Principles for External Human–Machine Interfaces
Abstract
:1. Introduction
2. Approval Aspects and Existing Guidelines
3. Method for Deriving eHMI-Principles
4. Goal and Structure of the eHMI-Principles
5. eHMI-Principles
5.1. Category A—How Should a CAV Communicate?
5.1.1. Principle A1: Clarity and Unambiguity of Used Communication Signals
5.1.2. Principle A2: Side Effects of Communication
5.1.3. Principle A3: Prosocial Communication
5.1.4. Principle A4: Consistency across Different Vehicle Types
5.1.5. Principle A5: Consistency of dHMI and eHMI
5.1.6. Principle A6: Expectation Conformity of dHMI Communication Signals
5.1.7. Principle A7: Consideration of Physical–Psychological States
5.1.8. Principle A8: Adaptivity to (Traffic) Environment
5.1.9. Principle A9: Communication with Passengers about the Status of Current External Communication
5.1.10. Principle A10: Changed Intentions
5.2. Category B—In Which Situation Should an eHMI Communicate?
5.2.1. Principle B1: Identification of the Automation Level
5.2.2. Principle B2: Communication of Intent
5.2.3. Principle B3: Mixed Traffic
5.2.4. Principle B4: Informal Traffic Rules
5.2.5. Principle B5: Restricted Communication via the dHMI
5.2.6. Principle B6: Minimal-Risk Condition
5.2.7. Principle B7: External Communication with Other Automated Systems
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kauffmann, N.; Winkler, F.; Naujoks, F.; Vollrath, M. “What Makes a Cooperative Driver?” Identifying parameters of implicit and explicit forms of communication in a lane change scenario. Transp. Res. Part F Traffic Psychol. Behav. 2018, 58, 1031–1042. [Google Scholar] [CrossRef]
- Färber, B. Communication and Communication Problems Between Autonomous Vehicles and Human Drivers. In Autonomous Driving: Technical, Legal and Social Aspects; Maurer, M., Gerdes, J.C., Lenz, B., Winner, H., Eds.; Springer Open: Berlin/Heidelberg, Germany, 2016; pp. 125–144. ISBN 978-3-662-48845-4. [Google Scholar]
- Winter, J.; de Dodou, D. External human–machine interfaces: Gimmick or necessity? Transp. Res. Interdiscip. Perspect. 2022, 15, 100643. [Google Scholar] [CrossRef]
- Tabone, W.; Winter, J.; de Ackermann, C.; Bärgman, J.; Baumann, M.; Deb, S.; Emmenegger, C.; Habibovic, A.; Hagenzieker, M.; Hancock, P.A.; et al. Vulnerable road users and the coming wave of automated vehicles: Expert perspectives. Transp. Res. Interdiscip. Perspect. 2021, 9, 100293. [Google Scholar] [CrossRef]
- Schaarschmidt, E.; Yen, R.; Bosch, R.; Zwicker, L.; Schade, J.; Petzoldt, T. Grundlagen zur Kommunikation zwischen automatisierten Kraftfahrzeugen und Verkehrsteilnehmern: Berichte der Bundesanstalt für Straßenwesen; F138; Fachverlag NW: Bremen, Germany, 2021; ISBN 978-3-95606-570-5. [Google Scholar]
- Dey, D.; Habibovic, A.; Löcken, A.; Wintersberger, P.; Pfleging, B.; Riener, A.; Martens, M.; Terken, J. Taming the eHMI jungle: A classification taxonomy to guide, compare, and assess the design principles of automated vehicles’ external human-machine interfaces. Transp. Res. Interdiscip. Perspect. 2020, 7, 100174. [Google Scholar] [CrossRef]
- Rouchitsas, A.; Alm, H. Corrigendum: External Human-Machine Interfaces for Autonomous Vehicle-to-Pedestrian Communication: A Review of Empirical Work. Front. Psychol. 2020, 11, 575151. [Google Scholar] [CrossRef] [PubMed]
- National Highway Traffic Safety Administration, Department of Transportation. Federal Motor Vehicle Safety Standards No. 108; Lamps, Reflective Devices, and Associated Equipment, Adaptive Driving Beam Headlamps; 49 CFR Part 571; National Highway Traffic Safety Administration, Department of Transportation: Washington, DC, USA, 2022. [Google Scholar]
- Economic Commission for Europe of the United Nations (UNECE). Regulation No 48—Uniform provisions concerning the approval of vehicles with regard to the installation of lighting and light-signalling devices—Uniform provisions concerning the approval of vehicles with regard to the installation of lighting and light-signalling devices [2016/1723]. Off. J. 2016, 125–242. Available online: http://data.europa.eu/eli/reg/2016/1723/oj (accessed on 28 June 2023).
