Enhancing CSI-Based Human Activity Recognition by Edge Detection Techniques
Abstract
:1. Introduction
2. Background
- RGB, Skeleton, and Depth data: RGB data provides visual information about humans, skeleton data focuses on the spatial relationships between body parts, and depth data provides information about the 3D structure of a scene [15].
- Audio Data: Captures human activities based on audio patterns, useful when visual information is limited [16].
- Wearable Sensors: Capture acceleration data, measuring changes in movement and velocity, useful for detecting activities involving body motion [17].
- Radar Data: Represents reflected signals, used to detect human presence and movement [18].
- WiFi Signal Data: Utilizes wireless signals to recognize activities based on changes caused by human motion. The choice of sensor modality depends on the application’s specific requirements, such as environmental conditions and available hardware resources [12].
3. Related Works
4. System Model
4.1. CSI Dataset and the Collection Methodology
4.2. Neural Networks
CNN
5. Proposed Methodology and Experimental Evaluations
- Detect edges with least probability of error;
- Mitigate the amount of the noise presented in images in order to prevent false edges.
5.1. Sobel Filter
5.2. Canny Filter
5.3. Prewitt Filter
5.4. LoG Filter
5.5. Proposed Method
5.6. Experimental Setups and Results
6. Conclusions and Future Works
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hassan, Q.F. Internet of Things A to Z: Technologies and Applications, 1st ed.; Wiley-IEEE Press: Hoboken, NJ, USA, 2018; pp. 5–45. ISBN 978-1-119-45674-2. [Google Scholar]
- Dey, N.; Hassanien, A.E.; Bhatt, C.; Ashour, A.S.; Satapathy, S.C. Internet of Things and Big Data Analytics Toward Next-Generation Intelligence, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2018; Volume 30, pp. 199–243. ISBN 978-3-319-86864-6. [Google Scholar]
- Perera, C.; Liu, C.H.; Jayawardena, S. The Emerging Internet of Things Marketplace from an Industrial Perspective: A Survey. IEEE Trans. Emerg. Top. Comput. 2015, 3, 585–598. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Feng, J.; Zhao, Y.; Zhang, X.; Zhang, S.; Han, J. Joint Activity Recognition and Indoor Localization with WiFi Fingerprints. IEEE Access 2019, 7, 80058–80068. [Google Scholar] [CrossRef]
- Vlachostergiou, A.; Stratogiannis, G.; Caridakis, G.; Siolas, G.; Mylonas, P. Smart Home Context Awareness Based on Smart and Innovative Cities; Association for Computing Machinery: New York, NY, USA, 2015; ISBN 9781450335805. [Google Scholar]
- Palipana, S.; Rojas, D.; Agrawal, P.; Pesch, D. FallDeFi: Ubiquitous Fall Detection using Commodity WiFi Devices. Proc. ACM Interact. Mobile Wearable Ubiquitous Technol. 2018, 1, 155. [Google Scholar] [CrossRef]
- Moshiri, P.F.; Navidan, H.; Shahbazian, R.; Ghorashi, S.A.; Windridge, D. Using GAN to Enhance the Accuracy of Indoor Human Activity Recognition. In Proceedings of the 10th Conference on Information and Knowledge Technology, Tehran, Iran, 31 December 2019. [Google Scholar]
- Ahad, M.A.R.; Ngo, T.T.; Antar, A.D.; Ahmed, M.; Hossain, T.; Muramatsu, D.; Makihara, Y.; Inoue, S.; Yagi, Y. Wearable Sensor-Based Gait Analysis for Age and Gender Estimation. Sensors 2020, 20, 2424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nabati, M.; Ghorashi, S.A.; Shahbazian, R. Joint Coordinate Optimization in Fingerprint-Based Indoor Positioning. IEEE Commun. Lett. 2021, 25, 1192–1195. [Google Scholar] [CrossRef]
- Zhang, W.; Zhou, S.; Yang, L.; Ou, L.; Xiao, Z. WiFiMap+: High-Level Indoor Semantic Inference with WiFi Human Activity and Environment. IEEE Trans. Veh. Technol. 2019, 68, 7890–7903. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, L.; Jiang, C.; Cao, Z.; Cui, W. WiFi CSI based passive Human Activity Recognition Using Attention Based BLSTM. IEEE Trans. Mob. Comput. 2019, 18, 2714–2724. [Google Scholar] [CrossRef]
- Fard Moshiri, P.; Shahbazian, R.; Nabati, M.; Ghorashi, A. A CSI-based human activity recognition using Deep Learning. Sensors 2021, 21, 7225. [Google Scholar] [CrossRef] [PubMed]
