“Who Should I Trust with My Data?” Ethical and Legal Challenges for Innovation in New Decentralized Data Management Technologies
Abstract
:1. Introduction
2. Motivation—The Emergence of Decentralized PIMS
3. Legal Challenges Regarding Data Protection and Decentralized PIMS
3.1. Existing Data Protection Regulations
3.2. Upcoming European Regulatory Data Protection Acts
4. The Ethical Challenges of Controlling Data and Reclaiming Control over Them
5. Using Transparency to Foster Ethical and Legal Innovation in Personal Data Management
- (i)
- ODRL (Open Digital Rights Language) [53]—An RDF-based solution that provides a model and vocabulary (Vocabulary available at https://www.w3.org/TR/odrl-vocab/, accessed on 18 June 2023) with deontic concepts, i.e., permissions, prohibitions, and duties, to express actionable policies related to digital assets.
- (ii)
- (iii)
- PPO (Privacy Preference Ontology) [56]—A lightweight, domain-agnostic, RDF-based language that can be used to express permissive and restrictive privacy preferences for RDF documents.
- (iv)
- SPECIAL (Scalable Policy-awarE linked data arChitecture for prIvacy, trAnsparency and compLiance) [57]—SPECIAL (https://specialprivacy.ercim.eu/, accessed on 18 June 2023), an H2020-funded project, developed a usage policy language with the core goal of expressing user consent. It allows for the expression of policies with restrictions on the data, purpose, processing activities, storage, and recipients and provides a set of taxonomies for each. It has now been largely superseded by the Data Privacy Vocabulary (DPV).
- (v)
- BPR4GDPR (Business Process Re-Engineering and Functional Toolkit for GDPR Compliance) [37]—A H2020-funded project (https://www.bpr4gdpr.eu/, accessed on 18 June 2023) that developed an OWL-based (Web Ontology Language, https://www.w3.org/TR/owl2-overview/, accessed on 18 June 2023) policy language and an information model, focused on specifying entities’ roles related to organizations processes’ life cycles. It provides taxonomies for purposes, actors, roles operations, and organizations.
- (vi)
- DPF (Declarative Policy Framework) [58]—a policy language that is built upon domain-specific OWL ontologies to support the definition of time-limited permissive and prohibitive privacy preferences for specific data categories and data requesters.
- (i)
- (ii)
- GDPRov (GDPR Provenance ontology) [61]—RDF-based ontology focused on modeling the provenance of consent and respective data collection, usage, and storage activities for GDPR compliance.
- (iii)
- GDPRtEXT (GDPR text EXTensions) [62]—RDF-based vocabulary that aims to model GDPR concepts and connect them with their respective GDPR chapter, article, and/or point.
- (iv)
- GConsent (GDPR Consent ontology) [63]—RDF-based ontology focused on modeling the consent life cycle, as presented in the GDPR, including terms to represent the status of consent.
- (v)
- PrOnto (Privacy Ontology for legal reasoning) [64]—Closed-access legal ontology that models privacy agents, data types, processing operations, and deontic concepts to support compliance with the GDPR.
- (vi)
- DPV (Data Privacy Vocabulary) [65]—The DPV provides a set of taxonomies to model entities, data, purposes, processing, and their context, technical and organizational measures, legal bases, location and jurisdiction, risks, rules, and rights in RDF and OWL serializations.
- Q1.
- Does it provide a framework to specify machine-readable privacy policies?
- Q2.
- Does it continue to be maintained, or are new improvements being developed?
- Q3.
- Are the resources available on an open and accessible platform?
- Q4.
- Can it be used to model GDPR concepts and principles?
- Q5.
- Does it provide a vocabulary of terms to populate the policies?
- Q6.
- Does it implement any mechanisms to assist with compliance?
6. Future Research Directions
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jacobides, M.G.; Sundararajan, A.; Van Alstyne, M. Platforms and Ecosystems: Enabling the Digital Economy; World Economic Forum: Cologny, Switzerland, 2019. [Google Scholar]
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions—A European Strategy for Data; COM(2020) 66 Final ed.; European Commission: Brussels, Belgium, 2020.