- GRE AVSR. Report of the GRE Taskforce Autonomous Vehicle Signalling Requirements (AVSR): 8th Meeting, 17 October 2022. Available online: https://wiki.unece.org/display/trans/AVSR+-+8th+session%2C+2022-10-17 (accessed on 30 March 2023).
- ISO/TC 22/SC 39; Ergonomics; Road Vehicles—Ergonomic Aspects of External Visual Communication from Automated Vehicles to Other Road Users. International Standards Organization (ISO): Geneva, Switzerland, 2018.
- WES-Office. Automated Driving in the City. Available online: https://www.atcity-online.de/?language=en (accessed on 27 April 2023).
- Gauß, E.-M. Stehen oder Gehen?—Wenn kein Mensch mehr kommuniziert. Kommunikation Eines automatisierten Fahrzeugs am Zebrastreifen in der Interaktion mit Kindern und Erwachsenen. Bachelor’s Thesis, FernUniversität Hagen, Hagen, Germany, 2019. [Google Scholar]
- Ackermann, C.; Beggiato, M.; Schubert, S.; Krems, J.F. An experimental study to investigate design and assessment criteria: What is important for communication between pedestrians and automated vehicles? Appl. Ergon. 2019, 75, 272–282. [Google Scholar] [CrossRef] [PubMed]
- Deb, S.; Strawderman, L.J.; Carruth, D.W. Investigating pedestrian suggestions for external features on fully autonomous vehicles: A virtual reality experiment. Transp. Res. Part F Traffic Psychol. Behav. 2018, 59, 135–149. [Google Scholar] [CrossRef]
- Habibovic, A.; Lundgren, V.M.; Andersson, J.; Klingegård, M.; Lagström, T.; Sirkka, A.; Fagerlönn, J.; Edgren, C.; Fredriksson, R.; Krupenia, S.; et al. Communicating Intent of Automated Vehicles to Pedestrians. Front. Psychol. 2018, 9, 1336. [Google Scholar] [CrossRef]
- Rettenmaier, M.; Bengler, K. The Matter of How and When: Comparing Explicit and Implicit Communication Strategies of Automated Vehicles in Bottleneck Scenarios. IEEE Open J. Intell. Transp. Syst. 2021, 2, 282–293. [Google Scholar] [CrossRef]
- Rettenmaier, M. Interaction between Automated Vehicles and Oncoming Human Drivers: Efficient and Safe Urban Driving in Bottleneck Scenarios. Ph.D. Thesis, Technical University of Munich, Munich, Germany, 2023. [Google Scholar]
- Miller, L.; Leitner, J.; Kraus, J.; Baumann, M. Implicit intention communication as a design opportunity for automated vehicles: Understanding drivers’ interpretation of vehicle trajectory at narrow passages. Accid. Anal. Prev. 2022, 173, 106691. [Google Scholar] [CrossRef]
- Dey, D.; van Vastenhoven, A.; Cuijpers, R.H.; Martens, M.; Pfleging, B. Towards Scalable eHMIs: Designing for AV-VRU Communication Beyond One Pedestrian. In Proceedings of the 13th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, Leeds, UK, 9–14 September 2021; ACM: New York, NY, USA, 2021; pp. 274–286. [Google Scholar]
- Joisten, P.; Alexandi, E.; Drews, R.; Klassen, L.; Petersohn, P.; Pick, A.; Schwindt, S.; Abendroth, B. Displaying Vehicle Driving Mode—Effects on Pedestrian Behavior and Perceived Safety. In Human Systems Engineering and Design II; Ahram, T., Karwowski, W., Pickl, S., Taiar, R., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 250–256. ISBN 978-3-030-27927-1. [Google Scholar]
- Lau, M.; Jipp, M.; Oehl, M. Toward a Holistic Communication Approach to an Automated Vehicle’s Communication with Pedestrians: Combining Vehicle Kinematics with External Human-Machine Interfaces for Differently Sized Automated Vehicles. Front. Psychol. 2022, 13, 882394. [Google Scholar] [CrossRef] [PubMed]
