Enhanced Readability of Electrical Network Complex Emergency Modes Provided by Data Compression Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Implementation of the “Data Compression” Algorithm by Principal Component Analysis Method
- The initial correlation matrix A is set, and the initial value k = 0 and the error value ℇ > 0 are set.
- In the upper triangular over-diagonal part of the matrix A, the maximum modulo element aij is singled out.
- This element is compared with the error value ℇ. If this element is less than the specified error, then the iterative process ends; if it is greater, then the process continues.
- The angle of rotation is found by Equation (4):
- 5.
- The rotation matrix H is compiled.
- 6.
- The next approximation of the matrix A is calculated by Equation (5):
2.2. Implementation of the “Data Compression” Algorithm by the Fisher Linear Discriminant Analysis Method
- Maximizing the distance between the means of training samples;
- Minimization of the dispersion within each sample.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lu, X.; Wang, H.; Liu, H.; Xu, C.; Zhang, L.; Jin, Z. Research on Real-time Reliability of Relay Protection System in Intelligent Substation. J. Phys. Conf. Ser. 2020, 1601, 022007. [Google Scholar] [CrossRef]
- Chen, J.; Yue, F.; Zhang, Y. A Design to Improve the Reliability of Relay Protection Control Equipment. In Lecture Notes in Electrical Engineering, Proceedings of the 16th Annual Conference of China Electrotechnical Society, Beijing, China, 24–26 September 2021; Springer: Singapore, 2022; Volume 891, p. 891. [Google Scholar] [CrossRef]
- Yang, Y. Automatic Calculation and Simulation of Time-Varying Failure Rate of Digital Relay Protection Device. Math. Probl. Eng. 2022, 16, 1–9. [Google Scholar] [CrossRef]
- McCalley, J.; Oluwaseyi, O.; Krishnan, V.; Dai, R.; Singh, C.; Jiang, K. System Protection Schemes: Limitations, Risks, and Management; Report Power Systems Engineering Research Center: Tempe, AZ, USA, 2010. [Google Scholar] [CrossRef]
- Ilyushin, P.; Volnyi, V.; Suslov, K.; Filippov, S. Review of Methods for Addressing Challenging Issues in the Operation of Protection Devices in Microgrids with Voltages of up to 1 kV that Integrates Distributed Energy Resources. Energies 2022, 15, 9186. [Google Scholar] [CrossRef]
- Chen, Q.; Zhou, X.; Sun, M.; Zhang, X. Fault Tracking Method for Relay Protection Devices. Energies 2021, 14, 2723. [Google Scholar] [CrossRef]
- Ghahremani, E.; Heniche-Oussedik, A.; Perron, M.; Racine, M.; Landry, S.; Akremi, H. A Detailed Presentation of an Innovative Local and Wide-Area Special Protection Scheme to Avoid Voltage Collapse: From Proof of Concept to Grid Implementation. IEEE Trans. Smart Grid 2019, 10, 5. [Google Scholar] [CrossRef]
- Subkhanverdiev, K.S. Calculation of specific operating modes of relay protection for AC traction networks. Vestn. Railw. Res. Inst. 2020, 79, 245–248. [Google Scholar] [CrossRef]
- Zhang, Z.; Kang, Y.; Xie, X. Online Verification method of Relay Protection Settings Based on ETAP software. IOP Conf. Ser. Earth Environ. Sci. 2020, 514, 042060. [Google Scholar] [CrossRef]
- Sharygin, M.; Vukolov, V.; Petrov, A. Adaptive multivariable relay protection of reconfigurable distribution networks. In E3S Web Conf. 2019, 139, 01048. [Google Scholar] [CrossRef]
- Romanov, Y.V.; Voronov, P.I. Assessing the Sensitivity of Relay Protection. Power Technol. Eng. 2018, 51, 728–731. [Google Scholar] [CrossRef]
- Nedelchev, N.; Matsankov, M. Increasing the Sensitivity of the Digital Relay Protection Against Turn-to-turn Short Circuits and Asymmetries in Wind Power Generators. E3S Web Conf. 2020, 186, 03001. [Google Scholar] [CrossRef]