- Waldman, A.E. Industry Unbound: The Inside Story of Privacy, Data, and Corporate Power, 1st ed.; Cambridge University Press: Cambridge, UK, 2021; ISBN 9781108591386. [Google Scholar] [CrossRef]
- Chomczyk Penedo, A. Self-sovereign identity systems and European data protection regulations: An analysis of roles and responsibilities. In Open Identity Summit 2021; Gesellschaft für Informatik e.V.: Bonn, Germany, 2021; pp. 95–106. [Google Scholar]
- Janssen, H.; Cobbe, J.; Singh, J. Personal information management systems: A user-centric privacy utopia? Internet Policy Rev. 2020, 9, 1–25. [Google Scholar] [CrossRef]
- De Filippi, P.; Mannan, M.; Reijers, W. Blockchain as a confidence machine: The problem of trust & challenges of governance. Technol. Soc. 2020, 62, 101284. [Google Scholar] [CrossRef]
- Chomczyk Penedo, A. Towards a technologically assisted consent in the upcoming new EU data laws? Priv. Ger. 2022, 5, 180–187. [Google Scholar] [CrossRef]
- Ben-Shahar, O.; Schneider, C.E. More Than You Wanted to Know: The Failure of Mandated Disclosure; Princeton University Press: Princeton, NJ, USA, 2014. [Google Scholar] [CrossRef]
- Hawley, K. How To Be Trustworthy; Oxford University Press: Oxford, UK, 2019. [Google Scholar]
- Bodó, B. Mediated trust: A theoretical framework to address the trustworthiness of technological trust mediators. New Media Soc. 2021, 23, 2668–2690. [Google Scholar] [CrossRef]
- Felzmann, H.; Villaronga, E.F.; Lutz, C.; Tamò-Larrieux, A. Transparency you can trust: Transparency requirements for artificial intelligence between legal norms and contextual concerns. Big Data Soc. 2019, 6, 2053951719860542. [Google Scholar] [CrossRef]
- Pasquale, F. The Black Box Society: The Secret Algorithms That Control Money and Information; Harvard University Press: Cambridge, MA, USA, 2015. [Google Scholar]
- Cate, F.H. The Failure of Fair Information Practice Principles. In Consumer Protection in the Age of the Information Economy; Routledge: London, UK, 2006. [Google Scholar]
- Craglia, M.; Scholten, H.; Micheli, M.; Hradec, J.; Calzada, I.; Luitjens, S.; Ponti, M.; Boter, J. Digitranscope: The Governance of Digitally Transformed Society; Publications Office of the European Union: Luxembourg, 2021.
- Viljoen, S. A Relational Theory of Data Governance. 2020. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3727562 (accessed on 20 September 2022).
- Berners-Lee, T.; Hendler, J.; Lassila, O. The Semantic Web. Sci. Am. 2001, 284, 34–43. [Google Scholar] [CrossRef]
- Esteves, B.; Pandit, H.J.; Rodríguez-Doncel, V. ODRL Profile for Expressing Consent through Granular Access Control Policies in Solid. In Proceedings of the 2021 IEEE European Symposium on Security and Privacy Workshops (EuroS PW), Vienna, Austria, 6–10 September 2021; pp. 298–306, ISSN: 2768-0657. [Google Scholar] [CrossRef]
- Abraham, R.; Schneider, J.; vom Brocke, J. Data governance: A conceptual framework, structured review, and research agenda. Int. J. Inf. Manag. 2019, 49, 424–438. [Google Scholar] [CrossRef]
- Alhassan, I.; Sammon, D.; Daly, M. Data governance activities: A comparison between scientific and practice-oriented literature. J. Enterp. Inf. Manag. 2018, 31, 300–316. [Google Scholar] [CrossRef]
- Mahanti, R. Data Governance and Compliance. In Data Governance and Compliance: Evolving to Our Current High Stakes Environment; Mahanti, R., Ed.; Springer: Berlin/Heidelberg, Germany, 2021; pp. 109–153. [Google Scholar] [CrossRef]
- Celeste, E. Digital Sovereignty in the EU: Challenges and Future Perspectives. In Data Protection Beyond Borders: Transatlantic Perspectives on Extraterritoriality and Sovereignty; Fabbrini, F., Quinn, J., Celeste, E., Eds.; Hart Publishing: London, UK, 2020; pp. 211–228. [Google Scholar] [CrossRef]
- Bradford, A. The Brussels Effect: How the European Union Rules the World; Oxford University Press: Oxford, UK, 2019. [Google Scholar] [CrossRef]
- Smits, J.M. The Mind and Method of the Legal Academic; Edward Elgar Publishing: Cheltenham, UK, 2012. [Google Scholar]
- Ballin, E.H. Advanced Introduction to Legal Research Methods; Edward Elgar Publishing: Cheltenham, UK, 2020. [Google Scholar]
- Schrepel, T. Blockchain + Antitrust: The Decentralization Formula; Edward Elgar Publishing: Cheltenham, UK, 2021. [Google Scholar]
- Shabani, M. The Data Governance Act and the EU’s move towards facilitating data sharing. Mol. Syst. Biol. 2021, 17, e10229. [Google Scholar] [CrossRef] [PubMed]
- European Data Protection Board. Guidelines 07/2020 on the Concepts of Controller and Processor in the GDPR; 2020. Available online: https://edpb.europa.eu/our-work-tools/documents/public-consultations/2020/guidelines-072020-concepts-controller-and_en (accessed on 18 June 2023).
