Data Mining Using Association Rules for Intuitionistic Fuzzy Data
Abstract
:1. Introduction
2. Background
2.1. Uncertainty Representations
2.1.1. Fuzzy Set Theory
2.1.2. Intuitionistic Fuzzy Sets
2.1.3. Interval-Valued Fuzzy Sets
2.2. Data Mining Approaches
2.3. Fuzzy Data Mining
2.3.1. Fuzzy Association Rules
2.3.2. Fuzzy Spatial Association Rules
3. Association Rules
3.1. Association Rules Metrics
3.1.1. Support Metric: Msp
3.1.2. Confidence Metric: Mcf
3.2. Examples of Rule Support and Confidence
3.3. Interestingness Metrics
3.3.1. Lift Metric
- (a)
- Lift > 1, positive correlation.
- (b)
- Lift < 1, negative correlation.
- (c)
- Lift = 1, correlation is independent.
3.3.2. Conviction Metric
3.4. Case Analysis of Metrics
3.4.1. Support and Confidence Analysis
3.4.2. Lift Analysis
3.4.3. Conviction Analysis
4. Apriori Procedure
- A.
- Computing the frequent item sets: This is performed using the support metric for evaluation and utilizing the Apriori property to simplify the search.
- B.
- Determining strong association rules: From the frequent item sets in the first stage, the confidence metric is used in the evaluation to determine strong rules.
- C.
- Evaluating effectiveness of the resulting strong rules: Interestingness metrics, such as lift and conviction, are used in the selection of the most useful strong rules.
Apriori Example of Frequent Set Generation
5. Uncertainty Querying
5.1. Fuzzy Intuitionistic Measures for Support and Confidence
5.1.1. Cardinality of Intuitionistic Fuzzy Sets
5.1.2. Intuitionistic Metrics
5.2. Fuzzy Query Example
5.3. Discussion of Results
5.3.1. Effect of Negative Memberships
5.3.2. Lift Metric
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aggarwal, C.; Li, Y.; Wang, J.; Wang, J. Frequent pattern mining with uncertain data. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Paris, France, 28 June–1 July 2009; pp. 29–38. [Google Scholar] [CrossRef] [Green Version]
- Hirota, K.; Pedrycz, W. Fuzzy computing for data mining. Proc. IEEE 1999, 87, 1575–1599. [Google Scholar] [CrossRef]
- Mirzakhanov, V. Value of fuzzy logic for data mining and machine learning: A case study. Expert Syst. Appl. 2020, 162, 113781. [Google Scholar] [CrossRef]
- Petry, F.; Yager, R. Intuitionistic and interval-valued fuzzy set representations for data mining. Algorithms 2022, 15, 249. [Google Scholar] [CrossRef]
- Au, W.; Chan, K. Mining fuzzy association rules in a bank-account database. IEEE Trans. Fuzzy Syst. 2003, 11, 238–248. [Google Scholar]
- da Silva, H.; Felix, T.; de Venâncio, P.; Carniel, A. Discovery of Spatial Association Rules from Fuzzy Spatial Data. In Proceedings of the Conceptual Modeling: 41st International Conference, ER 2022, Hyderabad, India, 17–20 October 2022; Ralyté, J., Chakravarthy, S., Mohania, M., Jeusfeld, M.A., Karlapalem, K., Eds.; Lecture Notes in Computer Science. Springer: Cham, Switzerland, 2022; Volume 13607. [Google Scholar]
- Lin, C.; Li, T.; Fournier Viger, P.; Hong, T. A fast algorithm for mining fuzzy frequent itemsets. J. Intell. Fuzzy Syst. 2015, 29, 2373–2379. [Google Scholar] [CrossRef] [Green Version]
- Szmidt, E.; Kacprzyk, J. Medical Diagnostic Reasoning Using a Similarity Measure for Intuitionistic Fuzzy Sets. In Proceedings of the Eighth International Conference on IFSs, Varna, Bulgaria, 20–21 June 2004; pp. 61–69. [Google Scholar]
- Dubois, D.; Gottwald, S.; Hajek, P.; Kacprzyk, J.; Prade, H. Terminological difficulties in fuzzy set theory—The case of intuitionistic fuzzy sets. Fuzzy Sets Syst. 2005, 156, 485–492. [Google Scholar] [CrossRef]