- Fuest, T.; Michalowski, L.; Schmidt, E.; Bengler, K. Reproducibility of Driving Profiles—Application of the Wizard of Oz Method for Vehicle Pedestrian Interaction. In Proceedings of the 2019 IEEE Intelligent Transportation Systems Conference (ITSC), Auckland, New Zealand, 27–30 October 2019; IEEE: New York, NY, USA; pp. 3954–3958. [Google Scholar]
- Lee, Y.M.; Madigan, R.; Garcia, J.; Tomlinson, A.; Solernou, A.; Romano, R.; Markkula, G.; Merat, N.; Uttley, J. Understanding the Messages Conveyed by Automated Vehicles. In Proceedings of the 11th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, Utrecht, The Netherlands, 21–25 September 2019; ACM: New York, NY, USA, 2019; pp. 134–143. [Google Scholar]
- Lee, J.; Daimon, T.; Kitazaki, S. Negative Effect of External Human-Machine Interfaces in Automated Vehicles on Pedestrian Crossing Behaviour: A Virtual Reality Experiment. In Proceedings of the 21st Congress of the International Ergonomics Association (IEA 2021); Black, N.L., Neumann, W.P., Noy, I., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 718–725. ISBN 978-3-030-74607-0. [Google Scholar]
- Wilbrink, M.; Lau, M.; Illgner, J.; Schieben, A.; Oehl, M. Impact of External Human–Machine Interface Communication Strategies of Automated Vehicles on Pedestrians’ Crossing Decisions and Behaviors in an Urban Environment. Sustainability 2021, 13, 8396. [Google Scholar] [CrossRef]
- Hübner, M.; Feierle, A.; Rettenmaier, M.; Bengler, K. External communication of automated vehicles in mixed traffic: Addressing the right human interaction partner in multi-agent simulation. Transp. Res. Part F Traffic Psychol. Behav. 2022, 87, 365–378. [Google Scholar] [CrossRef]
- Lanzer, M.; Koniakowsky, I.; Colley, M.; Baumann, M. Interaction Effects of Pedestrian Behavior, Smartphone Distraction and External Communication of Automated Vehicles on Crossing and Gaze Behavior. In Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, Hamburg, Germany, 23–28 April 2023; Schmidt, A., Väänänen, K., Goyal, T., Kristensson, P.O., Peters, A., Mueller, S., Williamson, J.R., Wilson, M.L., Eds.; ACM: New York, NY, USA, 2023; pp. 1–18. [Google Scholar]
- Dietrich, A.; Willrodt, J.-H.; Wagner, K.; Bengler, K. Projection-Based External Human Machine Interfaces—Enabling Interaction between Automated Vehicles and Pedestrians. In Proceedings of the Driving Simulation Conference 2018 Europe VR, Driving Simulation Association, Antibes, France, 5–7 September 2018. [Google Scholar]
- Echterhoff, W. Lernen im Straßenverkehr durch gezielt angebotenes Modell-Verhalten: Ein Feldexperiment. Z. Für Verk. 1989, 35, 156–159. [Google Scholar]
- Stern, J. Evaluation eines dynamischen Rückmeldesystems an Fußgängerüberwegen und an einem Bahnübergang. In Fortschritte der Verkehrspsychologie; Schade, J., Engeln, A., Eds.; VS Verlag für Sozialwissenschaften: Wiesbaden, Germany, 2008; pp. 103–122. ISBN 978-3-531-15956-0. [Google Scholar]
- Schlag, B.; Stern, J.; Butterwegge, B.; Degener, S. “Lob und Tadel”: Wirkungen des Dialog-Display; Forschungsbericht VV01; Gesamtverband der Deutschen Versicherungswirtschaft e. V.: Berlin, Germany, 2009. [Google Scholar]
- Lau, M.; Jipp, M.; Oehl, M. Investigating the Interplay between eHMI and dHMI for Automated Buses: How Do Contradictory Signals Influence a Pedestrian’s Willingness to Cross? In Proceedings of the 13th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, Leeds, UK, 9–14 September 2021; ACM: New York, NY, USA, 2021; pp. 152–155. [Google Scholar]
