Investigating the Influence of Artificial Intelligence on Business Value in the Digital Era of Strategy: A Literature Review
Abstract
:1. Introduction
2. Methodology and Data
2.1. Prior Literature Reviews
2.2. Article Selection
2.3. Classification Framework
3. Results
3.1. Artificial Intelligence Capabilities in Organizations
3.1.1. AI Ambidexterity
3.1.2. AI Capability Conceptualization
3.1.3. AI Resources Orchestration
3.1.4. AI Governance
Governance Mechanisms
Structural Mechanisms
Procedural mechanisms
Relational Mechanisms
3.2. The Integration of AI and Business/IT towards Digital Transformation Alignment for Enhanced Business Value Outcomes
3.2.1. The Road to Strategic Flexibility
Anticipating Drivers of Change and Future Options
Formulate and Design Strategies
Assemble and Develop Capabilities
3.2.2. The Role of AI in Strategic Components
AI in Strategic Analysis
AI in Strategy Formulation and Implementation
AI and Corporate Strategy
AI in Strategic Innovation, Entrepreneurship, and Renewal Models
AI in Strategy Control
3.2.3. AI Business Value Drivers and Enhanced Outcomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Concepts | |||||||||
---|---|---|---|---|---|---|---|---|---|
Artificial Intelligence Capabilities in Organizations | The integration of AI and Business/IT towards Digital Transformation Alignment for Enhanced Business Value Outcomes | ||||||||
No. | Authors | Year | AI Ambidexterity | AI Capability Conceptualization | AI Resources Orchestration | AI Governance | Strategic Flexibility | The Role of AI in Strategic Components | AI Business Value Drivers and Enhanced Outcomes |
Kitsios and Kamariotou [1] | 2021 | x | x | x | x | ||||
Zhou and Li [2] | 2010 | x | x | x | x | ||||
Kar et al. [3] | 2021 | x | x | x | x | ||||
van de Wetering et al. [4] | 2021 | x | x | x | x | x | |||
Ransbothatm et al. [5] | 2019 | x | x | x | x | ||||
Brynjolfsson and Mcafee [6] | 2017 | x | x | x | x | ||||
Trunk et al. [7] | 2020 | x | x | x | x | x | |||
Brock and von Wangenheim [8] | 2019 | x | x | x | x | x | x | ||
Al Surmi et al. [9] | 2022 | x | x | x | x | x | x | ||
Chowdhury et al. [10] | 2022 | x | x | x | x | x | x | ||
Makowski and Kajikawa [11] | 2021 | x | x | x | x | x | x | ||
Jarrahi [12] | 2018 | x | x | x | x | ||||
van de Wetering [13] | 2022 | x | x | x | x | x | x | ||
Mikalef and Gupta [14] | 2021 | x | x | x | x | x | x | x | |
Canhoto and Clear [15] | 2020 | x | x | x | x | ||||
Wamba-Taguimdje et al. [16] | 2020 | x | x | x | x | x | x | x | |
Haefner et al. [17] | 2021 | x | x | x | x | ||||
Dwivedi et al. [18] | 2021 | x | x | x | x | x | |||
Truong and Papagiannidis [19] | 2022 | x | x | x | x | x | |||
Füller et al. [20] | 2022 | x | x | x | x | x | x | x | |
van de Wetering [21] | 2022 | x | x | x | x | x | |||
Majhi et al. [22] | 2021 | x | x | ||||||
van de Wetering [23] | 2021 | x | x | x | |||||
Benbya et al. [24] | 2021 | x | x | x | |||||
Berente et al. [25] | 2021 | x | x | ||||||
Borges [26] | 2021 | x | x | x | x | x | x | x | |
Keding [27] | 2021 | x | x | x | x | x | x | x | |
Tschang and Almirall [28] | 2021 | x | x | x | |||||
Davenport [29] | 2018 | x | x | x | x | ||||
Chatterjee et al. [30] | 2020 | x | x | x | x | ||||
Mishra and Pani [31] | 2021 | x | x | x | x | x | x | x | |
Fadler and Legner [32] | 2021 | x | x | x | |||||
Davenport and Ronanki [33] | 2018 | x | x | x | x | x | |||
Barnea [34] | 2020 | x | x | x | |||||
Amershi et al. [35] | 2019 | x | x | x | |||||
Frank et al. [36] | 2019 | x | x | x | x | ||||
Krakowski et al. [37] | 2022 | x | x | x | x | x | x | x | |
Butcher and Beridze [39] | 2019 | x | x | x | |||||
Yigit and Kanbach [42] | 2021 | x | x | x | x | x | |||
Bag et al. [43] | 2021 | x | x | x | x | ||||
Collins et al. [44] | 2021 | x | x | x | |||||
Yu and Moon [45] | 2021 | x | x | x | x | ||||
Awwad et al. [48] | 2022 | x | x | ||||||
Çebeci [50] | 2021 | x | x | x | x | x | |||
Enholm et al. [51] | 2021 | x | x | x | |||||
Zuiderwijk et al. [52] | 2021 | x | x | x | x | x | x | ||
Grover et al. [53] | 2022 | x | x | x | x | x | |||
Caner and Bhatti [54] | 2020 | x | x | x | x | x | x | x | |
Smacchia and Za [55] | 2022 | x | x | x | x | x | |||
Di Vaio et al. [56] | 2020 | x | x | x | x | x | x | x | |
Dhamija and Bag [57] | 2020 | x | x | x | x | ||||
Haenlein and Kaplan [58] | 2019 | x | x | x | x | x | |||
Çark [59] | 2022 | x | x | x | x | ||||
Shrestha et al. [60] | 2019 | x | x | x | x | x | x | ||
Shrestha et al. [61] | 2021 | x | x | x | x | ||||
von Krogh [62] | 2018 | x | x | x | |||||
Agrawal et al. [63] | 2019 | x | x | x | x | ||||
Whittington [65] | 2014 | x | x | ||||||
Krogh et al. [66] | 2021 | x | x | x | x | ||||
Liu et al. [67] | 2020 | x | x | x | |||||
Carter et al. [69] | 2020 | x | x | x | |||||
Sestino and Mauro [71] | 2022 | x | x | x | x | ||||
Warner and Wäger [72] | 2019 | x | x | x | x | x | x | x | |
Huang and Rust [73] | 2021 | x | x | x | x | x | |||
Wamba-Taguimdje et al. [74] | 2020 | x | x | x | x | ||||
Papachroni et al. [75] | 2015 | x | x | x | x | x | x | ||
van de Wetering and Versendaal [76] | 2021 | x | x | x | |||||
Diaz-Fernandez et al. [77] | 2017 | x | x | x | x | ||||
Paschen et al. [79] | 2020 | x | x | x | |||||
Phan et al. [80] | 2017 | x | x | ||||||
Gabruio and Lin [81] | 2019 | x | x | x | x | ||||
Hengstler [82] | 2016 | x | x | x | |||||
Barro and Davenport [83] | 2019 | x | x | x | |||||
Desouza et al. [84] | 2020 | x | x | x | x | x | x | x | |
Reis et al. [85] | 2020 | x | x | x | x | ||||
Alsheibani et al. [86] | 2020 | x | x | x | x | x | |||
Sjödin et al. [87] | 2021 | x | x | x | x | x | |||
Weber et al. [88] | 2022 | x | x | x | x | ||||
Aydiner et al. [90] | 2019 | x | x | x | x | ||||
Bamel et al. [95] | 2018 | x | x | x | |||||
Mikalef et al. [98] | 2019 | x | x | x | x | ||||
Uren et al. [101] | 2023 | x | x | x | x | ||||
Kurniawan et al. [102] | 2020 | x | x | x | x | ||||
Carnes et al. [103] | 2017 | x | x | x | |||||
Mikalef et al. [104] | 2019 | x | x | x | |||||
Ho et al. [106] | 2022 | x | x | x | x | ||||
Fosso Wamba [108] | 2022 | x | x | ||||||
Lee et al. [109] | 2022 | x | x | x | x | ||||
van de Wetering et al. [111] | 2022 | x | x | x | x | ||||
Papagiannidis et al. [112] | 2021 | x | x | x | |||||
Fountaine et al. [113] | 2019 | x | x | x | x | ||||
Lichtenthaler [114] | 2019 | x | x | x | |||||
Papagiannidis et al. [115] | 2022 | x | x | x | x | x | |||
de Laat [116] | 2021 | x | x | x | x | ||||
Kruhse-Lehtonen and Hofmann [118] | 2020 | x | x | x | x | x | x | ||
Schneider et al. [119] | 2022 | x | x | x | x | x | |||
Chen et al. [120] | 2022 | x | x | x | x | x | |||
Smit et al. [121] | 2020 | x | x | x | |||||
Alsheibani et al. [122] | 2019 | x | x | x | |||||
Abraham et al. [123] | 2019 | x | x | x | x | ||||
Ashmore et al. [124] | 2022 | x | x | x | x | ||||
Scherer [125] | 2015 | x | x | x | x | ||||