- Schäfer, J.; Barrsiwal, B.; Kokhkharova, M.; Adil, H.; Liebehenschel, J. Human Activity Recognition Using CSI Information with Nexmon. Sensors 2021, 11, 8860. [Google Scholar] [CrossRef]
- Ashleibta, A.M.; Taha, A.; Khan, M.A.; Taylor, W.; Ahsen, T.; Zoha, A.; Abbasi, Q.; Imran, M.A. 5G-enabled contactless multi-user presence and activity detection for independent assisted living. Sci. Rep. 2021, 11, 17590. [Google Scholar] [CrossRef] [PubMed]
- Bagate, A.; Shah, M.A. Human Activity Recognition using RGB-D Sensors. In Proceedings of the International Conference on Intelligent Computing and Control Systems (ICCS), Madurai, India, 15–17 May 2019. [Google Scholar] [CrossRef]
- Reynolds, F.; Neto, C.; Machado, J. Deep Learning for Activity Recognition Using Audio and Video. Electronics 2022, 11, 782. [Google Scholar] [CrossRef]
- Uddin, M.Z.; Soylu, A. Human activity recognition using wearable sensors, discriminant analysis, and long short-term memory-based neural structured learning. Sci. Rep. 2021, 11, 16455. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Kernec, J.L.; Abbasi, Q.; Fioranelli, F.; Yang, S.; Romain, O. Radar-based human activity recognition with adaptive thresholding towards resource constrained platforms. Sci. Rep. 2023, 13, 3473. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Liu, A.X.; Shahzad, M.; Ling, K.; Lu, S. Device-Free Human Activity Recognition Using Commercial WiFi Devices. IEEE J. Sel. Areas Commun. 2017, 35, 1118–1131. [Google Scholar] [CrossRef]
- Ding, J.; Wang, Y. WiFi CSI-Based Human Activity Recognition Using Deep Recurrent Neural Network. IEEE J. Mag. 2019, 7, 174257–174269. [Google Scholar] [CrossRef]
- Yuan, H.; Yang, X.; He, A.; Li, Z.; Zhang, Z.; Tian, Z. Features extraction and analysis for device-free human activity recognition based on channel statement information in b5G wireless communications. EURASIP J. Wirel. Commun. Netw. 2020, 2020, 36. [Google Scholar] [CrossRef]
- Arshad, S.; Feng, C.; Liu, Y.; Hu, Y.; Yu, R.; Zhou, S.; Li, H. Wi-chase: A WiFi based human activity recognition system for sensorless environments. In Proceedings of the IEEE 18th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM), Macau, China, 12–15 June 2017. [Google Scholar]
- Raspberry Pi Hardware Reference. 2014. Available online: https://www.raspberrypi.com/ (accessed on 30 October 2022).
- Reeves, S.J. Image restoration: Fundamentals of image restoration. Acad. Press Libr. Signal Process. 2014, 4, 165–192. [Google Scholar] [CrossRef]
Dataset | Tool Used to Collect | Bandwidth & Number of Subcarriers (Including Zero & Pilot) | Number of Activities |
---|---|---|---|
Schäfer et al. [13] | Raspberry Pi 4B + Nexmon CSI Tool | 80 MHz and 256 subcarriers 802.11ac Standard | 1 + 4: Empty, Standup, Sitdown, Walk, Lie down (in total 1800 number) |
Ashleibta et al. [14] | Universal Software Radio Peripheral devices | 3.75 GHz and 52 Subcarriers | 1 + 3: Empty, Sitting, Standing, Walking (in total 540 number) |
Moshiri et al. [12] | Raspberry Pi 4B Nexmon CSI Tool | 40 MHz and 52 Subcarriers 802.11ac Standard | 7: Bend, Walking, Running, Standing up, Sitting down, Falling, Lying down (in total 420 number) |
Time (In Milliseconds) | Proposed Method (In Average) | BiLSTM | LSTM |
---|---|---|---|
Training | 15 | 17 | 25 |
Testing | 5 | 8 | 14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shahverdi, H.; Nabati, M.; Fard Moshiri, P.; Asvadi, R.; Ghorashi, S.A. Enhancing CSI-Based Human Activity Recognition by Edge Detection Techniques. Information 2023, 14, 404. https://doi.org/10.3390/info14070404
Shahverdi H, Nabati M, Fard Moshiri P, Asvadi R, Ghorashi SA. Enhancing CSI-Based Human Activity Recognition by Edge Detection Techniques. Information. 2023; 14(7):404. https://doi.org/10.3390/info14070404
Chicago/Turabian StyleShahverdi, Hossein, Mohammad Nabati, Parisa Fard Moshiri, Reza Asvadi, and Seyed Ali Ghorashi. 2023. "Enhancing CSI-Based Human Activity Recognition by Edge Detection Techniques" Information 14, no. 7: 404. https://doi.org/10.3390/info14070404
APA StyleShahverdi, H., Nabati, M., Fard Moshiri, P., Asvadi, R., & Ghorashi, S. A. (2023). Enhancing CSI-Based Human Activity Recognition by Edge Detection Techniques. Information, 14(7), 404. https://doi.org/10.3390/info14070404