- Lau, M.; Jipp, M.; Oehl, M. One Solution Fits All? Evaluating Different Communication Strategies of a Light-based External Human-Machine Interface for Differently Sized Automated Vehicles from a Pedestrian’s Perspective. Accid. Anal. Prev. 2022, 171, 106641. [Google Scholar] [CrossRef]
- Oehl, M.; Lau, M.; Gehreke, L.; Wilbrink, M. Towards a Universal Explicit Communication Design of External Human-Machine Interfaces (eHMI) for Differently Sized Highly Automated Vehicles Evaluated by Different Pedestrian Age Groups. In HCI International 2022—Late Breaking Posters; Stephanidis, C., Antona, M., Ntoa, S., Salvendy, G., Eds.; Springer: Cham, Switzerland, 2022; pp. 391–398. ISBN 978-3-031-19681-2. [Google Scholar]
- Hensch, A.-C.; Kreißig, I.; Beggiato, M.; Krems, J.F. The Effect of eHMI Malfunctions on Younger and Elderly Pedestrians’ Trust and Acceptance of Automated Vehicle Communication Signals. Front. Psychol. 2022, 13, 866475. [Google Scholar] [CrossRef]
- Holländer, K.; Wintersberger, P.; Butz, A. Overtrust in External Cues of Automated Vehicles. In Proceedings of the 11th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, Utrecht, The Netherlands, 21–25 September 2019; ACM: New York, NY, USA, 2019; pp. 211–221. [Google Scholar]
- Kaleefathullah, A.A.; Merat, N.; Lee, Y.M.; Eisma, Y.B.; Madigan, R.; Garcia, J.; de Winter, J. External Human-Machine Interfaces Can Be Misleading: An Examination of Trust Development and Misuse in a CAVE-Based Pedestrian Simulation Environment. Hum. Factors 2022, 64, 1070–1085. [Google Scholar] [CrossRef]
- Bengler, K.; Rettenmaier, M.; Fritz, N.; Feierle, A. From HMI to HMIs: Towards an HMI Framework for Automated Driving. Information 2020, 11, 61. [Google Scholar] [CrossRef]
- Dey, D.; Matviienko, A.; Berger, M.; Pfleging, B.; Martens, M.; Terken, J. Communicating the intention of an automated vehicle to pedestrians: The contributions of eHMI and vehicle behavior. It—Inf. Technol. 2021, 63, 123–141. [Google Scholar] [CrossRef]
- Hensch, A.-C.; Beggiato, M.; Krems, J.F. Drive safely and comfortably—Gap Acceptance as a Basis for a user-centred Design of Driving Styles in Automated Vehicles. In Proceedings of the 7th HUMANIST Conference, Rhodes Island, Greece, 26–27 October 2021. [Google Scholar]
- Hensch, A.-C.; Beggiato, M.; Krems, J.F. Drivers’ gap acceptance during parking maneuvers as a basis for initiating driving actions in automated vehicles. Transp. Res. Part F Traffic Psychol. Behav. 2023, 92, 133–142. [Google Scholar] [CrossRef]
- Domeyer, J.; Dinparastdjadid, A.; Lee, J.D.; Douglas, G.; Alsaid, A.; Price, M. Proxemics and Kinesics in Automated Vehicle–Pedestrian Communication: Representing Ethnographic Observations. Transp. Res. Rec. 2019, 2673, 70–81. [Google Scholar] [CrossRef]
- Domeyer, J.E.; Lee, J.D.; Toyoda, H. Vehicle Automation–Other Road User Communication and Coordination: Theory and Mechanisms. IEEE Access 2020, 8, 19860–19872. [Google Scholar] [CrossRef]
- Rettenmaier, M.; Dinkel, S.; Bengler, K. Communication via motion—Suitability of automated vehicle movements to negotiate the right of way in road bottleneck scenarios. Appl. Ergon. 2021, 95, 103438. [Google Scholar] [CrossRef] [PubMed]
- Schieben, A.; Wilbrink, M.; Kettwich, C.; Madigan, R.; Louw, T.; Merat, N. Designing the interaction of automated vehicles with other traffic participants: Design considerations based on human needs and expectations. Cogn. Tech. Work 2019, 21, 69–85. [Google Scholar] [CrossRef]
