A Deep Neural Network for Working Memory Load Prediction from EEG Ensemble Empirical Mode Decomposition
Abstract
:1. Introduction
- (1)
- The reduction in the number of EEG channels used for time-frequency feature extraction.
- (2)
- A novel workflow for WM load prediction that combines two powerful tools: a time frequency analysis method of EEMD and an AI method of DNN for WM load prediction.
- (3)
- A robust approach utilizing a subset of scalp EEG electrodes for predicting WM load.
2. Literature Review
3. Materials and Methods
- i.
- Add white noise, n(t), to the original signal, x(t), forming x_n(t) = x(t) + n(t)
- ii.
- Perform EMD on x_n(t) to obtain intrinsic mode functions (IMFs), EMD(x_n(t)) = {c_1(t), c_2(t), …, c_N(t)}.
- iii.
- Repeat steps 1 and 2 for M realizations of white noise, n_i(t), and compute ensemble mean for each IMF, C_j(t) = (1/M) ∑ C_i^j(t).
- iv.
- Calculate residual, r(t) = x(t) − ∑ C_j(t), and determine stopping criteria.
4. Results
5. Discussion
5.1. Prediction Performance of the ICA + EEMD + DNN Method
5.2. Analysis of IMFs of Subjects above 60 Years and Subjects with MCI during Rest State
5.3. Analysis of IMFs of Normal Subjects and Subjects with MCI for Low and High WM Load
5.4. Efficacy of ICA in Selecting Fewer Scalp Electrodes Specific to Each Subject
5.5. Comparison with Other Methods
5.6. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bosnes, O.; Almkvist, O.; Bosnes, I.; Stordal, E. Subjective working memory predicts objective memory in cognitively normal aging: A HUNT study. BMC Psychol. 2020, 8, 77. [Google Scholar] [CrossRef]
- Baddeley, A. The episodic buffer: A new component of working memory? Trends Cogn. Sci. 2000, 4, 417–423. [Google Scholar] [CrossRef] [PubMed]
- Briganti, G.; Le Moine, O. Artificial Intelligence in Medicine: Today and Tomorrow. Front. Med. 2020, 7, 27. [Google Scholar] [CrossRef] [PubMed]
- Cavedoni, S.; Chirico, A.; Pedroli, E.; Cipresso, P.; Riva, G. Digital Biomarkers for the Early Detection of Mild Cognitive Impairment: Artificial Intelligence Meets Virtual Reality. Front. Hum. Neurosci. 2020, 14, 245. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Li, J.; Schmitt, F.A.; Jicha, G.A.; Munro, N.B.; Zhao, X.; Smith, C.D.; Kryscio, R.J.; Abner, E.L. Memory-Related Frontal Brainwaves Predict Transition to Mild Cognitive Impairment in Healthy Older Individuals Five Years before Diagnosis. J. Alzheimers. Dis. 2021, 79, 531–541. [Google Scholar] [CrossRef] [PubMed]
- Aurtenetxe, S.; García-Pacios, J.; del Río, D.; López, M.E.; Pineda-Pardo, J.A.; Marcos, A.; Losada, M.L.D.; López-Frutos, J.M.; Maestú, F. Interference impacts working memory in mild cognitive impairment. Front. Neurosci. 2016, 10, 443. [Google Scholar] [CrossRef]
- Engedal, K.; Barca, M.L.; Høgh, P.; Bo Andersen, B.; Dombernowsky, N.W.; Naik, M.; Gudmundsson, T.E.; Øksengaard, A.R.; Wahlund, L.O.; Snaedal, J. The Power of EEG to Predict Conversion from Mild Cognitive Impairment and Subjective Cognitive Decline to Dementia. Dement. Geriatr. Cogn. Disord. 2020, 49, 38–47. [Google Scholar] [CrossRef]
- Zarjam, P.; Epps, J.; Chen, F.; Lovell, N.H. Classification of working memory load using wavelet complexity features of EEG signals. In Proceedings of the Neural Information Processing: 19th International Conference, ICONIP 2012, Doha, Qatar, 12–15 November 2012; Volume 7664 LNCS, pp. 692–699. [Google Scholar]
- Wu, Z.; Huang, N.E. Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv. Adapt. Data Anal. 2009, 1, 1–41. [Google Scholar] [CrossRef]
- Romney, A.; Manian, V. Optimizing Seizure Prediction from Reduced Scalp EEG Channels Based on Spectral Features and MAML. Accept. IEEE Access 2021, 9, 164348–164357. [Google Scholar]