Clarke [126] | 2019 | x | x | x | x | ||||
Kaplan and Haenlein [129] | 2019 | x | x | x | x | ||||
Minkkien et al. [131] | 2021 | x | x | x | x | x | |||
Ledro et al. [132] | 2022 | x | x | x | x | ||||
Lwakatare et al. [133] | 2019 | x | x | x | |||||
Wang et al. [134] | 2022 | x | x | x | x | x | x | x | |
Dignum [135] | 2019 | x | x | x | x | x | x | ||
Brozovic [136] | 2018 | x | |||||||
Van de Wetering et al. [138] | 2019 | x | x | x | x | x | x | ||
Haarhaus and Liening [140] | 2020 | x | x | x | x | x | |||
Combe et al. [144] | 2012 | x | x | x | x | ||||
Radomska et al. [145] | 2015 | x | |||||||
Kortmann et al. [147] | 2014 | x | x | x | x | x | x | ||
Van de Wetering and Mikalef [148] | 2017 | x | x | x | x | ||||
Matalamäki, M.J and Joensuu-Salo [149] | 2022 | x | x | x | x | x | |||
Yi et al. [150] | 2017 | x | x | x | x | x | x | ||
Chan and Zhong [151] | 2018 | x | x | x | |||||
Avramov et al. [152] | 2022 | x | x | x | |||||
Kou et al. [153] | 2019 | x | x | x | x | x | |||
Lee et al. [155] | 2018 | x | x | x | |||||
Suominen et al. [156] | 2017 | x | x | x | x | ||||
Khan et al. [157] | 2022 | x | x | x | x | ||||
Mishra et al. [159] | 2022 | x | x | x | |||||
Gomez-Uribe [162] | 2016 | x | x | ||||||
Drydakis [163] | 2022 | x | x | x | x | x | x | ||
Brynjolfsson and Mitchell [164] | 2017 | x | x | x | x | x | |||
Moloi and Marwala [165] | 2021 | x | x | x | x | x | x | ||
Benitez et al. [166] | 2018 | x | x | x | x | x | x | ||
Coombs et al. [168] | 2020 | x | x | x | x | x | x | ||
Menon et al. [169] | 2018 | x | x | x | |||||
Trocin et al. [170] | 2021 | x | x | x | x | x | |||
Chalmers et al. [171] | 2021 | x | x | x | x | x | x | x | |
Lui et al. [174] | 2022 | x | x | ||||||
Rialti et al. [176] | 2020 | x | x | x | x | x | x | ||
Verganti et al. [177] | 2020 | x | x | x | x | x | |||
Miroshnychenko et al. [179] | 2021 | x | x | x | x | x | x | ||
Li et al. [180] | 2022 | x | x | x | x | x |
References
- Kitsios, F.; Kamariotou, M. Artificial Intelligence and Business Strategy towards Digital Transformation: A Research Agenda. Sustainability 2021, 13, 2025. [Google Scholar] [CrossRef]
- Zhou, K.Z.; Li, C.B. How Strategic Orientations Influence the Building of Dynamic Capability in Emerging Economies. J. Bus. Res. 2010, 63, 224–231. [Google Scholar] [CrossRef]
- Kar, S.; Kar, A.K.; Gupta, M.P. Modeling Drivers and Barriers of Artificial Intelligence Adoption: Insights from a Strategic Management Perspective. Intell. Syst. Account. Financ. Manag. 2021, 28, 217–238. [Google Scholar] [CrossRef]
- van de Wetering, R.; Hendrickx, T.; Brinkkemper, S.; Kurnia, S. The Impact of EA-Driven Dynamic Capabilities, Innovativeness, and Structure on Organizational Benefits: A Variance and FsQCA Perspective. Sustainability 2021, 13, 5414. [Google Scholar] [CrossRef]
- Ransbotham, S.; Khodabandeh, S.; Fehling, R.; Lafountain, B.; Kiron, D. Winning with Ai. In Technical Report; MIT Sloan Management Review and Boston Consulting Group: Boston, MA, USA, 2019. [Google Scholar]
- Brynjolfsson, E.; Mcafee, A. The business of artificial intelligence. Harv. Bus. Rev. 2017, 7, 3–11. [Google Scholar]
- Trunk, A.; Birkel, H.; Hartmann, E. On the Current State of Combining Human and Artificial Intelligence for Strategic Organizational Decision Making. Bus. Res. 2020, 13, 875–919. [Google Scholar] [CrossRef]
- Brock, J.K.-U.; von Wangenheim, F. Demystifying AI: What Digital Transformation Leaders Can Teach You about Realistic Artificial Intelligence. Calif. Manag. Rev. 2019, 61, 110–134. [Google Scholar] [CrossRef]
- Al-Surmi, A.; Bashiri, M.; Koliousis, I. AI Based Decision Making: Combining Strategies to Improve Operational Performance. Int. J. Prod. Res. 2022, 60, 4464–4486. [Google Scholar] [CrossRef]
- Chowdhury, S.; Dey, P.; Joel-Edgar, S.; Bhattacharya, S.; Rodriguez-Espindola, O.; Abadie, A.; Truong, L. Unlocking the Value of Artificial Intelligence in Human Resource Management through AI Capability Framework. Hum. Resour. Manag. Rev. 2022, 33, 100899. [Google Scholar] [CrossRef]
- Makowski, P.T.; Kajikawa, Y. Automation-Driven Innovation Management? Toward Innovation-Automation-Strategy Cycle. Technol. Forecast. Soc. Chang. 2021, 168, 120723. [Google Scholar] [CrossRef]
- Jarrahi, M.H. Artificial Intelligence and the Future of Work: Human-AI Symbiosis in Organizational Decision Making. Bus. Horiz. 2018, 61, 577–586. [Google Scholar] [CrossRef]
- van de Wetering, R.; Milakef, P.; Dennehy, D. Artificial Intelligence Ambidexterity, Adaptive Transformation Capability, and Their Impact on Performance Under Tumultuous Times. In The Role of Digital Technologies in Shaping the Post-Pandemic World; Papagiannidis, S., Alamanos, E., Gupta, S., Dwivedi, Y.K., Mäntymäki, M., Pappas, I.O., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2022; Volume 13454, pp. 25–37. ISBN 978-3-031-15341-9. [Google Scholar]
- Mikalef, P.; Gupta, M. Artificial Intelligence Capability: Conceptualization, Measurement Calibration, and Empirical Study on Its Impact on Organizational Creativity and Firm Performance. Inf. Manag. 2021, 58, 103434. [Google Scholar] [CrossRef]
- Canhoto, A.I.; Clear, F. Artificial Intelligence and Machine Learning as Business Tools: A Framework for Diagnosing Value Destruction Potential. Bus. Horiz. 2020, 63, 183–193. [Google Scholar] [CrossRef]
- Wamba-Taguimdje, S.-L.; Fosso Wamba, S.; Kala Kamdjoug, J.R.; Tchatchouang Wanko, C.E. Influence of Artificial Intelligence (AI) on Firm Performance: The Business Value of AI-Based Transformation Projects. Bus. Process Manag. J. 2020, 26, 1893–1924. [Google Scholar] [CrossRef]
- Haefner, N.; Wincent, J.; Parida, V.; Gassmann, O. Artificial Intelligence and Innovation Management: A Review, Framework, and Research Agenda✰. Technol. Forecast. Soc. Chang. 2021, 162, 120392. [Google Scholar] [CrossRef]
- Dwivedi, Y.K.; Hughes, L.; Ismagilova, E.; Aarts, G.; Coombs, C.; Crick, T.; Duan, Y.; Dwivedi, R.; Edwards, J.; Eirug, A.; et al. Artificial Intelligence (AI): Multidisciplinary Perspectives on Emerging Challenges, Opportunities, and Agenda for Research, Practice and Policy. Int. J. Inf. Manag. 2021, 57, 101994. [Google Scholar] [CrossRef]
- Truong, Y.; Papagiannidis, S. Artificial Intelligence as an Enabler for Innovation: A Review and Future Research Agenda. Technol. Forecast. Soc. Chang. 2022, 183, 121852. [Google Scholar] [CrossRef]
- Füller, J.; Hutter, K.; Wahl, J.; Bilgram, V.; Tekic, Z. How AI Revolutionizes Innovation Management–Perceptions and Implementation Preferences of AI-Based Innovators. Technol. Forecast. Soc. Chang. 2022, 178, 121598. [Google Scholar] [CrossRef]
- Wetering, R.V.D. The impact of artificial intelligence ambidexterity and strategic flexibility on operational ambidexterity. In Proceedings of the PACIS 2022 Proceedings, Taipei, Sydney, 5–9 July 2022; p. 153. Available online: https://aisel.aisnet.org/pacis2022/153 (accessed on 1 January 2023).