- Fuest, T.; Michalowski, L.; Traris, L.; Bellem, H.; Bengler, K. Using the Driving Behavior of an Automated Vehicle to Communicate Intentions—A Wizard of Oz Study. In Proceedings of the 2018 21st International Conference on Intelligent Transportation Systems (ITSC), Maui, HI, USA, 4–7 November 2018; IEEE: New York, NY, USA, 2018; pp. 3596–3601. [Google Scholar]
- Dou, J.; Chen, S.; Tang, Z.; Xu, C.; Xue, C. Evaluation of Multimodal External Human–Machine Interface for Driverless Vehicles in Virtual Reality. Symmetry 2021, 13, 687. [Google Scholar] [CrossRef]
- Joisten, P.; Theobald, N.; Schwindt, S.; Walter, J.; Abendroth, B. Designing the Communication with Automated Vehicles: The Case of Elderly Pedestrians. In Proceedings of theWorkshop on Inclusive Communication between Automated Vehicles and Vulnerable Road Users. In conjunction with MobileHCI 2020, Darmstadt, Germany, 5–9 October 2022. [Google Scholar]
- Colley, M.; Walch, M.; Gugenheimer, J.; Rukzio, E. Including people with impairments from the start. In Proceedings of the 11th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, Utrecht, The Netherlands, 21–25 September 2019; Janssen, C.P., Donker, S.F., Chuang, L.L., Ju, W., Eds.; ACM: New York, NY, USA, 2019; pp. 307–314. [Google Scholar]
- Colley, M.; Walch, M.; Gugenheimer, J.; Askari, A.; Rukzio, E. Towards Inclusive External Communication of Autonomous Vehicles for Pedestrians with Vision Impairments. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, Honolulu, HI, USA, 25–30 April 2020; Bernhaupt, R., Mueller, F., Verweij, D., Andres, J., McGrenere, J., Cockburn, A., Avellino, I., Goguey, A., Bjørn, P., Zhao, S., et al., Eds.; ACM: New York, NY, USA, 2020; pp. 1–14. [Google Scholar]
- Löcken, A.; Golling, C.; Riener, A. How Should Automated Vehicles Interact with Pedestrians? In Proceedings of the 11th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, Utrecht, The Netherlands, 21–25 September 2019; ACM: New York, NY, USA, 2019; pp. 262–274. [Google Scholar]
- Eisele, D.; Petzoldt, T. Effects of traffic context on eHMI icon comprehension. Transp. Res. Part F Traffic Psychol. Behav. 2022, 85, 1–12. [Google Scholar] [CrossRef]
- Faas, S.M.; Baumann, M. Light-Based External Human Machine Interface: Color Evaluation for Self-Driving Vehicle and Pedestrian Interaction. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 2019, 63, 1232–1236. [Google Scholar] [CrossRef]
- Rettenmaier, M.; Schulze, J.; Bengler, K. How Much Space Is Required? Effect of Distance, Content, and Color on External Human–Machine Interface Size. Information 2020, 11, 346. [Google Scholar] [CrossRef]
- Hümmer, M. Automatisiertes Fahren in der Stadt: Auswirkungen eines iHMIs auf Vertrauen, Akzeptanz und Sicherheitsgefühl. Master‘s Thesis, Hochschule Fresenius, Frankfurt, Germany, 2022. [Google Scholar]
- Weber, F.; Sorokin, L.; Schmidt, E.; Schieben, A.; Wilbrink, M.; Kettwich, C.; Dodiya, J.; Oehl, M.; Kaup, M.; Willrodt, J.; et al. Final Human-Vehicle Interaction Strategies for the interACT Automated Vehicles: interACT D4.2, Project Deliverable. Available online: https://www.interact-roadautomation.eu/wp-content/uploads/interACT_WP4_D4.2_Final_Human_Vehicle_Interaction_Strategies_v1.1_uploadWebsiteApproved.pdf (accessed on 28 June 2023).