- Millard, C.; Kamarinou, D. Article 26. Joint controllers. In The EU General Data Protection Regulation: A Commentary; Oxford University Press: Oxford, UK, 2020; pp. 582–588. [Google Scholar]
- Court of Justice of the European Union. Tietosuojavaltuutettu v Jehovan Todistajat—Uskonnollinen Yhdyskunta. 2018. ECLI:EU:C:2018:551. Available online: https://curia.europa.eu/juris/liste.jsf?language=en&num=c-25/17&td=ALL (accessed on 18 June 2023).
- Court of Justice of the European Union. Unabhängiges Landeszentrum für Datenschutz Schleswig-Holstein v Wirtschaftsakademie Schleswig-Holstein GmbH, 2018. ECLI:EU:C:2018: 388. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A62016CJ0210 (accessed on 18 June 2023).
- Court of Justice of the European Union. Fashion ID GmbH & Co. KG v Verbraucherzentrale NRW eV. 2019. ECLI:EU:C:2019: 629. Available online: https://curia.europa.eu/juris/liste.jsf?num=C-40/17 (accessed on 18 June 2023).
- Armantier, O.; Doerr, S.; Frost, J.; Fuster, A.; Shue, K. Whom Do Consumers Trust with Their Data? US Survey Evidence; BIS Bulletins 42; Bank for International Settlements: Basel, Switzerland, 2021. [Google Scholar]
- Wang, F.; De Filippi, P. Self-Sovereign Identity in a Globalized World: Credentials-Based Identity Systems as a Driver for Economic Inclusion. Front. Blockchain 2020, 2, 28. [Google Scholar] [CrossRef] [Green Version]
- European Data Protection Board. EDPB-EDPS Joint Opinion 03/2021 on the Proposal for a Regulation of the European Parliament and of the Council on European Data Governance (Data Governance Act), 2021. Available online: https://edpb.europa.eu/our-work-tools/our-documents/edpbedps-joint-opinion/edpb-edps-joint-opinion-032021-proposal_en (accessed on 18 June 2023).
- Ortalda, A.; Jasmontaite, L.; Tsakalakis, N. The European Commission Proposal Amending the eIDAS Regulation: A Personal Data Protection Perspective; Technical Report; Vrije Universiteit Brussel, Brussels Privacy HUB: Brussel, Belgium, 2021. [Google Scholar]
- Domingo, I.A. La propuesta de Reglamento eIDAS 2: La identidad digital autosoberana y la regulación de Blockchain. Diario La Ley 2021. Available online: https://diariolaley.laleynext.es/dll/2021/06/24/la-propuesta-de-reglamento-eidas-2-la-identidad-digital-autosoberana-y-la-regulacion-de-blockchain (accessed on 18 June 2023).