- Majhi, S.G.; Mukherjee, A.; Anand, A. Business Value of Cognitive Analytics Technology: A Dynamic Capabilities Perspective. VINE J. Inf. Knowl. Manag. Syst. 2021, 1–19. [Google Scholar] [CrossRef]
- van de Wetering, R. Achieving Digital-Driven Patient Agility in the Era of Big Data. In Responsible AI and Analytics for an Ethical and Inclusive Digitized Society; Dennehy, D., Griva, A., Pouloudi, N., Dwivedi, Y.K., Pappas, I., Mäntymäki, M., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2021; Volume 12896, pp. 82–93. ISBN 978-3-030-85446-1. [Google Scholar]
- Benbya, H.; Pachidi, S.; Jarvenpaa, S. Special Issue Editorial: Artificial Intelligence in Organizations: Implications for Information Systems Research. J. Assoc. Inf. Syst. 2021, 22, 281–303. [Google Scholar] [CrossRef]
- Berente, N.; Gu, B.; Recker, J.; Santhanam, R. Managing artificial intelligence. MIS Q. 2021, 45, 1433–1450. [Google Scholar]
- Borges, A.F.S.; Laurindo, F.J.B.; Spínola, M.M.; Gonçalves, R.F.; Mattos, C.A. The Strategic Use of Artificial Intelligence in the Digital Era: Systematic Literature Review and Future Research Directions. Int. J. Inf. Manag. 2021, 57, 102225. [Google Scholar] [CrossRef]
- Keding, C. Understanding the Interplay of Artificial Intelligence and Strategic Management: Four Decades of Research in Review. Manag. Rev. Q. 2021, 71, 91–134. [Google Scholar] [CrossRef]
- Tschang, F.T.; Almirall, E. Artificial Intelligence as Augmenting Automation: Implications for Employment. Acad. Manag. Perspect. 2021, 35, 642–659. [Google Scholar] [CrossRef]
- Davenport, T.H. From Analytics to Artificial Intelligence. J. Bus. Anal. 2018, 1, 73–80. [Google Scholar] [CrossRef]
- Chatterjee, S.; Ghosh, S.K.; Chaudhuri, R. Knowledge Management in Improving Business Process: An Interpretative Framework for Successful Implementation of AI–CRM–KM System in Organizations. Bus. Process Manag. J. 2020, 26, 1261–1281. [Google Scholar] [CrossRef]
- Mishra, A.N.; Pani, A.K. Business Value Appropriation Roadmap for Artificial Intelligence. VINE J. Inf. Knowl. Manag. Syst. 2021, 51, 353–368. [Google Scholar] [CrossRef]
- Fadler, M.; Legner, C. Toward Big Data and Analytics Governance: Redefining Structural Governance Mechanisms. In Proceedings of the 54th Hawaii International Conference on System Sciences, Virtual, 5 January 2021. [Google Scholar]
- Davenport, T.H.; Ronanki, R. Artificial intelligence for the real world. Harv. Bus. Rev. 2018, 96, 108–116. [Google Scholar]
- Barnea, A. How Will AI Change Intelligence and Decision-Making? J. Intell. Stud. Bus. 2020, 1. [Google Scholar] [CrossRef]
- Amershi, S.; Begel, A.; Bird, C.; DeLine, R.; Gall, H.; Kamar, E.; Nagappan, N.; Nushi, B.; Zimmermann, T. Software Engineering for Machine Learning: A Case Study. In Proceedings of the 2019 IEEE/ACM 41st International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP), Montreal, QC, Canada, 25–31 May 2019; pp. 291–300. [Google Scholar]
- Frank, M.R.; Autor, D.; Bessen, J.E.; Brynjolfsson, E.; Cebrian, M.; Deming, D.J.; Feldman, M.; Groh, M.; Lobo, J.; Moro, E.; et al. Toward Understanding the Impact of Artificial Intelligence on Labor. Proc. Natl. Acad. Sci. USA 2019, 116, 6531–6539. [Google Scholar] [CrossRef]
- Krakowski, S.; Luger, J.; Raisch, S. Artificial Intelligence and the Changing Sources of Competitive Advantage. Strateg. Manag. J. 2022, smj.3387. [Google Scholar] [CrossRef]
- Raisch, S.; Birkinshaw, J.; Probst, G.; Tushman, M.L. Organizational Ambidexterity: Balancing Exploitation and Exploration for Sustained Performance. Organ. Sci. 2009, 20, 685–695. [Google Scholar] [CrossRef]
- Butcher, J.; Beridze, I. What Is the State of Artificial Intelligence Governance Globally? RUSI J. 2019, 164, 88–96. [Google Scholar] [CrossRef]
- Bharadwaj, A.S. A Resource-Based Perspective on Information Technology Capability and Firm Performance: An Empirical Investigation. MIS Q. 2000, 24, 169. [Google Scholar] [CrossRef]
- Kohli, R.; Grover, V. Business Value of IT: An Essay on Expanding Research Directions to Keep up with the Times. J. Assoc. Inf. Syst. 2008, 9, 23–39. [Google Scholar] [CrossRef]
- Yigit, A.; Kanbach, D. The importance of Artificial Intelligence in strategic Management: A literature Review. Int. J. Strateg. Manag. 2021, 21, 5–40. [Google Scholar] [CrossRef]
- Bag, S.; Gupta, S.; Kumar, A.; Sivarajah, U. An Integrated Artificial Intelligence Framework for Knowledge Creation and B2B Marketing Rational Decision Making for Improving Firm Performance. Ind. Mark. Manag. 2021, 92, 178–189. [Google Scholar] [CrossRef]
- Collins, C.; Dennehy, D.; Conboy, K.; Mikalef, P. Artificial Intelligence in Information Systems Research: A Systematic Literature Review and Research Agenda. Int. J. Inf. Manag. 2021, 60, 102383. [Google Scholar] [CrossRef]
- Yu, J.; Moon, T. Impact of Digital Strategic Orientation on Organizational Performance through Digital Competence. Sustainability 2021, 13, 9766. [Google Scholar] [CrossRef]
- Teece, D.J.; Pisano, G.; Shuen, A. Dynamic Capabilities and Strategic Management. Strateg. Manag. J. 1997, 18, 509–533. [Google Scholar] [CrossRef]
- Eshima, Y.; Anderson, B.S. Firm Growth, Adaptive Capability, and Entrepreneurial Orientation. Strateg. Manag. J. 2017, 38, 770–779. [Google Scholar] [CrossRef]
- Awwad, A.S.; Ababneh, O.M.A.; Karasneh, M. The Mediating Impact of IT Capabilities on the Association between Dynamic Capabilities and Organizational Agility: The Case of the Jordanian IT Sector. Glob. J. Flex. Syst. Manag. 2022, 23, 315–330. [Google Scholar] [CrossRef]
- Watson, R.T.; Webster, J. Analysing the Past to Prepare for the Future: Writing a Literature Review a Roadmap for Release 2.0. J. Decis. Syst. 2020, 29, 129–147. [Google Scholar] [CrossRef]
- Çebeci, H.İ. Artificial Intelligence Applications in Management Information Systems: A Comprehensive Systematic Review with Business Analytics Perspective. Artif. Intell. Theory Appl. 2021, 1, 25–56. [Google Scholar]
- Enholm, I.M.; Papagiannidis, E.; Mikalef, P.; Krogstie, J. Artificial Intelligence and Business Value: A Literature Review. Inf. Syst. Front. 2021, 24, 1709–1734. [Google Scholar] [CrossRef]
- Zuiderwijk, A.; Chen, Y.-C.; Salem, F. Implications of the Use of Artificial Intelligence in Public Governance: A Systematic Literature Review and a Research Agenda. Gov. Inf. Q. 2021, 38, 101577. [Google Scholar] [CrossRef]
- Grover, P.; Kar, A.K.; Dwivedi, Y.K. Understanding Artificial Intelligence Adoption in Operations Management: Insights from the Review of Academic Literature and Social Media Discussions. Ann. Oper. Res. 2022, 308, 177–213. [Google Scholar] [CrossRef]
- Caner, S.; Bhatti, F. A Conceptual Framework on Defining Businesses Strategy for Artificial Intelligence. Contemp. Manag. Res. 2020, 16, 175–206. [Google Scholar] [CrossRef]