- Solanki, S.; Patel, J. A survey on association rule mining. In Proceedings of the 2015 Fifth International Conference on Advanced Computing & Communication Technologies, Haryana, India, 21–22 February 2015; pp. 212–216. [Google Scholar] [CrossRef]
- Antonie, M.; Zaïane, O. Mining positive and negative association rules: An approach for confined rules. In Proceedings of the Knowledge Discovery in Databases: PKDD 2004: 8th European Conference on Principles and Practice of Knowledge Discovery in Databases, Pisa, Italy, 20–24 September 2004; pp. 27–38. [Google Scholar]
- Dong, X.; Hao, F.; Zhao, L.; Zu, T. An efficient method for pruning redundant negative and positive association rules. Neurocomputing 2020, 393, 245–258. [Google Scholar] [CrossRef]
- Han, J.; Pei, J.; Tong, H. Data Mining: Concepts and Techniques, 4th ed.; Morgan Kaufmann: San Francisco, CA, USA, 2023. [Google Scholar]
- Ceglar, A.; Roddick, J. Association mining. ACM Comput. Surv. 2006, 38, 5:1–5:42. [Google Scholar] [CrossRef]
- Hipp, J.; Güntzer, U.; Nakhaeizadeh, G. Algorithms for association rule mining—A general survey and comparison. SIGKDD Explor. 2000, 2, 58–64. [Google Scholar] [CrossRef]
- Kruse, R.; Mostaghim, S.; Borgelt, C.; Braune, C.; Steinbrecher, M. Computational Intelligence: A Methodological Introduction, 3rd ed.; Springer Nature: Cham, Switzerland, 2022. [Google Scholar]
- Klir, G.; St. Clair, U.; Yuan, B. Fuzzy Set Theory: Foundations and Applications; Prentice Hall: Hoboken, NJ, USA, 1997. [Google Scholar]
- Zadeh, L. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Atanassov, K. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [Google Scholar] [CrossRef]
- Deschrijver, G. Arithmetic operators in interval-valued fuzzy set theory. Inf. Sci. 2007, 177, 2906–2924. [Google Scholar] [CrossRef]
- Moore, R.; Kearfott, B.; Cloud, M. Introduction to Interval Analysis; SIAM: Philadelphia, PA, USA, 2009. [Google Scholar]
- Burillo, P.; Bustince, H. Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy sets. Fuzzy Sets Syst. 1996, 78, 305–316. [Google Scholar] [CrossRef]
- Atanassov, K.; Gargov, G. Interval valued intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 31, 343–349. [Google Scholar] [CrossRef]
- Rajagopalan, B.; Isken, M. Exploiting data preparation to enhance mining and knowledge discovery. IEEE Trans. Syst. Man Cybertincs 2001, 31, 460–467. [Google Scholar] [CrossRef]
- Islam, M.; Anderson, D.; Petry, F.; Smith, D.; Elmore, P. The fuzzy integral for missing data. In Proceedings of the 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Naples, Italy, 9–12 July 2017. [Google Scholar]
- Elmore, P.; Anderson, D.; Petry, F. Evaluation of heterogeneous uncertain information fusion. Ambient. Intell. Humaniz. Comput. 2020, 11, 799–811. [Google Scholar] [CrossRef]
- Petry, F.; Elmore, P.; Yager, R. Combining uncertain information of differing modalities. Inf. Sci. 2015, 322, 237–256. [Google Scholar] [CrossRef] [Green Version]
- Yager, R.; Petry, F. An intelligent quality based approach to fusing multi-source probabilistic information. Inf. Fusion 2016, 31, 127–136. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, M. Data summarization: A survey. Knowl. Inf. Syst. 2019, 58, 249–273. [Google Scholar] [CrossRef]
- Bezdek, J. Pattern Recognition with Fuzzy Objective Function Algorithms; Plenum Press: New York, NY, USA, 1981. [Google Scholar]
