.; Sauter, T. Industrial communication systems and their future challenges: Next-generation Ethernet, IIoT, and 5G. Proc. IEEE 2019, 107, 944–961. [Google Scholar] [CrossRef]
- Serror, M.; Hack, S.; Henze, M.; Schuba, M.; Wehrle, K. Challenges and opportunities in securing the industrial internet of things. IEEE Trans. Ind. Inform. 2020, 17, 2985–2996. [Google Scholar] [CrossRef]
- Xia, W.; Wen, Y.; Foh, C.H.; Niyato, D.; Xie, H. A survey on software-defined networking. IEEE Commun. Surv. Tutor. 2014, 17, 27–51. [Google Scholar] [CrossRef]
- Zhou, Z.; Gong, J.; He, Y.; Zhang, Y. Software defined machine-to-machine communication for smart energy management. IEEE Commun. Mag. 2017, 55, 52–60. [Google Scholar] [CrossRef]
- Qiu, C.; Yu, F.R.; Yao, H.; Jiang, C.; Xu, F.; Zhao, C. Blockchain-based software-defined industrial Internet of Things: A dueling deep Q-learning approach. IEEE Internet Things J. 2018, 6, 4627–4639. [Google Scholar] [CrossRef]
- Naeem, F.; Tariq, M.; Poor, H.V. SDN-enabled energy-efficient routing optimization framework for industrial Internet of Things. IEEE Trans. Ind. Inform. 2020, 17, 5660–5667. [Google Scholar] [CrossRef]
- Al-Rubaye, S.; Kadhum, E.; Ni, Q.; Anpalagan, A. Industrial internet of things driven by SDN platform for smart grid resiliency. IEEE Internet Things J. 2017, 6, 267–277. [Google Scholar] [CrossRef]
- Hatzivasilis, G.; Fysarakis, K.; Soultatos, O.; Askoxylakis, I.; Papaefstathiou, I.; Demetriou, G. The Industrial Internet of Things as an enabler for a Circular Economy Hy-LP: A novel IIoT protocol, evaluated on a wind park’s SDN/NFV-enabled 5G industrial network. Comput. Commun. 2018, 119, 127–137. [Google Scholar] [CrossRef]
- Oktian, Y.E.; Lee, S.; Lee, H.; Lam, J. Distributed SDN controller system: A survey on design choice. Comput. Netw. 2017, 121, 100–111. [Google Scholar] [CrossRef]
- Bao, B.; Yao, Q.; Li, C.; Sun, Z.; Li, X.; Bai, W.; Yang, H.; Liu, S.; Li, Y. Cross-Domain Resource Allocation Scheme with Unified Control Architecture in Software Defined Optical Access Network. Photonics 2022, 9, 740. [Google Scholar] [CrossRef]
- Bagaa, M.; Dutra, D.L.C.; Taleb, T.; Samdanis, K. On sdn-driven network optimization and qos aware routing using multiple paths. IEEE Trans. Wirel. Commun. 2020, 19, 4700–4714. [Google Scholar] [CrossRef]
- Leinonen, M.; Codreanu, M.; Juntti, M. Distributed joint resource and routing optimization in wireless sensor networks via alternating direction method of multipliers. IEEE Trans. Wirel. Commun. 2013, 12, 5454–5467. [Google Scholar] [CrossRef]
- Lin, S.C.; Wang, P.; Luo, M. Control traffic balancing in software defined networks. Comput. Netw. 2016, 106, 260–271. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, S.; Zhang, J.; Xu, Z. Forwarding Rule Multiplexing for Scalable SDN-Based Internet of Things. IEEE Internet Things J. 2019, 6, 3373–3385. [Google Scholar] [CrossRef]
- Xu, W.; Shi, Q.; Wei, X.; Ma, Z.; Zhu, X.; Wang, Y. Distributed Optimal Rate–Reliability–Lifetime Tradeoff in Time-Varying Wireless Sensor Networks. IEEE Trans. Wirel. Commun. 2014, 13, 4836–4847. [Google Scholar] [CrossRef]