- Smacchia, M.; Za, S. Artificial Intelligence in Organisation and Managerial Studies: A Computational Literature Review. In Proceedings of the ICIS 2022 Proceedings, Copenhagen, Denmark, 9–14 December 2022. [Google Scholar]
- Di Vaio, A.; Palladino, R.; Hassan, R.; Escobar, O. Artificial Intelligence and Business Models in the Sustainable Development Goals Perspective: A Systematic Literature Review. J. Bus. Res. 2020, 121, 283–314. [Google Scholar] [CrossRef]
- Dhamija, P.; Bag, S. Role of Artificial Intelligence in Operations Environment: A Review and Bibliometric Analysis. TQM 2020, 32, 869–896. [Google Scholar] [CrossRef]
- Haenlein, M.; Kaplan, A. A Brief History of Artificial Intelligence: On the Past, Present, and Future of Artificial Intelligence. Calif. Manag. Rev. 2019, 61, 5–14. [Google Scholar] [CrossRef]
- Çark, Ö. Digital Conflicts in Strategic Business Management. In Conflict Management in Digital Business; Özsungur, F., Ed.; Emerald Publishing Limited: Bingley, UK, 2022; pp. 205–222. ISBN 978-1-80262-774-9. [Google Scholar]
- Shrestha, Y.R.; Ben-Menahem, S.M.; von Krogh, G. Organizational Decision-Making Structures in the Age of Artificial Intelligence. Calif. Manag. Rev. 2019, 61, 66–83. [Google Scholar] [CrossRef]
- Shrestha, Y.R.; Krishna, V.; von Krogh, G. Augmenting Organizational Decision-Making with Deep Learning Algorithms: Principles, Promises, and Challenges. J. Bus. Res. 2021, 123, 588–603. [Google Scholar] [CrossRef]
- von Krogh, G. Artificial Intelligence in Organizations: New Opportunities for Phenomenon-Based Theorizing. Acad. Manag. Discov. 2018, 4, 404–409. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, A.; Gans, J.; Goldfarb, A. Economic Policy for Artificial Intelligence. Innov. Policy Econ. 2019, 19, 139–159. [Google Scholar] [CrossRef]
- Jarzabkowski, P.; Balogun, J.; Seidl, D. Strategizing: The Challenges of a Practice Perspective. Hum. Relat. 2007, 60, 5–27. [Google Scholar] [CrossRef]
- Whittington, R. Information Systems Strategy and Strategy-as-Practice: A Joint Agenda. J. Strateg. Inf. Syst. 2014, 23, 87–91. [Google Scholar] [CrossRef]
- Von Krogh, G.; Ben-Menahem, S.M.; Shrestha, Y.R. Artificial Intelligence in Strategizing: Prospects and Challenges. In Strategic Management; Oxford University Press: Oxford, UK, 2021; pp. 625–646. ISBN 978-0-19-009088-3. [Google Scholar]
- Liu, J.; Chang, H.; Forrest, J.Y.-L.; Yang, B. Influence of Artificial Intelligence on Technological Innovation: Evidence from the Panel Data of China’s Manufacturing Sectors. Technol. Forecast. Soc. Chang. 2020, 158, 120142. [Google Scholar] [CrossRef]
- Benner, M.J.; Tushman, M.L. Exploration, exploitation and process management: The productivity dilemma revisited. Acad. Manag. J. 2003, 28, 238–256. [Google Scholar] [CrossRef]
- Carter, M.; Petter, S.; Grover, V.; Thatcher, J.B. Information Technology Identity: A Key Determinant of IT Feature and Exploratory Usage. MIS Q. 2020, 44, 983–1021. [Google Scholar] [CrossRef]
- Lee, O.-K.; Sambamurthy, V.; Lim, K.H.; Wei, K.K. How Does IT Ambidexterity Impact Organizational Agility? Inf. Syst. Res. 2015, 26, 398–417. [Google Scholar] [CrossRef]
- Sestino, A.; De Mauro, A. Leveraging Artificial Intelligence in Business: Implications, Applications and Methods. Technol. Anal. Strateg. Manag. 2022, 34, 16–29. [Google Scholar] [CrossRef]
- Warner, K.S.R.; Wäger, M. Building Dynamic Capabilities for Digital Transformation: An Ongoing Process of Strategic Renewal. Long Range Plan. 2019, 52, 326–349. [Google Scholar] [CrossRef]
- Huang, M.-H.; Rust, R.T. A Strategic Framework for Artificial Intelligence in Marketing. J. Acad. Mark. Sci. 2021, 49, 30–50. [Google Scholar] [CrossRef]
- Wamba-Taguimdje, S.-L.; Wamba, S.F.; Kamdjoug, J.R.K.; Wanko, C.E.T. Impact of Artificial Intelligence on Firm Performance: Exploring the Mediating Effect of Process-Oriented Dynamic Capabilities. In Digital Business Transformation; Agrifoglio, R., Lamboglia, R., Mancini, D., Ricciardi, F., Eds.; Lecture Notes in Information Systems and Organisation; Springer International Publishing: Cham, Switzerland, 2020; Volume 38, pp. 3–18. ISBN 978-3-030-47354-9. [Google Scholar]
- Papachroni, A.; Heracleous, L.; Paroutis, S. Organizational Ambidexterity Through the Lens of Paradox Theory: Building a Novel Research Agenda. J. Appl. Behav. Sci. 2015, 51, 71–93. [Google Scholar] [CrossRef]
- van de Wetering, R.; Versendaal, J. Information Technology Ambidexterity, Digital Dynamic Capability, and Knowledge Processes as Enablers of Patient Agility: Empirical Study. JMIRx Med. 2021, 2, e32336. [Google Scholar] [CrossRef]
- Diaz-Fernandez, M.; Pasamar-Reyes, S.; Valle-Cabrera, R. Human Capital and Human Resource Management to Achieve Ambidextrous Learning: A Structural Perspective. BRQ Bus. Res. Q. 2017, 20, 63–77. [Google Scholar] [CrossRef]
- Jansen, J.J.P.; Van Den Bosch, F.A.J.; Volberda, H.W. Exploratory Innovation, Exploitative Innovation, and Performance: Effects of Organizational Antecedents and Environmental Moderators. Manag. Sci. 2006, 52, 1661–1674. [Google Scholar] [CrossRef]
- Paschen, J.; Wilson, M.; Ferreira, J.J. Collaborative Intelligence: How Human and Artificial Intelligence Create Value along the B2B Sales Funnel. Bus. Horiz. 2020, 63, 403–414. [Google Scholar] [CrossRef]
- Phan, P.; Wright, M.; Lee, S.-H. Of Robots, Artificial Intelligence, and Work. Acad. Manag. Perspect. 2017, 31, 253–255. [Google Scholar] [CrossRef]
- Garbuio, M.; Lin, N. Artificial Intelligence as a Growth Engine for Health Care Startups: Emerging Business Models. Calif. Manag. Rev. 2019, 61, 59–83. [Google Scholar] [CrossRef]
- Hengstler, M.; Enkel, E.; Duelli, S. Applied Artificial Intelligence and Trust—The Case of Autonomous Vehicles and Medical Assistance Devices. Technol. Forecast. Soc. Chang. 2016, 105, 105–120. [Google Scholar] [CrossRef]
- Barro, S.; Davenport, T.H. People and Machines: Partners in Innovation. MIT Sloan Manag. Rev. 2019, 60, 22–28. [Google Scholar]
- Desouza, K.C.; Dawson, G.S.; Chenok, D. Designing, Developing, and Deploying Artificial Intelligence Systems: Lessons from and for the Public Sector. Bus. Horiz. 2020, 63, 205–213. [Google Scholar] [CrossRef]
- Reis, C.; Ruivo, P.; Oliveira, T.; Faroleiro, P. Assessing the Drivers of Machine Learning Business Value. J. Bus. Res. 2020, 117, 232–243. [Google Scholar] [CrossRef]
- Alsheibani, S.A.; Cheung, Y.; Messom, D.C.; Alhosni, M. Winning AI Strategy: Six-Steps to Create Value from Artificial Intelligence. AMCIS Proc. 2020, 11. Available online: https://aisel.aisnet.org/amcis2020/adv_info_systems_research/adv_info_systems_research/1/ (accessed on 1 January 2023).