- Papagiannakopoulou, E.I.; Koukovini, M.N.; Lioudakis, G.; Dellas, N.; Garcia-Alfaro, J.; Kaklamani, D.I.; Venieris, I.S.; Cuppens-Boulahia, N.; Cuppens, F. Leveraging Ontologies upon a Holistic Privacy-Aware Access Control Model. In Foundations and Practice of Security. FPS 2013; Danger, J., Debbabi, M., Marion, J., Garcia-Alfaro, J., Zincir Heywood, N., Eds.; Springer: Cham, Switzerland, 2014; Lecture Notes in Computer Science; Volume 8352, pp. 209–226. [Google Scholar]
- Giannopoulou, A. Digital Identity Infrastructures: A Critical Approach of Self-Sovereign Identity. Digit. Soc. 2023, 2, 18. [Google Scholar] [CrossRef] [PubMed]
- Gesteira, S. Más allá de la apropiación criminal de niños: El surgimiento de organizaciones de personas “adoptadas” que buscan su “identidad biológica” en Argentina. RUNA Arch. Para Las Cienc. Hombre 2014, 35, 61–76. [Google Scholar] [CrossRef]
- Carovano, G.; Finck, M. Regulating Data Intermediaries: The Impact of the Data Governance Act on the EU’s Data Economy, 2023. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4422263 (accessed on 18 June 2023).
- De Hert, P. Globalisation, crime and governance. Transparency, accountability and participation as principles for global criminal law. In Transitional Justice and Its Public Spheres: Engagement, Legitimacy and Contestation; Brants, C., Karstedt, S., Eds.; Hart Publishing: London, UK, 2017; pp. 91–123. [Google Scholar]
- Terpstra, A.; Schouten, A.P.; Rooij, A.d.; Leenes, R.E. Improving privacy choice through design: How designing for reflection could support privacy self-management. First Monday 2019, 24. [Google Scholar] [CrossRef]
- Mohan, J.; Wasserman, M.; Chidambaram, V. Analyzing GDPR Compliance Through the Lens of Privacy Policy. In Heterogeneous Data Management, Polystores, and Analytics for Healthcare; Gadepally, V., Mattson, T., Stonebraker, M., Wang, F., Luo, G., Laing, Y., Dubovitskaya, A., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2019; pp. 82–95. [Google Scholar] [CrossRef] [Green Version]
- Linden, T.; Khandelwal, R.; Harkous, H.; Fawaz, K. The Privacy Policy Landscape After the GDPR. Priv. Enhancing Technol. 2020, 1, 47–64. [Google Scholar] [CrossRef] [Green Version]
- European Data Protection Board. Guidelines 05/2020 on Consent under Regulation 2016/679 Version 1.1, 2020. Available online: https://edpb.europa.eu/sites/default/files/files/file1/edpb_guidelines_202005_consent_en.pdf (accessed on 18 June 2023).
- Article 29 Data Protection Working Party. Guidelines on Transparency under Regulation 2016/679, 2018. Available online: https://ec.europa.eu/newsroom/article29/items/622227 (accessed on 18 June 2023).
- Data Protection Commission. WhatsApp Ireland Limited—IN-18-12-2. 2021. Available online: https://gdprhub.eu/index.php?title=DPC_(Ireland)_-_WhatsApp_Ireland_Limited_-_IN-18-12-2 (accessed on 18 June 2023).
- Agencia Española de Protección de Datos. Banco Bilbao Vizcaya Argentaria, S.A., 2020. PS/00068/2020. Available online: https://www.dataguidance.com/sites/default/files/ps-00068-2020.pdf (accessed on 18 June 2023).
- Agencia Española de Protección de Datos. CAIXABANK, S.A., 2021. PS/00477/2019. Available online: https://www.aepd.es/es/buscador?f%5B0%5D=sectorial%3A903&search=&page=0 (accessed on 18 June 2023).
- Brennan-Marquez, K.; Susser, D. Obstacles to Transparency in Privacy Engineering. In Proceedings of the 2016 IEEE Security and Privacy Workshops (SPW), San Jose, CA, USA, 22–26 May 2016; pp. 49–52. [Google Scholar] [CrossRef]
- Cranor, L.; Langheinrich, M.; Marchiori, M.; Presler-Marshall, M.; Reagle, J. The Platform for Privacy Preferences 1.0 (P3P1.0) Specification, 2002. W3C Recommendation 16 April 2002 obsoleted 30 August 2018. Available online: https://www.w3.org/TR/P3P/ (accessed on 2 July 2020).