- Trichakis, N.; Zymnis, A.; Boyd, S. Dynamic network utility maximization with delivery contracts. IFAC Proc. Vol. 2008, 41, 2907–2912. [Google Scholar] [CrossRef]
- Heinzelman, W.B.; Chandrakasan, A.P.; Balakrishnan, H.R. An application-specific protocol architecture for wireless microsensor networks. IEEE Trans. Wirel. Commun. 2002, 1, 660–670. [Google Scholar] [CrossRef]
- Liu, Y.; Lee, M.J.; Zheng, Y. Adaptive Multi-Resource Allocation for Cloudlet-Based Mobile Cloud Computing System. IEEE Trans. Mob. Comput. 2016, 15, 2398–2410. [Google Scholar] [CrossRef]
- Sun, Y.; Guo, Y.; Li, S.; Wu, D.O.; Wang, B. Optimal Resource Allocation for NOMA-TDMA Scheme with α-Fairness in Industrial Internet of Things. Sensors 2018, 18, 1572. [Google Scholar] [CrossRef] [PubMed]
- He, B.; Tao, M.; Yuan, X. Alternating Direction Method with Gaussian Back Substitution for Separable Convex Programming. SIAM J. Optim. 2012, 22, 313–340. [Google Scholar] [CrossRef]
- Deng, W.; Lai, M.J.; Peng, Z.; Yin, W. Parallel Multi-Block ADMM with o(1/k) Convergence. J. Sci. Comput. 2017, 71, 712–736. [Google Scholar] [CrossRef]
- Shen, Y.; Zuo, Y.; Yu, A. A partially proximal S-ADMM for separable convex optimization with linear constraints. Appl. Numer. Math. 2021, 160, 65–83. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, X.; He, Q.; Zhang, C.; Huang, M. PLOFR: An online flow route framework for power saving and load balance in SDN. IEEE Syst. J. 2020, 15, 526–537. [Google Scholar] [CrossRef]
- Sahhaf, S.; Tavernier, W.; Rost, M.; Schmid, S.; Colle, D.; Pickavet, M.; Demeester, P. Network service chaining with optimized network function embedding supporting service decompositions. Comput. Netw. 2015, 93, 492–505. [Google Scholar] [CrossRef] [Green Version]
Parameter name | Value |
---|---|
Number of time slots | 10–50 |
Capacity of wireless links | 5–10 Mbps |
Capacity of wired links | 5–50 Mbps |
Initial energy of radio devices | 2000–3000 J |
Energy overhead | 50 nJ/bit |
Amplifier characteristic constant | 10 pJ/bit/m |
Fixed power of switches in sleep state | 130 W [28] |
Fixed power of switches in active state | 260 W |
Power of ports at full load | 4 W |
Power limit of switches | 280–295 W |
Flow rate | 0.1–5 Mbps |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Luo, S.; Xu, W. Distributed Cross-Domain Optimization for Software Defined Industrial Internet of Things. Information 2023, 14, 109. https://doi.org/10.3390/info14020109
Huang Y, Luo S, Xu W. Distributed Cross-Domain Optimization for Software Defined Industrial Internet of Things. Information. 2023; 14(2):109. https://doi.org/10.3390/info14020109
Chicago/Turabian StyleHuang, Yunjing, Shuyun Luo, and Weiqiang Xu. 2023. "Distributed Cross-Domain Optimization for Software Defined Industrial Internet of Things" Information 14, no. 2: 109. https://doi.org/10.3390/info14020109
APA StyleHuang, Y., Luo, S., & Xu, W. (2023). Distributed Cross-Domain Optimization for Software Defined Industrial Internet of Things. Information, 14(2), 109. https://doi.org/10.3390/info14020109