- Sjödin, D.; Parida, V.; Palmié, M.; Wincent, J. How AI Capabilities Enable Business Model Innovation: Scaling AI through Co-Evolutionary Processes and Feedback Loops. J. Bus. Res. 2021, 134, 574–587. [Google Scholar] [CrossRef]
- Weber, M.; Engert, M.; Schaffer, N.; Weking, J.; Krcmar, H. Organizational Capabilities for AI Implementation—Coping with Inscrutability and Data Dependency in AI. Inf. Syst. Front. 2022, 1–21. [Google Scholar] [CrossRef]
- Melville, N.; Gurbaxani, V.; Kraemer, K. The Productivity Impact of Information Technology across Competitive Regimes: The Role of Industry Concentration and Dynamism. Decis. Support Syst. 2007, 43, 229–242. [Google Scholar] [CrossRef]
- Aydiner, A.S.; Tatoglu, E.; Bayraktar, E.; Zaim, S.; Delen, D. Business Analytics and Firm Performance: The Mediating Role of Business Process Performance. J. Bus. Res. 2019, 96, 228–237. [Google Scholar] [CrossRef]
- Wade, M.; Hulland, J. Review: The resource-based view and information systems research: Review, extension, and suggestions for future research. MIS Q. 2004, 28, 107–142. [Google Scholar] [CrossRef]
- Barney, J.B. Purchasing, Supply Chain Management and Sustained Competitive Advantage: The Relevance of Resource-Based Theory. J. Supply Chain Manag. 2012, 48, 3–6. [Google Scholar] [CrossRef]
- Barney, J.B. Resource-Based Theories of Competitive Advantage: A Ten-Year Retrospective on the Resource-Based View. J. Manag. 2001, 27, 643–650. [Google Scholar] [CrossRef]
- Bromiley, P.; Rau, D. Operations Management and the Resource Based View: Another View. J. Oper. Manag. 2016, 41, 95–106. [Google Scholar] [CrossRef]
- Bamel, U.K.; Bamel, N. Organizational Resources, KM Process Capability and Strategic Flexibility: A Dynamic Resource-Capability Perspective. J. Knowl. Manag. 2018, 22, 1555–1572. [Google Scholar] [CrossRef]
- Gupta, M.; George, J.F. Toward the development of a big data analytics capability. Inf. Manag. 2016, 53, 1049–1064. [Google Scholar] [CrossRef]
- Ravichandran, T.; Lertwongsatien, C.; Lertwongsatien, C. Effect of Information Systems Resources and Capabilities on Firm Performance: A Resource-Based Perspective. J. Manag. Inf. Syst. 2005, 21, 237–276. [Google Scholar] [CrossRef]
- Mikalef, P.; Fjørtoft, S.O.; Torvatn, H.Y. Developing an Artificial Intelligence Capability: A Theoretical Framework for Business Value. In Business Information Systems Workshops; Abramowicz, W., Corchuelo, R., Eds.; Lecture Notes in Business Information Processing; Springer International Publishing: Cham, Switzerland, 2019; Volume 373, pp. 409–416. ISBN 978-3-030-36690-2. [Google Scholar]
- Morgan, N.A.; Vorhies, D.W.; Schlegelmilch, B.B. Resource–Performance Relationships in Industrial Export Ventures: The Role of Resource Inimitability and Substitutability. Ind. Mark. Manag. 2006, 35, 621–633. [Google Scholar] [CrossRef]
- Seddon, P.B. Implications for Strategic IS Research of the Resource-Based Theory of the Firm: A Reflection. J. Strateg. Inf. Syst. 2014, 23, 257–269. [Google Scholar] [CrossRef]
- Uren, V.; Edwards, J.S. Technology Readiness and the Organizational Journey towards AI Adoption: An Empirical Study. Int. J. Inf. Manag. 2023, 68, 102588. [Google Scholar] [CrossRef]
- Kurniawan, R.; Manurung, A.H.; Hamsal, M.; Kosasih, W. Orchestrating Internal and External Resources to Achieve Agility and Performance: The Centrality of Market Orientation. BIJ 2020, 28, 517–555. [Google Scholar] [CrossRef]
- Carnes, C.M.; Chirico, F.; Hitt, M.A.; Huh, D.W.; Pisano, V. Resource Orchestration for Innovation: Structuring and Bundling Resources in Growth- and Maturity-Stage Firms. Long Range Plan. 2017, 50, 472–486. [Google Scholar] [CrossRef]
- Mikalef, P.; Boura, M.; Lekakos, G.; Krogstie, J. Big Data Analytics Capabilities and Innovation: The Mediating Role of Dynamic Capabilities and Moderating Effect of the Environment. Br. J. Manag. 2019, 30, 272–298. [Google Scholar] [CrossRef]
- Garbuio, M.; King, A.W.; Lovallo, D. Looking Inside: Psychological Influences on Structuring a Firm’s Portfolio of Resources. J. Manag. 2011, 37, 1444–1463. [Google Scholar] [CrossRef]
- Ho, L.T.; Gan, C.; Jin, S.; Le, B. Artificial Intelligence and Firm Performance: Does Machine Intelligence Shield Firms from Risks? J. Risk Financ. Manag. 2022, 15, 302. [Google Scholar] [CrossRef]
- Sirmon, D.G.; Hitt, M.A.; Ireland, R.D. Managing Firm Resources in Dynamic Environments to Create Value: Looking Inside the Black Box. Acad. Manag. Rev. 2007, 32, 273–292. [Google Scholar] [CrossRef] [Green Version]
- Fosso Wamba, S. Impact of Artificial Intelligence Assimilation on Firm Performance: The Mediating Effects of Organizational Agility and Customer Agility. Int. J. Inf. Manag. 2022, 67, 102544. [Google Scholar] [CrossRef]
- Lee, M.C.M.; Scheepers, H.; Lui, A.K.H.; Ngai, E.W.T. The Role of Artificial Intelligence for Business Value. In Proceedings of the ICIS 2022, Copenhagen, Denmark, 9–14 December 2022; Available online: https://aisel.aisnet.org/icis2022/ai_business/ai_business/3/ (accessed on 1 January 2023).