- Wilbrink, M.; Schieben, A.; Oehl, M. Reflecting the automated vehicle’s perception and intention. In Proceedings of the 25th International Conference on Intelligent User Interfaces Companion, Cagliari, Italy, 17–20 March 2020; ACM: New York, NY, USA, 2020; pp. 105–107. [Google Scholar]
- Feierle, A.; Rettenmaier, M.; Zeitlmeir, F.; Bengler, K. Multi-Vehicle Simulation in Urban Automated Driving: Technical Implementation and Added Benefit. Information 2020, 11, 272. [Google Scholar] [CrossRef]
- Rettenmaier, M.; Albers, D.; Bengler, K. After you?!—Use of external human-machine interfaces in road bottleneck scenarios. Transp. Res. Part F Traffic Psychol. Behav. 2020, 70, 175–190. [Google Scholar] [CrossRef]
- Faas, S.M.; Stange, V.; Baumann, M. Self-Driving Vehicles and Pedestrian Interaction: Does an External Human-Machine Interface Mitigate the Threat of a Tinted Windshield or a Distracted Driver? Int. J. Hum.–Comput. Interact. 2021, 37, 1364–1374. [Google Scholar] [CrossRef]
- Lagström, T.; Lundgren, V.M. AVIP—Autonomous Vehicles’ Interaction with Pedestrians—An Investigation of Pedestrian-Driver Communication and Development of a Vehicle External Interface. Master’s Thesis, Chalmers University of Technology, Gothenburg, Sweden, 2016. [Google Scholar]
- Hudson, C.R.; Deb, S.; Carruth, D.W.; McGinley, J.; Frey, D. Pedestrian Perception of Autonomous Vehicles with External Interacting Features. In Advances in Human Factors and Systems Interaction; Nunes, I.L., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 33–39. ISBN 978-3-319-94333-6. [Google Scholar]
- Hensch, A.-C.; Neumann, I.; Beggiato, M.; Halama, J.; Krems, J.F. Effects of a light-based communication approach as an external HMI for Automated Vehicles—A Wizard-of-Oz Study. ToTS 2020, 10, 18–32. [Google Scholar] [CrossRef]
- Faas, S.M.; Mattes, S.; Kao, A.C.; Baumann, M. Efficient Paradigm to Measure Street-Crossing Onset Time of Pedestrians in Video-Based Interactions with Vehicles. Information 2020, 11, 360. [Google Scholar] [CrossRef]
- Faas, S.M.; Mathis, L.-A.; Baumann, M. External HMI for self-driving vehicles: Which information shall be displayed? Transp. Res. Part F Traffic Psychol. Behav. 2020, 68, 171–186. [Google Scholar] [CrossRef]
- de Clercq, K.; Dietrich, A.; Núñez Velasco, J.P.; de Winter, J.; Happee, R. External Human-Machine Interfaces on Automated Vehicles: Effects on Pedestrian Crossing Decisions. Hum. Factors 2019, 61, 1353–1370. [Google Scholar] [CrossRef]
- Fuest, T.; Feierle, A.; Schmidt, E.; Bengler, K. Effects of Marking Automated Vehicles on Human Drivers on Highways. Information 2020, 11, 286. [Google Scholar] [CrossRef]
- Kaß, C.; Schoch, S.; Naujoks, F.; Hergeth, S.; Keinath, A.; Neukum, A.A. Methodological Approach to Determine the Benefits of External HMI During Interactions Between Cyclists and Automated Vehicles: A Bicycle Simulator Study. In HCI in Mobility, Transport, and Automotive Systems. Driving Behavior, Urban and Smart Mobility; Krömker, H., Ed.; Springer International Publishing: Cham, Switzerland, 2020; pp. 211–227. ISBN 978-3-030-50536-3. [Google Scholar]