- Ilyushin, P.V. Emergency and post-emergency control in the formation of micro-grids. E3S Web Conf. 2017, 25, 02002. [Google Scholar] [CrossRef]
- Zhang, J.; Lin, R.; Tao, W. Study of relay protection modeling and simulation on the basis of DIgSILENT. Dianli Xitong Baohu Yu Kongzhi/Power Syst. Prot. Control. 2018, 46, 62–67. [Google Scholar] [CrossRef]
- Kurihara, I.; Takehara, A.; Nakachi, Y.; Kato, Y.; Iwabuchi, N. Development of power system reliability analysis program with consideration of system operation. Wiley. Electr. Eng. Jpn. 2005, 153, 4. [Google Scholar] [CrossRef]
- Huang, S. Research on Relay Protection Technology Based on Smart Grid. IOP Conf. Ser. Earth Environ. Sci. 2021, 714, 042084. [Google Scholar] [CrossRef]
- Kochetov, I.D.; Liamets, Y.Y.; Martynov, M.V.; Maslov, A.N. Individual and Collective Recognition Capability of the Measuring Elements of Relay Protection. Power Technol. Eng. 2020, 53, 772–776. [Google Scholar] [CrossRef]
- Nan, D.; Tan, J.; Zhang, L.; Jingus, J.; Wang, C.; Liu, W. Research on the remote automatic test technology of the full link of the substation relay protection fault information system. Energy Rep. 2022, 8, 1370–1380. [Google Scholar] [CrossRef]
- Loskutov, A.A.; Pelevin, P.S.; Vukolov, V.Y. Improving the recognition of operating modes in intelligent electrical networks based on machine learning methods. In Proceedings of the E3S Web of Conferences, Kazan, Russia, 21–25 September 2020; Volume 216, p. 1034. [Google Scholar] [CrossRef]
- Loskutov, A.A.; Pelevin, P.S.; Mitrovic, M. Development of the logical part of the intellectual multi-parameter relay protection. In Proceedings of the E3S Web of Conferences, Tashkent, Uzbekistan, 23–27 September 2019; Volume 139, p. 1060. [Google Scholar] [CrossRef]
- Kulikov, A.; Loskutov, A.; Bezdushniy, D. Relay Protection and Automation Algorithms of Electrical Networks Based on Simulation and Machine Learning Methods. Energies 2022, 15, 6525. [Google Scholar] [CrossRef]
- Atat, R.; Liu, L.; Wu, J.; Li, G.; Ye, Y.; Yi, Y. Big Data Meet Cyber-Physical Systems: A Panoramic Survey. IEEE Access 2018, 6, 73603–73636. [Google Scholar] [CrossRef]
- Sharma, M.; Rajpurohit, B.S.; Agnihotri, S.; Singh, S.N. Data Analytics Based Power Quality Investigations in Emerging Electric Power System Using Sparse Decomposition. IEEE Trans. Power Deliv. 2022, 37, 4838–4847. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Q.; Hong, T.; Kang, C. Review of Smart Meter Data Analytics: Applications, Methodologies, and Challenges. IEEE Trans. Smart Grid 2019, 10, 3125–3148. [Google Scholar] [CrossRef]
- Ivanov, I.Y.; Novokreshchenov, V.V.; Ivanova, V.R. Current state of the problems of functioning of relay protection and automation complexes used in an active adaptive network. Power Eng. Res. Equip. Technol. 2023, 24, 102–123. [Google Scholar] [CrossRef]
- Rylov, A.; Ilyushin, P.; Kulikov, A.; Suslov, K. Testing Photovoltaic Power Plants for Participation in General Primary Frequency Control under Various Topology and Operating Conditions. Energies 2021, 14, 5179. [Google Scholar] [CrossRef]
- Wang, Q. Feeder segment switch-based relay protection for a multilayer differential defense-oriented distribution network. Soft Comput. 2022, 26, 4895–4904. [Google Scholar] [CrossRef]
- Ilyushin, P.; Filippov, S.; Kulikov, A.; Suslov, K.; Karamov, D. Specific Features of Operation of Distributed Generation Facilities Based on Gas Reciprocating Units in Internal Power Systems of Industrial Entities. Machines 2022, 10, 693. [Google Scholar] [CrossRef]
- Tiwari, S.; Jain, A.; Ahmed, N.; Lulwah, C.; Alkwai, M.; Dafhalla, A.; Hamad, S. Machine learning-based model for prediction of power consumption in smart grid- smart way towards smart city. Expert Syst. 2021, 39, 5. [Google Scholar] [CrossRef]