- Sirmon, D.G.; Hitt, M.A.; Ireland, R.D.; Gilbert, B.A. Resource Orchestration to Create Competitive Advantage: Breadth, Depth, and Life Cycle Effects. J. Manag. 2011, 37, 1390–1412. [Google Scholar] [CrossRef]
- van de Wetering, R.; Bosua, R.; Boersma, C.; Dohmen, D. Information Technology Ambidexterity-Driven Patient Agility, Patient Service- and Market Performance: A Variance and FsQCA Approach. Sustainability 2022, 14, 4371. [Google Scholar] [CrossRef]
- Papagiannidis, E.; Enholm, I.M.; Dremel, C.; Mikalef, P.; Krogstie, J. Deploying AI Governance Practices: A Revelatory Case Study. In Responsible AI and Analytics for an Ethical and Inclusive Digitized Society; Dennehy, D., Griva, A., Pouloudi, N., Dwivedi, Y.K., Pappas, I., Mäntymäki, M., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2021; Volume 12896, pp. 208–219. ISBN 978-3-030-85446-1. [Google Scholar]
- Fountaine, T.; McCarthy, B.; Saleh, T. Building the AI-Powered Organization. Harv. Bus. Rev. 2019, 97, 62–73. [Google Scholar]
- Lichtenthaler, U. An Intelligence-Based View of Firm Performance: Profiting from Artificial Intelligence. J. Innov. Manag. 2019, 7, 7–20. [Google Scholar] [CrossRef]
- Papagiannidis, E.; Mikalef, P.; Krogstie, J.; Conboy, K. From Responsible AI Governance to Competitive Performance: The Mediating Role of Knowledge Management Capabilities. In The Role of Digital Technologies in Shaping the Post-Pandemic World; Papagiannidis, S., Alamanos, E., Gupta, S., Dwivedi, Y.K., Mäntymäki, M., Pappas, I.O., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2022; Volume 13454, pp. 58–69. ISBN 978-3-031-15341-9. [Google Scholar]
- de Laat, P.B. Companies Committed to Responsible AI: From Principles towards Implementation and Regulation? Philos. Technol. 2021, 34, 1135–1193. [Google Scholar] [CrossRef] [PubMed]
- Borgman, H.; Heier, H.; Bahli, B.; Boekamp, T. Dotting the I and Crossing (out) the T in IT Governance: New Challenges for Information Governance. In Proceedings of the 2016 49th Hawaii International Conference on System Sciences (HICSS), Koloa, HI, USA, 5–8 January 2016; pp. 4901–4909. [Google Scholar]
- Kruhse-Lehtonen, U.; Hofmann, D. How to Define and Execute Your Data and AI Strategy. Harv. Data Sci. Rev. 2020. Available online: https://hdsr.mitpress.mit.edu/pub/4vlrf0x2/release/1 (accessed on 1 January 2023).
- Schneider, J.; Abraham, R.; Meske, C.; Vom Brocke, J. Artificial Intelligence Governance For Businesses. Inf. Syst. Manag. 2022, 1–21. [Google Scholar] [CrossRef]
- Chen, D.; Esperança, J.P.; Wang, S. The Impact of Artificial Intelligence on Firm Performance: An Application of the Resource-Based View to e-Commerce Firms. Front. Psychol. 2022, 13, 884830. [Google Scholar] [CrossRef] [PubMed]
- Smit, K.; Zoet, M.; van Meerten, J. A Review of AI Principles in Practice. In Proceedings of the PACIS 2020 Proceedings, Dubai, United Arab Emirates, 20–24 June 2020. [Google Scholar]
- Alsheiabni, S.; Cheung, Y.; Messom, C. Towards An Artificial Intelligence Maturity Model: From Science Fiction To Business Facts. In Proceedings of the PACIS, Xi’an, China, 8–12 July 2019; p. 9. Available online: https://aisel.aisnet.org/pacis2019/46/ (accessed on 1 January 2023).
- Abraham, R.; Schneider, J.; vom Brocke, J. Data Governance: A Conceptual Framework, Structured Review, and Research Agenda. Int. J. Inf. Manag. 2019, 49, 424–438. [Google Scholar] [CrossRef]
- Ashmore, R.; Calinescu, R.; Paterson, C. Assuring the Machine Learning Lifecycle: Desiderata, Methods, and Challenges. ACM Comput. Surv. 2022, 54, 1–39. [Google Scholar] [CrossRef]
- Scherer, M.U. Regulating Artificial Intelligence Systems: Risks, Challenges, Competencies, and Strategies. SSRN J. 2015, 29, 48. [Google Scholar] [CrossRef]
- Clarke, R. Principles and Business Processes for Responsible AI. Comput. Law Secur. Rev. 2019, 35, 410–422. [Google Scholar] [CrossRef]
- Brundage, M.; Avin, S.; Wang, J.; Belfield, H.; Krueger, G.; Hadfield, G.; Khlaaf, H.; Yang, J.; Toner, H.; Fong, R.; et al. Toward Trustworthy AI Development: Mechanisms for Supporting Verifiable Claims. 2020. Available online: http://arxiv.org/abs/2004.07213 (accessed on 1 December 2021).
- Phillips-Wren, G.; Jain, L. Artificial Intelligence for Decision Making. In Knowledge-Based Intelligent Information and Engineering Systems; Gabrys, B., Howlett, R.J., Jain, L.C., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2006; Volume 4252, pp. 531–536. ISBN 978-3-540-46537-9. [Google Scholar]
- Kaplan, A.; Haenlein, M. Siri, Siri, in My Hand: Who’s the Fairest in the Land? On the Interpretations, Illustrations, and Implications of Artificial Intelligence. Bus. Horiz. 2019, 62, 15–25. [Google Scholar] [CrossRef]
- Chi, M.; Zhao, J.; George, J.F.; Li, Y.; Zhai, S. The Influence of Inter-Firm IT Governance Strategies on Relational Performance: The Moderation Effect of Information Technology Ambidexterity. Int. J. Inf. Manag. 2017, 37, 43–53. [Google Scholar] [CrossRef]
- Minkkinen, M.; Zimmer, M.P.; Mäntymäki, M. Towards Ecosystems for Responsible AI: Expectations on Sociotechnical Systems, Agendas, and Networks in EU Documents. In Responsible AI and Analytics for an Ethical and Inclusive Digitized Society; Dennehy, D., Griva, A., Pouloudi, N., Dwivedi, Y.K., Pappas, I., Mäntymäki, M., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2021; Volume 12896, pp. 220–232. ISBN 978-3-030-85446-1. [Google Scholar]
- Ledro, C.; Nosella, A.; Vinelli, A. Artificial Intelligence in Customer Relationship Management: Literature Review and Future Research Directions. JBIM 2022, 37, 48–63. [Google Scholar] [CrossRef]
- Lwakatare, L.E.; Raj, A.; Bosch, J.; Olsson, H.H.; Crnkovic, I. A Taxonomy of Software Engineering Challenges for Machine Learning Systems: An Empirical Investigation. In Agile Processes in Software Engineering and Extreme Programming; Kruchten, P., Fraser, S., Coallier, F., Eds.; Lecture Notes in Business Information Processing; Springer International Publishing: Cham, Switzerland, 2019; Volume 355, pp. 227–243. ISBN 978-3-030-19033-0. [Google Scholar]
- Wang, X.; Lin, X.; Shao, B. How Does Artificial Intelligence Create Business Agility? Evidence from Chatbots. Int. J. Inf. Manag. 2022, 66, 102535. [Google Scholar] [CrossRef]
- Dignum, V. Responsible Artificial Intelligence: How to Develop and Use AI in a Responsible Way; Artificial Intelligence: Foundations, Theory, and Algorithms; Springer International Publishing: Cham, Switzerland, 2019; ISBN 978-3-030-30370-9. [Google Scholar]
- Brozovic, D. Strategic Flexibility: A Review of the Literature: Strategic Flexibility. Int. J. Manag. Rev. 2018, 20, 3–31. [Google Scholar] [CrossRef]
- Escrig-Tena, A.B.; Bou-Llusar, J.C.; Beltrán-Martín, I.; Roca-Puig, V. Modelling the Implications of Quality Management Elements on Strategic Flexibility. Adv. Decis. Sci. 2011, 2011, 1–27. [Google Scholar] [CrossRef]
- van de Wetering, R.; Mikalef, P.; Pateli, A. Managing Firms’ Innovation Capabilities through Strategically Aligning Combinative IT and Dynamic Capabilities. 11. Available online: https://www.researchgate.net/publication/316596939_Managing_firms%27_innovation_capabilities_through_strategically_aligning_combinative_IT_and_dynamic_capabilities (accessed on 1 January 2023).