- Cranor, L.; Langheinrich, M.; Marchiori, M. A P3P Preference Exchange Language 1.0 (APPEL 1.0) Specification, 2002. Available online: https://www.w3.org/TR/2002/WD-P3P-preferences-20020415/ (accessed on 2 July 2020).
- Iannella, R.; Villata, S. ODRL Information Model 2.2, 2018. Available online: https://www.w3.org/TR/odrl-model/ (accessed on 30 May 2023).
- Khandelwal, A.; Bao, J.; Kagal, L.; Jacobi, I.; Ding, L.; Hendler, J. Analyzing the AIR Language: A SemanticWeb (Production) Rule Language. In Web Reasoning and Rule Systems; Hitzler, P., Lukasiewicz, T., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2010; Volume 6333, pp. 58–72. [Google Scholar]
- Berners-Lee, T.; Connolly, D.; Kagal, L.; Scharf, Y.; Hendler, J. N3Logic: A logical framework for the World Wide Web. Theory Pract. Log. Program. 2008, 8, 249–269. [Google Scholar]
- Sacco, O.; Passant, A. A Privacy Preference Ontology (PPO) for Linked Data. In Proceedings of the Linked Data on the Web Workshop at 20th International World Wide Web Conference, Hyderabad India, 28 March–1 April 2011. [Google Scholar]
- Kirrane, S.; Fernández, J.D.; Dullaert, W.; Milosevic, U.; Polleres, A.; Bonatti, P.A.; Wenning, R.; Drozd, O.; Raschke, P. A Scalable Consent, Transparency and Compliance Architecture. In The Semantic Web: ESWC 2018 Satellite Events; Gangemi, A., Gentile, A.L., Nuzzolese, A.G., Rudolph, S., Maleshkova, M., Paulheim, H., Pan, J.Z., Alam, M., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2018; Volume 11155, pp. 131–136. [Google Scholar] [CrossRef]
- Martiny, K.; Elenius, D.; Denker, G. Protecting Privacy with a Declarative Policy Framework. In Proceedings of the 2018 IEEE 12th International Conference on Semantic Computing (ICSC), Laguna Hills, CA, USA, 31 January–2 February 2018; pp. 227–234. [Google Scholar] [CrossRef]
- Bartolini, C.; Muthuri, R. Reconciling Data Protection Rights and Obligations: An Ontology of the Forthcoming EU Regulation. In Proceedings of the Workshop on Language and Semantic Technology for Legal Domain, Hissar, Bulgaria, 10 September 2015. [Google Scholar]
- European Commission. Directive 95/46/EC of the European Parliament and of the Council of 24 October 1995 on the Protection of Individuals with Regard to the Processing of Personal Data and on the Free Movement of Such Data. 1995. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A31995L0046 (accessed on 18 June 2023).
- Pandit, H.J.; Lewis, D. Modelling Provenance for GDPR Compliance using Linked Open Data Vocabularies. In Proceedings of the Society, Privacy and the Semantic Web—Policy and Technology (PrivOn 2017), Co-Located with ISWC 2017, Vienna, Austria, 22 October 2017; Volume 1951. [Google Scholar]
- Pandit, H.J.; Fatema, K.; O’Sullivan, D.; Lewis, D. GDPRtEXT—GDPR as a Linked Data Resource. In The Semantic Web; Gangemi, A., Navigli, R., Vidal, M.E., Hitzler, P., Troncy, R., Hollink, L., Tordai, A., Alam, M., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2018; Volume 10843, pp. 481–495. [Google Scholar] [CrossRef] [Green Version]
- Pandit, H.J.; Debruyne, C.; O’Sullivan, D.; Lewis, D. GConsent—A Consent Ontology Based on the GDPR. In The Semantic Web; Hitzler, P., Fernández, M., Janowicz, K., Zaveri, A., Gray, A.J., Lopez, V., Haller, A., Hammar, K., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2019; Volume 11503, pp. 270–282. [Google Scholar] [CrossRef]