- Xu, Y.; Shen, N.; Zhu, X.; Han, D. Equivalent model of DFIG for relay protection setting calculation. Dianli Xitong Baohu Yu Kongzhi/Power Syst. Prot. Control. 2018, 46, 114–120. [Google Scholar] [CrossRef]
- Ilyushin, P.; Filippov, S.; Kulikov, A.; Suslov, K.; Karamov, D. Intelligent Control of the Energy Storage System for Reliable Operation of Gas-Fired Reciprocating Engine Plants in Systems of Power Supply to Industrial Facilities. Energies 2022, 15, 6333. [Google Scholar] [CrossRef]
- Chen, X.; Xiong, X.; Qi, X.; Zheng, C.; Zhong, J. A big data simplification method for evaluation of relay protection operation state. Proc. Chin. Soc. Electr. Eng. 2015, 35, 538–548. [Google Scholar] [CrossRef]
- Duda, R.O.; Hart, P.E. Pattern Classification and Scene Analysis, 1st ed.; Wiley: New York, NY, USA, 1973; p. 512. [Google Scholar]
- Witten, I.H.; Frank, E. Data Mining: Practical Machine Learning Tools and Techniques, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2005; p. 525. [Google Scholar]
- Michie, D.; Spiegelhalter, D.; Taylor, C. Machine Learning, Neural and Statistical Classification; Ellis Horwood: Bromley, UK, 1994; p. 290. [Google Scholar]
- Bishop, C.M. Pattern Recognition and Machine Learning; Springer: Amsterdam, The Netherlands, 2006; p. 738. [Google Scholar]
- Jaen-Cuellar, A.Y.; Trejo-Hernández, M.; Osornio-Rios, R.A.; Antonino-Daviu, J.A. Gear Wear Detection Based on Statistic Features and Heuristic Scheme by Using Data Fusion of Current and Vibration Signals. Energies 2023, 16, 948. [Google Scholar] [CrossRef]
- Grimm, A.; Schönfeldt, P.; Torio, H.; Klement, P.; Hanke, B.; von Maydell, K.; Agert, C. Deduction of Optimal Control Strategies for a Sector-Coupled District Energy System. Energies 2021, 14, 7257. [Google Scholar] [CrossRef]
- Choubineh, A.; Wood, D.; Choubineh, Z. Applying separately cost-sensitive learning and Fisher’s discriminant analysis to address the class imbalance problem: A case study involving a virtual gas pipeline SCADA system. Int. J. Crit. Infrastruct. Prot. 2020, 29, 100357. [Google Scholar] [CrossRef]
- Singh, G.; Pal, Y.; Dahiya, A. Classification of Power Quality Disturbances using Linear Discriminant Analysis. Elsevier. Appl. Soft Comput. 2023, 138, 110181. [Google Scholar] [CrossRef]
- Divyasri, K.; Bhat, S.S.; Reddy, A. Traveling-wave distance protection using principal component analysis for a doubly fed system with synchronized measurements. In Proceedings of the 2017 International Conference on Power and Embedded Drive Control (ICPEDC), Chennai, India, 16–18 March 2017. [Google Scholar] [CrossRef]
- Yang, Q.; Yin, S.; Li, Q.; Li, Y. Analysis of electricity consumption behaviors based on principal component analysis and density peak clustering. Concurr. Comput. Pract. Exp. 2022, 34, 21. [Google Scholar] [CrossRef]
- Amaral, T.G.; Pires, V.F.; Pires, A.J. Fault Detection in PV Tracking Systems Using an Image Processing Algorithm Based on PCA. Energies 2021, 14, 7278. [Google Scholar] [CrossRef]
- Fukunaga, K. Introduction to Statistical Pattern Recognition, 2nd ed.; Gardners Books: Tulsa, OK, USA, 1990; 591p. [Google Scholar]
- Singh, I. Data Mining and Warehousing; Khanna Book Publishing Co., Ltd.: Delhi, India, 2022; p. 442. [Google Scholar]
- Wang, J.; Ma, Y.; Liu, M.; Huang, T.; Xin, G.; Zhuang, B. Research on Relay Protection and Security Automatic Equipment Based on the Last Decade of Big Data. J. Phys. Conf. Ser. 2022, 2276, 012024. [Google Scholar] [CrossRef]
- Nithya, P.; Vengattaraman, T.; Sathya, M. Survey on Parameters of Data Compression. REST J. Data Anal. Artif. Intell. 2023, 2, 1–7. [Google Scholar] [CrossRef]