- Mikalef, P.; Pateli, A. Information Technology-Enabled Dynamic Capabilities and Their Indirect Effect on Competitive Performance: Findings from PLS-SEM and FsQCA. J. Bus. Res. 2017, 70, 1–16. [Google Scholar] [CrossRef]
- Eisenhardt, K.M.; Furr, N.R.; Bingham, C.B. Crossroads—Microfoundations of Performance: Balancing Efficiency and Flexibility in Dynamic Environments. Organ. Sci. 2010, 21, 1263–1273. [Google Scholar] [CrossRef]
- Nadkarni, S.; Narayanan, V.K. Strategic Schemas, Strategic Flexibility, and Firm Performance: The Moderating Role of Industry Clockspeed. Strateg. Manag. J. 2007, 28, 243–270. [Google Scholar] [CrossRef]
- Haarhaus, T.; Liening, A. Building Dynamic Capabilities to Cope with Environmental Uncertainty: The Role of Strategic Foresight. Technol. Forecast. Soc. Chang. 2020, 155, 120033. [Google Scholar] [CrossRef]
- Shimizu, K.; Hitt, M.A. Strategic Flexibility:Organizational Preparedness to Reverse Ineffective Strategic Decisions. Acad. Manag. Perspect. 2004, 18, 44–59. [Google Scholar] [CrossRef]
- Combe, I.A.; Rudd, J.M.; Leeflang, P.S.H.; Greenley, G.E. Antecedents to Strategic Flexibility: Management Cognition, Firm Resources and Strategic Options. Eur. J. Mark. 2012, 46, 1320–1339. [Google Scholar] [CrossRef]
- Radomska, J. Strategic Flexibility of Enterprises. J. Econ. Bus. Manag. 2015, 3, 19–23. [Google Scholar] [CrossRef]
- Bock, A.J.; Opsahl, T.; George, G.; Gann, D.M. The Effects of Culture and Structure on Strategic Flexibility during Business Model Innovation: Flexibility During Business Model Innovation. J. Manag. Stud. 2012, 49, 279–305. [Google Scholar] [CrossRef]
- Kortmann, S.; Gelhard, C.; Zimmermann, C.; Piller, F.T. Linking Strategic Flexibility and Operational Efficiency: The Mediating Role of Ambidextrous Operational Capabilities. J. Oper. Manag. 2014, 32, 475–490. [Google Scholar] [CrossRef]
- van de Wetering, R.; Mikalef, P. The Effect of Strategic Alignment of Complementary IT and Organizational Capabilities on Competitive Firm Performance. In Business Information Systems Workshops; Abramowicz, W., Ed.; Lecture Notes in Business Information Processing; Springer International Publishing: Cham, Switzerland, 2017; Volume 303, pp. 115–126. ISBN 978-3-319-69022-3. [Google Scholar]
- Matalamäki, M.J.; Joensuu-Salo, S. Digitalization and Strategic Flexibility–a Recipe for Business Growth. J. Small Bus. Enterp. Dev. 2022, 29, 380–401. [Google Scholar] [CrossRef]
- Yi, Y.; Gu, M.; Wei, Z. Bottom-up Learning, Strategic Flexibility and Strategic Change. J. Organ. Change Manag. 2017, 30, 161–183. [Google Scholar] [CrossRef]
- Chan, J.T.; Zhong, W. Reading China: Predicting Policy Change with Machine Learning. SSRN J. 2018, 43. [Google Scholar] [CrossRef]
- Avramov, D.; Cheng, S.; Metzker, L. Machine Learning vs. Economic Restrictions: Evidence from Stock Return Predictability. Manag. Sci. 2022. [Google Scholar] [CrossRef]
- Kou, G.; Chao, X.; Peng, Y.; Alsaadi, F.E.; Herrera-Viedma, E. Machine Learning Methods for Systemic Risk Analysis in Financial Sectors. Technol. Econ. Dev. Econ. 2019, 25, 716–742. [Google Scholar] [CrossRef]
- Bail, C.A. The Cultural Environment: Measuring Culture with Big Data. Theor. Soc. 2014, 43, 465–482. [Google Scholar] [CrossRef]
- Lee, C.; Kwon, O.; Kim, M.; Kwon, D. Early Identification of Emerging Technologies: A Machine Learning Approach Using Multiple Patent Indicators. Technol. Forecast. Soc. Chang. 2018, 127, 291–303. [Google Scholar] [CrossRef]
- Suominen, A.; Toivanen, H.; Seppänen, M. Firms’ Knowledge Profiles: Mapping Patent Data with Unsupervised Learning. Technol. Forecast. Soc. Chang. 2017, 115, 131–142. [Google Scholar] [CrossRef]
- Khan, H.U.; Malik, M.Z.; Alomari, M.K.B.; Khan, S.; Al-Maadid, A.A.S.A.; Hassan, M.K.; Khan, K. Transforming the Capabilities of Artificial Intelligence in GCC Financial Sector: A Systematic Literature Review. Wirel. Commun. Mob. Comput. 2022, 2022, 8725767. [Google Scholar] [CrossRef]
- Fethi, M.D.; Pasiouras, F. Assessing Bank Efficiency and Performance with Operational Research and Artificial Intelligence Techniques: A Survey. Eur. J. Oper. Res. 2010, 204, 189–198. [Google Scholar] [CrossRef]
- Mishra, S.; Ewing, M.T.; Cooper, H.B. Artificial Intelligence Focus and Firm Performance. J. Acad. Mark. Sci. 2022, 50, 1176–1197. [Google Scholar] [CrossRef]
- Cheung, C.F.; Wang, W.M.; Lo, V.; Lee, W.B. An Agent-Oriented and Knowledge-Based System for Strategic e-Procurement. Expert Syst. 2004, 21, 11–21. [Google Scholar] [CrossRef]
- Hollebeek, L.D.; Conduit, J.; Brodie, R.J. Strategic Drivers, Anticipated and Unanticipated Outcomes of Customer Engagement. J. Mark. Manag. 2016, 32, 393–398. [Google Scholar] [CrossRef]
- Gomez-Uribe, C.A.; Hunt, N. The Netflix Recommender System: Algorithms, Business Value, and Innovation. ACM Trans. Manag. Inf. Syst. 2016, 6, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Drydakis, N. Artificial Intelligence and Reduced SMEs’ Business Risks. A Dynamic Capabilities Analysis During the COVID-19 Pandemic. Inf. Syst. Front. 2022, 24, 1223–1247. [Google Scholar] [CrossRef]
- Brynjolfsson, E.; Mitchell, T. What Can Machine Learning Do? Workforce Implications. Science 2017, 358, 1530–1534. [Google Scholar] [CrossRef]
- Moloi, T.; Marwala, T. Artificial Intelligence and the Changing Nature of Corporations: How Technologies Shape Strategy and Operations; Future of Business and Finance; Springer International Publishing: Cham, Switzerland, 2021; ISBN 978-3-030-76312-1. [Google Scholar]
- Benitez, J.; Castillo, A.; Llorens, J.; Braojos, J. IT-Enabled Knowledge Ambidexterity and Innovation Performance in Small U.S. Firms: The Moderator Role of Social Media Capability. Inf. Manag. 2018, 55, 131–143. [Google Scholar] [CrossRef]
- Robert Baum, J.; Wally, S. Strategic Decision Speed and Firm Performance. Strateg. Manag. J. 2003, 24, 1107–1129. [Google Scholar] [CrossRef]
- Coombs, C.; Hislop, D.; Taneva, S.K.; Barnard, S. The Strategic Impacts of Intelligent Automation for Knowledge and Service Work: An Interdisciplinary Review. J. Strateg. Inf. Syst. 2020, 29, 101600. [Google Scholar] [CrossRef]
- Menon, A.; Choi, J.; Tabakovic, H. What You Say Your Strategy Is and Why It Matters: Natural Language Processing of Unstructured Text. Proceedings 2018, 2018, 18319. [Google Scholar] [CrossRef]
- Trocin, C.; Hovland, I.V.; Mikalef, P.; Dremel, C. How Artificial Intelligence Affords Digital Innovation: A Cross-Case Analysis of Scandinavian Companies. Technol. Forecast. Soc. Chang. 2021, 173, 121081. [Google Scholar] [CrossRef]
- Chalmers, D.; MacKenzie, N.G.; Carter, S. Artificial Intelligence and Entrepreneurship: Implications for Venture Creation in the Fourth Industrial Revolution. Entrep. Theory Pract. 2021, 45, 1028–1053. [Google Scholar] [CrossRef]
- Roberts, N.; Grover, V. Leveraging Information Technology Infrastructure to Facilitate a Firm’s Customer Agility and Competitive Activity: An Empirical Investigation. J. Manag. Inf. Syst. 2012, 28, 231–270. [Google Scholar] [CrossRef]