- Alam, M.; Ahmed, C.; Samiullah, M.; Leung, C. Mining frequent patterns from hypergraph databases. In Proceedings of the Advances in Knowledge Discovery and Data Mining: 25th Pacific-Asia Conference, PAKDD 2021, Virtual Event, 11–14 May 2021; Part II. pp. 3–15. [Google Scholar]
- de Graaf, J.; Kosters, W.; Witteman, J. Interesting fuzzy association rules in quantitative databases. In Principles of Data Mining and Knowledge Discovery; LNAI 2168; Springer: Berlin, Germany, 2001; pp. 140–151. [Google Scholar]
- Delgado, M.; Marin, N.; Sanchez, D.; Vila, M. Fuzzy association rules: General model and applications. IEEE Trans. Fuzzy Syst. 2003, 11, 214–225. [Google Scholar] [CrossRef] [Green Version]
- Hong, T.; Lin, K.; Wang, S. Fuzzy data mining for interesting generalized association rules. Fuzzy Sets Syst. 2003, 138, 255–269. [Google Scholar] [CrossRef]
- Kaya, M.; Alhajj, R.; Polat, F.; Arslan, A. Efficient automated mining of fuzzy association rules. In Proceedings of the Database and Expert Systems Applications: 13th International Conference, DEXA 2002, Aix-en-Provence, France, 2–6 September 2002; pp. 133–142. [Google Scholar]
- Chen, C.; Hong, T.; Li, Y. Fuzzy association rule mining with type-2 membership functions. In Proceedings of the Asian Conference on Intelligent Information and Database Systems, Bali, Indonesia, 23–25 March 2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 128–134. [Google Scholar]
- Chen, J.; Lia, P.; Fanga, W.; Zhoua, N.; Yina, Y.; Xua, H.; Zheng, H. Fuzzy Association rules mining based on type-2 fuzzy sets over data stream. Procedia Comput. Sci. 2022, 199, 456–462. [Google Scholar] [CrossRef]
- Ladner, R.; Petry, F.; Cobb, M. Fuzzy set approaches to spatial data mining of association rules. Trans. GIS 2003, 7, 123–138. [Google Scholar] [CrossRef] [Green Version]
- Sael, N.; Alashqur, A.; Sowan, B. Using the interestingness measure lift to generate association rules. J. Adv. Comput. Sci. Technol. 2015, 4, 156–162. [Google Scholar]
- Chen, S.; Tsai, T.; Chung, C.; Li, W. Dynamic association rules for gene expression data analysis. BMC Genom. 2015, 16, 786. [Google Scholar] [CrossRef] [Green Version]
- Aggarwal, R.; Imielinski, T.; Swami, A. Mining Association Rules between sets of items in large databases. In Proceedings of the ACM-SIGMOD International Conference on Management of Data, Washington, DC, USA, 25–28 May 1993; ACM Press: New York, NY, USA, 1993; pp. 207–216. [Google Scholar]
- Yen, J.; Langari, R. Fuzzy Logic: Intelligence, Control and Information; Prentice Hall: Upper Saddle River, NJ, USA, 1999. [Google Scholar]
- Ioannis, K.; Vlachos, G.; Sergiadis, D. Subsethood, entropy, and cardinality for interval valued fuzzy sets—An algebraic derivation. Fuzzy Sets Syst. 2007, 158, 1384–1396. [Google Scholar]
- Tripathya, B.; Jenab, S.; Ghosh, S. An intuitionistic fuzzy count and cardinality of intuitionistic fuzzy sets. Malay J. Mat. 2013, 4, 123–133. [Google Scholar] [CrossRef]
- Szmidt, E.; Kacpryzk, J. Entropy for intuitionistic fuzzy sets. Fuzzy Sets Syst. 2001, 118, 467–477. [Google Scholar] [CrossRef]
Query Responses | Location Features |
---|---|
R1 | {S1, S2, S5}: camp, fish, ski |
R2 | {S1, S2, S4}: camp, fish, raft |
R3 | {S1, S2, S4}: camp, fish, raft |
R4 | {S1, S3}: camp, hike |
R5 | {S1, S3, S4}: camp, hike, raft |
R6 | {S2, S3, S5}: fish, hike, ski |
R7 | {S1, S2, S3}: camp, fish, hike |
Rules: Fjk | Msp—Support | Mcf—Confidence |
---|---|---|
1. F12: camp → fish | 4/7 = 0.57 | 4/6 = 0.66 |
2. F21: fish → camp | 4/7 = 0.57 | 4/5 = 0.8 |
3. F31: hike → camp | 3/7 = 0.43 | 3/4 = 0.75 |
4. F25: fish → ski | 2/7 = 0.28 | 2/5 = 0.4 |