- Joisten, P.; Schwindt, S.S.; Theobald, N.; Abendroth, B. Pedestrians’ Mental Model Development after Initial Encounters with Automated Driving Systems. In Proceedings of the 33rd European Conference on Cognitive Ergonomics, Kaiserslautern, Germany, 4–7 October 2022; Ebert, A., Lachmann, T., Dreßler, K., Lindblom, J., Reinhard, R., Eds.; ACM: New York, NY, USA, 2022; pp. 1–4. [Google Scholar]
- Weiß, S.L.; Eisele, D.; Petzoldt, T. External Human-Machine-Interfaces on Automated Vehicles: Which message and perspective do pedestrians in crossing situations understand best? In Intelligent Human Systems Integration (IHSI 2022): Integrating People and Intelligent Systems; Ahram, T., Karwowski, W., Di Bucchianico, P., Taiar, R., Casarotto, L., Costa, P., Eds.; AHFE International: Venice, Italy, 2022. [Google Scholar] [CrossRef]
- Rettenmaier, M.; Pietsch, M.; Schmidtler, J.; Bengler, K. Passing through the Bottleneck—The Potential of External Human-Machine Interfaces. In Proceedings of the 2019 IEEE Intelligent Vehicles Symposium (IV), Paris, France, 9–12 June 2019; IEEE: New York, NY, USA, 2019; pp. 1687–1692. [Google Scholar]
- Wilbrink, M.; Nuttelmann, M.; Oehl, M. Scaling up Automated Vehicles’ eHMI Communication Designs to Interactions with Multiple Pedestrians—Putting eHMIs to the Test. In Proceedings of the 13th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, Leeds, UK, 9–14 September 2021; ACM: New York, NY, USA, 2021; pp. 119–122. [Google Scholar]
- Joisten, P.; Theobald, N.; Abendroth, B. Pedestrians’ Crossing Decisions While Interacting with Automated Vehicles—Insights from a Longitudinal Study. In Human Factors in Transportation, Proceedings of the 13th International Conference on Applied Human Factors and Ergonomics (AHFE 2022), New York, NY, USA, 24–28 July 2022; AHFE International: New York, NY, USA; p. 2022.
- Colley, M.; Bajrovic, E.; Rukzio, E. Effects of Pedestrian Behavior, Time Pressure, and Repeated Exposure on Crossing Decisions in Front of Automated Vehicles Equipped with External Communication. In Proceedings of the CHI Conference on Human Factors in Computing Systems, New Orleans, LA, USA, 29 April–5 May 2022; Barbosa, S., Lampe, C., Appert, C., Shamma, D.A., Drucker, S., Williamson, J., Yatani, K., Eds.; ACM: New York, NY, USA, 2022; pp. 1–11. [Google Scholar]
- Schieben, A.M.; Wilbrink, M.; Kettwich, C.; Dodiya, J.; Oehl, M.; Weber, F.; Sorokin, L.; Lee, Y.M.; Madigan, R.; Markula, G.; et al. Testing External HMI Designs for Automated Vehicles—An Overview on User Study Results from the EU Project interACT; 19. Tagung Automatisiertes Fahren: Munich, Germany, 2019; Available online: https://mediatum.ub.tum.de/doc/1535145/1535145.pdf (accessed on 28 June 2023).