- Chen, C.; Xi, W.; Cui, Y.; Dong, T.; Zhang, X.; Shang, W.; Li, N.; Qin, C.; Zhao, Y. Compression algorithm for relay protection equipment data. In Proceedings of the 2019 IEEE 3rd Conference on Energy Internet and Energy System Integration (EI2), Changsha, China, 8–10 November 2019; pp. 1803–1806. [Google Scholar] [CrossRef]
- Kucuk, S.; Ajder, A. Analytical voltage drop calculations during direct on-line motor starting: Solutions for industrial plants. Ain Shams Eng. J. 2022, 13, 101671. [Google Scholar] [CrossRef]
- Filippov, S.P.; Dilman, M.D.; Ilyushin, P.V. Distributed Generation of Electricity and Sustainable Regional Growth. Therm. Eng. 2019, 66, 869–880. [Google Scholar] [CrossRef]
- Aree, P. Dynamic performance of self-excited induction generator with electronic load controller under starting of induction motor load. In Proceedings of the 5th International Conference on Electrical, Electronics and Information Engineering (ICEEIE), Malang, Indonesia, 6–8 October 2017. [Google Scholar] [CrossRef]
- Li, X.; Zhang, J.; Luo, Q.; Wang, C. Simulation Application and Research of Relay Protection Project under Virtual Reality Technology. IOP Conf. Ser. Earth Environ. Sci. 2020, 514, 042045. [Google Scholar] [CrossRef]
- Dementiy, Y.A. Active Learning of Intelligent Relay Protection: Opposing Modes. Power Technol. Eng. 2022, 55, 939–946. [Google Scholar] [CrossRef]
- Ying, L.; Jia, Y.; Li, W. Research on State Evaluation and Risk Assessment for Relay Protection System Based on Machine Learning Algorithm. IET Gener. Transm. Distrib. 2020, 14, 3619–3629. [Google Scholar] [CrossRef]
- Stepanova, D.A.; Antonov, V.I.; Naumov, V.A. Compression of the Training Sample of the Smart Protection Device without Compromising its Information Capacity. In Proceedings of the International Ural Conference on Electrical Power Engineering (UralCon), Magnitogorsk, Russia, 24–26 September 2021. [Google Scholar] [CrossRef]
- Ilyushin, P.V.; Filippov, S.P. Under-frequency load shedding strategies for power districts with distributed generation. In Proceedings of the 2019 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), Sochi, Russia, 25–29 March 2019. [Google Scholar] [CrossRef]
- Ilyushin, P.V.; Pazderin, A.V. Requirements for power stations islanding automation an influence of power grid parameters and loads. In Proceedings of the 2018 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), Moscow, Russia, 15–18 May 2018. [Google Scholar]
- Matrices and Eigenvectors. Available online: http://www.casaxps.com/help_manual/mathematics/Matrices_and_EigenvectorsRev6.pdf (accessed on 29 January 2023).
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning; Springer Series in Statistics; Springer: New York, NY, USA, 2017. [Google Scholar]
- Lyamets, Y.Y.; Antonov, V.I.; Nudelman, G.S. Method of object characteristics for analysis and synthesis of distance protection. Electromechanics 1999, 1, 95. (In Russian) [Google Scholar]
- Lyamets, Y.Y.; Nikolaeva, N.V.; Pavlov, A.O. Object characteristics of remote protection. In Proceedings of the 2nd All-Russia Sci.-Tech. Conf. on Information Technologies in Electrical Engineering and Electric Power Industry, Cheboksary, Russia, 4–5 June 1998; Chuvash State University: Cheboksary, Russia, 1998; pp. 141–144. (In Russian). [Google Scholar]
- Summers, A.; Patel, T.; Matthews, R.; Reno, M.J. Prediction of Relay Settings in an Adaptive Protection System. 2022 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), New Orleans, LA, USA, 24–28 April 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Abbaspour, E.; Fani, B.; Heydarian-Forushani, E.; Al-Sumaiti, A. A multi-agent based protection in distribution networks including distributed generations. Energy Rep. 2022, 8, 163–174. [Google Scholar] [CrossRef]