5. F52: ski → fish | 2/7 = 0.28 | 2/2 = 1 |
6. F54: ski → raft | 0/7 = 0 | 0/2 = 0 |
7. F{12}4: camp, fish → raft | 2/7 = 0.28 | 2/4 = 0.5 |
8. F5{12}: ski → camp, fish | 1/7 = 0.14 | 1/2 = 0.5 |
Lift < 1 | Lift > 1 |
---|---|
F12: 0.93 | F25: 1.4 |
F21: 0.93 | F52: 1.4 |
F31: 0.87 | F{12}4: 1.12 |
F5{12}: 0.88 |
Nsp = 1 | Nsp = Z | |
---|---|---|
Nant = 1 | Mcf = 1 | ⌀ (not possible) |
Nant = Z | Mcf = 1/Z | Mcf = Z/Z = 1 |
Lift | Lift | ||
---|---|---|---|
Nant | Ncon | Nsp = 1 | Nsp = z |
1 | 1 | 1*Z/1*1 = Z | ⌀ (not possible) |
1 | Z | 1*Z/1*Z = 1 | ⌀ (not possible) |
Z | 1 | 1*Z/Z*1 = 1 | ⌀ (not possible) |
Z | Z | 1*Z/Z*Z = 1/Z | Z*Z/Z*Z = 1 |
Query Responses | Location Features |
---|---|
R1 | {S1, S2, S4}: camp, fish, raft |
R2 | {S2, S5}: fish, ski |
R3 | {S2, S3}: fish, hike |
R4 | {S1, S3}: camp, hike |
R5 | {S1, S, S4, S5}: camp, fish, raft, ski |
R6 | {S2, S3}: fish, hike, |
R7 | {S1, S3}: camp, hike |
R8 | {S1, S2, S3, S4}: camp, fish, hike, raft |
R9 | {S1, S2, S3}: camp, fish, hike |
Feature | Support |
---|---|
S1: Camp | 6/9–0.66 |
S2: Fish | 7/9–0.77 |
S3: Hike | 6/9–0.66 |
S4: Raft | 3/9–0.33 |
S5: Ski | 2/9–0.22 |
Item-Set | Support |
---|---|
S1 ⊕ S2: CF | 4/9–0.44 |
S1⊕ S3: CH | 4/9–0.44 |
S1 ⊕ S4: CR | 3/9–0.33 |
S2 ⊕ S3: FH | 4/9–0.44 |
S2 ⊕ S4: FR | 3/9–0.33 |
S3 ⊕ S4: HR | 1/9–0.11 |
Query Responses | Location Features | Intuitionistic Membership (m, m*) |
---|---|---|
R1 | {S1, S2, S5}: camp, fish, ski | <0.6, 0.3> |
R2 | {S1, S2, S4}: camp, fish, raft | <0.5, 0.3> |
R3 | {S1, S2, S4}: camp, fish, raft | <0.8, 0.2> |
R4 | {S1, S3}: camp, hike | <0.6, 0.4> |
R5 | {S1, S3, S4}: camp, hike, raft | <0.9, 0.1> |
R6 | {S2, S3, S5}: fish, hike, ski | <0.8, 0.1> |
R7 | {S1, S2, S3}: camp, fish, hike | <0.7, 0.2> |
Rules: Fjk | MinFMsp Min|R| | MinFMsp Max |R| | MaxFMsp Min |R| | MaxFMsp Max |R| | MinFMcf | MaxFMcf |
---|---|---|---|---|---|---|
1. F12: camp → fish | 0.529 | 0.479 | 0.615 | 0.557 | 0.63 | 0.67 |
2. F21: fish → camp | 0.529 | 0.479 | 0.600 | 0.557 | 0.76 | 0.77 |
3. F31: hike → camp | 0.449 | 0.402 | 0.472 | 0.428 | 0.76 | 0.74 |
4. F25: fish → ski | 0.286 | 0.259 | 0.329 | 0.298 | 0.41 | 0.41 |
5. F52: ski → fish | 0.286 | 0.259 | 0.329 | 0.298 | 1.0 | 1.0 |
6. F54: ski → raft | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
7. F{12}4:camp, fish → raft | 0.271 | 0.246 | 0.30 | 0.272 | 1.0 | 1.0 |
8. F5{12}: ski → camp, fish | 0.129 | 0.117 | 0.143 | 0.129 | 0.43 | 0.44 |
Rules: Fjk | Lift Min | Lift Max |
---|---|---|
1. F12: camp → fish | 0.91 | 0.92 |
2. F21: fish → camp | 0.9 | 0.92 |
3. F31: hike → camp | 0.9 | 0.89 |
4. F25: fish → ski | 1.43 | 1.39 |
5. F52: ski → fish | 1.44 | 1.38 |
6. F54: ski → raft | 0 | 0 |
7. F{12}4:camp, fish → raft | 1.1 | 1.2 |
8. F5{12}: ski → camp, fish | 0.81 | 0.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petry, F.; Yager, R. Data Mining Using Association Rules for Intuitionistic Fuzzy Data. Information 2023, 14, 372. https://doi.org/10.3390/info14070372
Petry F, Yager R. Data Mining Using Association Rules for Intuitionistic Fuzzy Data. Information. 2023; 14(7):372. https://doi.org/10.3390/info14070372
Chicago/Turabian StylePetry, Frederick, and Ronald Yager. 2023. "Data Mining Using Association Rules for Intuitionistic Fuzzy Data" Information 14, no. 7: 372. https://doi.org/10.3390/info14070372
APA StylePetry, F., & Yager, R. (2023). Data Mining Using Association Rules for Intuitionistic Fuzzy Data. Information, 14(7), 372. https://doi.org/10.3390/info14070372