- Parkin, J.; Clark, B.; Clayton, W.; Ricci, M.; Parkhurst, G. Autonomous vehicle interactions in the urban street environment: A research agenda. Proc. Inst. Civ. Eng.—Munic. Eng. 2018, 171, 15–25. [Google Scholar] [CrossRef]
- Björklund, G.M.; Åberg, L. Driver behaviour in intersections: Formal and informal traffic rules. Transp. Res. Part F Traffic Psychol. Behav. 2005, 8, 239–253. [Google Scholar] [CrossRef]
- Imbsweiler, J.; Ruesch, M.; Weinreuter, H.; Puente León, F.; Deml, B. Cooperation behaviour of road users in t-intersections during deadlock situations. Transp. Res. Part F Traffic Psychol. Behav. 2018, 58, 665–677. [Google Scholar] [CrossRef]
- Risser, R. Behavior in traffic conflict situations. Accid. Anal. Prev. 1985, 17, 179–197. [Google Scholar] [CrossRef]
- Xing, Y.; Lv, C.; Cao, D.; Hang, P. Toward human-vehicle collaboration: Review and perspectives on human-centered collaborative automated driving. Transp. Res. Part C Emerg. Technol. 2021, 128, 103199. [Google Scholar] [CrossRef]
- Stoll, T.; Lanzer, M.; Baumann, M. Situational influencing factors on understanding cooperative actions in automated driving. Transp. Res. Part F Traffic Psychol. Behav. 2020, 70, 223–234. [Google Scholar] [CrossRef]
- Li, Y.; Cheng, H.; Zeng, Z.; Liu, H.; Sester, M. Autonomous Vehicles Drive into Shared Spaces: eHMI Design Concept Focusing on Vulnerable Road Users. In Proceedings of the IEEE International Intelligent Transportation Systems Conference (ITSC), Indianapolis, IN, USA, 19–22 September 2021. [Google Scholar] [CrossRef]
- Mertens, J.C.; Knies, C.; Diermeyer, F.; Escherle, S.; Kraus, S. The Need for Cooperative Automated Driving. Electronics 2020, 9, 754. [Google Scholar] [CrossRef]
- Matsunaga, N.; Daimon, T.; Yokota, N.; Kitazaki, S. Effect of External Human Machine Interface (eHMI) of Automated Vehicle on Pedestrian’s Recognition. Proc. Int. Disp. Work. 2019, 26. [Google Scholar] [CrossRef]
- SAE. Ground Vehicle Standard: Taxonomy and Definitions for Terms Related to Driving Automation Systems for on-Road Motor Vehicles; SAE International: Warrendale, PA, USA, 2021; (J3016_202104); Available online: https://saemobilus.sae.org/content/j3016_202104 (accessed on 30 March 2023).
- Schindler, J.; Herbig, D.L.; Lau, M.; Oehl, M. Communicating Issues in Automated Driving to Surrounding Traffic—How should an Automated Vehicle Communicate a Minimum Risk Maneuver via eHMI and/or dHMI? In HCI International 2020—Late Breaking Posters; Stephanidis, C., Antona, M., Ntoa, S., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 619–626. ISBN 978-3-030-60702-9. [Google Scholar]
Principle ID | Name of Principle |
---|---|
A1 | Clarity and unambiguity of used communication signals |
A2 | Side effects of communication |
A3 | Prosocial communication |
A4 | Consistency across different vehicle types |
A5 | Consistency of dHMI and eHMI |
A6 | Expectation conformity of dHMI communication signals |
A7 | Consideration of physical–psychological states |
A8 | Adaptivity to (traffic) environment |
A9 | Communication with passengers about the status of current external communication |
A10 | Changed intentions |
B1 | Identification of the automation level |
B2 | Communication of intent |
B3 | Mixed traffic |
B4 | Informal traffic rules |
B5 | Restricted communication via the dHMI |
B6 | Minimal-risk condition |
B7 | External communication with other automated systems |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wilbrink, M.; Cieler, S.; Weiß, S.L.; Beggiato, M.; Joisten, P.; Feierle, A.; Oehl, M. Principles for External Human–Machine Interfaces. Information 2023, 14, 463. https://doi.org/10.3390/info14080463
Wilbrink M, Cieler S, Weiß SL, Beggiato M, Joisten P, Feierle A, Oehl M. Principles for External Human–Machine Interfaces. Information. 2023; 14(8):463. https://doi.org/10.3390/info14080463
Chicago/Turabian StyleWilbrink, Marc, Stephan Cieler, Sebastian L. Weiß, Matthias Beggiato, Philip Joisten, Alexander Feierle, and Michael Oehl. 2023. "Principles for External Human–Machine Interfaces" Information 14, no. 8: 463. https://doi.org/10.3390/info14080463
APA StyleWilbrink, M., Cieler, S., Weiß, S. L., Beggiato, M., Joisten, P., Feierle, A., & Oehl, M. (2023). Principles for External Human–Machine Interfaces. Information, 14(8), 463. https://doi.org/10.3390/info14080463