- Palmirani, M.; Martoni, M.; Rossi, A.; Bartolini, C.; Robaldo, L. PrOnto: Privacy Ontology for Legal Reasoning. In Electronic Government and the Information Systems Perspective (EGOVIS 2018); Kő, A., Francesconi, E., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2018; Volume 11032, pp. 139–152. [Google Scholar] [CrossRef]
- Pandit, H.J.; Polleres, A.; Bos, B.; Brennan, R.; Bruegger, B.; Ekaputra, F.J.; Fernández, J.D.; Hamed, R.G.; Kiesling, E.; Lizar, M.; et al. Creating a Vocabulary for Data Privacy: The First-Year Report of Data Privacy Vocabularies and Controls Community Group (DPVCG). In On the Move to Meaningful Internet Systems: OTM 2019 Conferences; Panetto, H., Debruyne, C., Hepp, M., Lewis, D., Ardagna, C.A., Meersman, R., Eds.; Springer International Publishing: Cham, Switzerland, 2019; Volume 11877, pp. 714–730. [Google Scholar] [CrossRef] [Green Version]
- Esteves, B.; Rodríguez-Doncel, V. Analysis of Ontologies and Policy Languages to Represent Information Flows in GDPR. Semant. Web J. 2022, 1–35. [Google Scholar] [CrossRef]
- Esteves, B.; Asgarinia, H.; Penedo, A.C.; Mutiro, B.; Lewis, D. Fostering trust with transparency in the data economy era: An integrated ethical, legal, and knowledge engineering approach. In Proceedings of the 1st International Workshop on Data Economy, Rome, Italy, 9 December 2022; pp. 57–63. [Google Scholar]
- Baloup, J.; Bayamlıoğlu, E.; Benmayor, A.; Ducuing, C.; Dutkiewicz, L.; Lalova, T.; Miadzvetskaya, Y.; Peeters, B. White Paper on the Data Governance Act, 2021; Working Paper. CiTiP Working Paper Series. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3872703 (accessed on 18 June 2023).
Solution | Q1 | Q2 | Q3 | Q4 | Q5 | Q6 |
---|---|---|---|---|---|---|
DPV [65] | Yes | Yes | Yes | Partially | Yes | No |
ODRL [53] | Yes | Yes | Yes | Partially | Yes | No |
SPECIAL [57] | Yes | No | Yes | Partially | Yes | Yes |
BPR4GDPR [37] | Yes | Yes | No | Partially | Yes | No |
GConsent [63] | No | Yes | Yes | Partially | Yes | No |
GDPRov [61] | No | Yes | Yes | Partially | Yes | No |
GDPRtEXT [62] | No | Yes | Yes | Partially | Yes | No |
P3P [51] | Yes | No | Yes | Partially | Yes | No |
AIR [54] | Yes | No | Yes | No | No | Yes |
DPF [58] | Yes | Yes | No | Partially | No | Yes |
DPO [59] | No | No | Yes | Partially | Yes | No |
APPEL [52] | Yes | No | Yes | No | No | No |
PrOnto [64] | No | No | No | Partially | Yes | No |
PPO [56] | Yes | No | No | No | No | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asgarinia, H.; Chomczyk Penedo, A.; Esteves, B.; Lewis, D. “Who Should I Trust with My Data?” Ethical and Legal Challenges for Innovation in New Decentralized Data Management Technologies. Information 2023, 14, 351. https://doi.org/10.3390/info14070351
Asgarinia H, Chomczyk Penedo A, Esteves B, Lewis D. “Who Should I Trust with My Data?” Ethical and Legal Challenges for Innovation in New Decentralized Data Management Technologies. Information. 2023; 14(7):351. https://doi.org/10.3390/info14070351
Chicago/Turabian StyleAsgarinia, Haleh, Andres Chomczyk Penedo, Beatriz Esteves, and Dave Lewis. 2023. "“Who Should I Trust with My Data?” Ethical and Legal Challenges for Innovation in New Decentralized Data Management Technologies" Information 14, no. 7: 351. https://doi.org/10.3390/info14070351
APA StyleAsgarinia, H., Chomczyk Penedo, A., Esteves, B., & Lewis, D. (2023). “Who Should I Trust with My Data?” Ethical and Legal Challenges for Innovation in New Decentralized Data Management Technologies. Information, 14(7), 351. https://doi.org/10.3390/info14070351