- Yang, T.; Qian, X.; Ren, L. Application of Artificial Intelligence Algorithm in Relay Protection of Distribution Network. Int. Trans. Electr. Energy Syst. 2022, 2022, 7138367. [Google Scholar] [CrossRef]
- Bonetti, A.; Larsson, S.; Schottenius, L.; Wetterstrand, N. Relay protection test challenges in smart grid DER. 2022 IEEE International Conference on Power Systems Technology (POWERCON), Kuala Lumpur, Malaysia, 12–14 September 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Doletskaya, L.; Ziryukin, V.; Solopov, R. An electric power system object model creating experience for researching the operation of digital means of relay protection and automation. J. Appl. Inform. 2021, 16, 83–95. [Google Scholar] [CrossRef]
- Kulikov, A.; Ilyushin, P.; Loskutov, A.; Suslov, K.; Filippov, S. WSPRT Methods for Improving Power System Automation Devices in the Conditions of Distributed Generation Sources Operation. Energies 2022, 15, 8448. [Google Scholar] [CrossRef]
- Hao, G.; Lin, Z.; Wu, X.; Chen, X. The Comprehensive Recognition Method of Critical Lines Based on the Principal Component Analysis. J. Electr. Eng. Technol. 2023, 1–10. [Google Scholar] [CrossRef]
- Andreev, M.V. Investigation of Processes in the Measuring Part of Digital Devices of Relay Protection in the MATLAB Software Package. Russ. Electr. Eng. 2019, 90, 530–537. [Google Scholar] [CrossRef]
- Andreev, M.; Suvorov, A.; Askarov, A.; Rudnik, V.; Bhalja, B.R. Novel Approach for Relays Tuning Using Detailed Mathematical Model of Electric Power System. Int. J. Electr. Power Energy Syst. 2022, 135, 107572. [Google Scholar] [CrossRef]
Parameter | Change Range | |
---|---|---|
System Voltage | [0.95… 1.05] p.u. | |
System impedance modulus | [6… 12] Ohm | |
System resistance angle | [80… 90] deg. | |
Line resistance | [0.95… 1.05] p.u. | |
Load value SS-1 | Active load power | [9… 36] kW |
tgφ | [0.2… 0.6] p.u. | |
Load value SS-2 | Active load power | [1.2… 6] kW |
tgφ | [0.2… 0.6] p.u. | |
Load value SS-3 | Active load power | [5… 18] kW |
tgφ | [0.2… 0.6] p.u. | |
For short circuits | Transient resistance | [0… 5] Ohm |
Type of short circuit | ABC; AB; BC; CA |
Feature | Class α | Class β |
---|---|---|
X | −1.1… 0.1 | −0.1… 1.1 |
Y | −1.1… 0.1 | −0.1… 1.1 |
Z | −1.1… 0.1 | −0.1… 1.1 |
Training | Weight Coefficients | |||||
---|---|---|---|---|---|---|
K1 | K2 | K3 | K4 | K5 | K6 | |
Initial features | ΔIa | ΔIr | R | X | I2 | φ |
Full emergency sample | −0.547 | 0.534 | −0.441 | 0.454 | −0.075 | 1 |
Most severe emergency sample | −0.754 | −0.707 | −0.746 | −0.942 | 1 | −0.037 |
Training | Weight Coefficients | |||||
---|---|---|---|---|---|---|
K1 | K2 | K3 | K4 | K5 | K6 | |
Initial features | ΔIa | ΔIr | R | X | I2 | I1 |
Full emergency sample | 0.469 | −0.351 | −0.0006 | −0.00175 | 1 | 0.485 |
Most severe emergency sample | 0.838 | 1 | 0.00014 | −0.0015 | 0.186 | −0.159 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kulikov, A.; Ilyushin, P.; Loskutov, A. Enhanced Readability of Electrical Network Complex Emergency Modes Provided by Data Compression Methods. Information 2023, 14, 230. https://doi.org/10.3390/info14040230
Kulikov A, Ilyushin P, Loskutov A. Enhanced Readability of Electrical Network Complex Emergency Modes Provided by Data Compression Methods. Information. 2023; 14(4):230. https://doi.org/10.3390/info14040230
Chicago/Turabian StyleKulikov, Aleksandr, Pavel Ilyushin, and Anton Loskutov. 2023. "Enhanced Readability of Electrical Network Complex Emergency Modes Provided by Data Compression Methods" Information 14, no. 4: 230. https://doi.org/10.3390/info14040230
APA StyleKulikov, A., Ilyushin, P., & Loskutov, A. (2023). Enhanced Readability of Electrical Network Complex Emergency Modes Provided by Data Compression Methods. Information, 14(4), 230. https://doi.org/10.3390/info14040230