- Sambamurthy; Bharadwaj; Grover Shaping Agility through Digital Options: Reconceptualizing the Role of Information Technology in Contemporary Firms. MIS Q. 2003, 27, 237. [CrossRef] [Green Version]
- Lui, A.K.H.; Lee, M.C.M.; Ngai, E.W.T. Impact of Artificial Intelligence Investment on Firm Value. Ann. Oper. Res. 2022, 308, 373–388. [Google Scholar] [CrossRef]
- Braganza, A.; Brooks, L.; Nepelski, D.; Ali, M.; Moro, R. Resource Management in Big Data Initiatives: Processes and Dynamic Capabilities. J. Bus. Res. 2017, 70, 328–337. [Google Scholar] [CrossRef]
- Rialti, R.; Marzi, G.; Caputo, A.; Mayah, K.A. Achieving Strategic Flexibility in the Era of Big Data: The Importance of Knowledge Management and Ambidexterity. Manag. Decis. 2020, 58, 1585–1600. [Google Scholar] [CrossRef]
- Verganti, R.; Vendraminelli, L.; Iansiti, M. Innovation and Design in the Age of Artificial Intelligence. J. Prod. Innov. Manag. 2020, 37, 212–227. [Google Scholar] [CrossRef]
- Chen, Y. Dynamic Ambidexterity: How Innovators Manage Exploration and Exploitation. Bus. Horiz. 2017, 60, 385–394. [Google Scholar] [CrossRef]
- Miroshnychenko, I.; Strobl, A.; Matzler, K.; De Massis, A. Absorptive Capacity, Strategic Flexibility, and Business Model Innovation: Empirical Evidence from Italian SMEs. J. Bus. Res. 2021, 130, 670–682. [Google Scholar] [CrossRef]
- Li, C.; Khan, A.; Ahmad, H.; Shahzad, M. Business Analytics Competencies in Stabilizing Firms’ Agility and Digital Innovation amid COVID-19. J. Innov. Knowl. 2022, 7, 100246. [Google Scholar] [CrossRef]
- Grewal, R.; Tansuhaj, P. Building Organizational Capabilities for Managing Economic Crisis: The Role of Market Orientation and Strategic Flexibility. J. Mark. 2001, 65, 67–80. [Google Scholar] [CrossRef]
- Helfat, C.E.; Peteraf, M.A. Understanding Dynamic Capabilities: Progress along a Developmental Path. Strateg. Organ. 2009, 7, 91–102. [Google Scholar] [CrossRef] [Green Version]
Authors | Year | Methodology | Findings |
---|---|---|---|
Kitsios and Kamariotou [1] | 2021 | Systematic Literature Review (Webster and Watson) 81 articles published before 2020 | Analyze the relationship between corporate strategy and AI and outlined four sources of value creation for the application of AI in business strategy, along with research holes that need to be filled. |
Çebeci [50] | 2021 | Systematic Literature Review Scopus Database 2944 articles between 2001–2020 | Holistic Review that examined and assessed AI studies in Management Information studies over time according to context, method, journal, and concept |
Enholm et al. [51] | 2021 | Systematic Literature Review 10 Databases 43 Articles published before 2020 | A review that explains how businesses can use AI technologies in their operations and illustrates the value creation processes. The important enablers and inhibitors of AI adoption and use are highlighted in our study, along with the types of AI use in the organizational setting, first and second-order impacts, and usage typologies. |
Keding [27] | 2019 | Systematic Literature Review 58 articles published between 1983–2019 | Review of articles on the use of AI techniques in strategic management, with subheadings on data-driven workflows, managerial openness, organizational factors, managerial cognition, the importance of complementary skills, human–machine collaboration, design of decision-making governance, agility and participation in strategy development, and predictive logic in business models. |
Zuiderwijk et al. [52] | 2021 | Systematic Literature Review 26 articles published between 2010–2020 | Analysis of the effects of AI use on public governance. They created a research agenda for the risks associated with the use of AI in the public sector as well as its implementation and use techniques. |
Borges et al. [26] | 2021 | Systematic Literature Review 2 databases 41 articles published between 2009–2020 | A review of the integration of AI to organizational strategy. The results were analyzed based on four standpoints: Automation, decision-making, customer engagement and new products, services offering. |
Trunk et al. [7] | 2020 | Systematic Literature Review and Content Analysis 4 databases using keywords regarding Artificial Intelligence, 55 articles published between 2016 and 2020 | A review of the use of AI in ambiguous decision-making. In order to define how people can use AI for uncertain decision-making, a conceptual framework was created. |
Grover et al. [53] | 2022 | Systematic Literature Review and Social Network Analytics 181 articles published between 2010–2019 combined with Twitter data | A review of AI’s application to operation management. developed a framework for integrating AI into organizations and best practices for leveraging AI tools into operational management |
Caner and Bhatti [54] | 2020 | Systematic Literature Review Searching for peer-reviewed papers in 7 databases using the keyword “Artificial Intelligence” in business management field and social sciences Papers published between 2015–2019 | A conceptual framework was created to explain AI business strategy and examine AI’s capabilities and limitations, economics, business functions, workforce, industry, regulations, and ethical considerations. |
Smacchia and Za [55] | 2022 | Computational Literature Review 1148 articles | Identified fifteen topics related to the artificial intelligence discussion in organizational studies, described each one in depth, and determined whether it is diminishing, steady, or emerging. |
Di Viao et al. [56] | 2020 | Bibliometric Literature Review 73 articles published between 1990–2019 | With the use of the R Biblioshiny package, they applied bibliometric science to their work for clearer, more illustrative presentations in the context of AI with sustainable business models. |
Dhamija and Bag [57] | 2020 | Bibliometric Literature Review (Network analysis) 1854 articles published between 2018–2019 | Review AI and related domains in combination with operation management. Identified six clusters that emphasize important issues for current and future research |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perifanis, N.-A.; Kitsios, F. Investigating the Influence of Artificial Intelligence on Business Value in the Digital Era of Strategy: A Literature Review. Information 2023, 14, 85. https://doi.org/10.3390/info14020085
Perifanis N-A, Kitsios F. Investigating the Influence of Artificial Intelligence on Business Value in the Digital Era of Strategy: A Literature Review. Information. 2023; 14(2):85. https://doi.org/10.3390/info14020085
Chicago/Turabian StylePerifanis, Nikolaos-Alexandros, and Fotis Kitsios. 2023. "Investigating the Influence of Artificial Intelligence on Business Value in the Digital Era of Strategy: A Literature Review" Information 14, no. 2: 85. https://doi.org/10.3390/info14020085
APA StylePerifanis, N. -A., & Kitsios, F. (2023). Investigating the Influence of Artificial Intelligence on Business Value in the Digital Era of Strategy: A Literature Review. Information, 14(2), 85. https://doi.org/10.3390/info14020085