- Trinh, T.T.; Tsai, C.F.; Hsiao, Y.T.; Lee, C.Y.; Wu, C.T.; Liu, Y.H. Identifying Individuals With Mild Cognitive Impairment Using Working Memory-Induced Intra-Subject Variability of Resting-State EEGs. Front. Comput. Neurosci. 2021, 15, 700467. [Google Scholar] [CrossRef]
- Li, J.; Broster, L.S.; Jicha, G.A.; Munro, N.B.; Schmitt, F.A.; Abner, E.; Kryscio, R.; Smith, C.D.; Jiang, Y. A cognitive electrophysiological signature differentiates amnestic mild cognitive impairment from normal aging. Alzheimer’s Res. Ther. 2017, 9, 3. [Google Scholar] [CrossRef] [PubMed]
- Mamani, G.Q.; Fraga, F.J.; Tavares, G.; Johns, E.; Phillips, N.D. EEG-based biomarkers on working memory tasks for early diagnosis of Alzheimer’s disease and mild cognitive impairment. In Proceedings of the 2017 IEEE Healthcare Innovations and Point of Care Technologies (HI-POCT), Bethesda, MD, USA, 6–8 November 2017; Volume 2017, pp. 237–240. [Google Scholar] [CrossRef]
- Timothy, L.T.; Krishna, B.M.; Nair, U. Cross recurrence quantification analysis of mild cognitive impairment EEG under working memory condition. In Proceedings of the 2017 IEEE Life Sciences Conference (LSC), Sydney, Australia, 13–15 December 2017; Volume 2018, pp. 145–148. [Google Scholar] [CrossRef]
- Du, H.; Qi, H.; Wang, X.; Ramanath, R.; Snyder, W.E. Band selection using independent component analysis for hyperspectral image processing. In Proceedings of the 32nd Applied Imagery Pattern Recognition Workshop, Washington, DC, USA, 15–17 October 2003; Volume 2003, pp. 93–98. [Google Scholar] [CrossRef]
- Rejer, I.; Gorski, P. Benefits of ICA in the Case of a Few Channel EEG. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; Volume 2015, pp. 7434–7437. [Google Scholar] [CrossRef]
- Fuchs, A.H. Ebbinghaus’s contributions to psychology after 1885. Am. J. Psychol. 1997, 110, 621–633. [Google Scholar] [CrossRef]
- Cowan, N. Chapter 20 What are the differences between long-term, short-term, and working memory? Prog. Brain Res. 2008, 169, 323–338. [Google Scholar] [CrossRef]
- Hawthorne, B.S.; Vella-brodrick, D.A.; Hattie, J. Well-Being as a Cognitive Load Reducing Agent: A Review of the Literature. In Frontiers in Education; Frontiers Media SA: Lausanne, Switzerland, 2019; Volume 4, p. 121. [Google Scholar] [CrossRef]
- Simon, S.S.; Tusch, E.S.; Holcomb, P.J.; Daffner, K.R. Increasing working memory load reduces processing of cross-modal task-irrelevant stimuli even after controlling for task difficulty and executive capacity. Front. Hum. Neurosci. 2016, 10, 13. [Google Scholar] [CrossRef] [PubMed]
- Sweller, J. Cognitive Load Theory. Psychol. Learn. Motiv. Adv. Res. Theory 2011, 55, 37–76. [Google Scholar] [CrossRef]
- Paas, F.; van Merriënboer, J.J.G. Cognitive-Load Theory: Methods to Manage Working Memory Load in the Learning of Complex Tasks. Curr. Dir. Psychol. Sci. 2020, 29, 394–398. [Google Scholar] [CrossRef]
- Puszta, A.; Pertich, Á.; Giricz, Z.; Nyujtó, D.; Bodosi, B.; Eördegh, G.; Nagy, A. Predicting Stimulus Modality and Working Memory Load During Visual- and Audiovisual-Acquired Equivalence Learning. Front. Hum. Neurosci. 2020, 14, 410. [Google Scholar] [CrossRef]
- Collins, A.G.E.; Ciullo, B.; Frank, M.J.; Badre, D. Working Memory Load Strengthens Reward Prediction Errors. J. Neurosci. 2017, 37, 4332. [Google Scholar] [CrossRef]
- Eryilmaz, H.; Dowling, K.F.; Hughes, D.E.; Rodriguez-Thompson, A.; Tanner, A.; Huntington, C.; Coon, W.G.; Roffman, J.L. Working memory load-dependent changes in cortical network connectivity estimated by machine learning. Neuroimage 2020, 217, 116895. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, C.; Wu, F.; Huang, K.; Yang, L.; Ji, L. Prediction of working memory ability based on EEG by functional data analysis. J. Neurosci. Methods 2020, 333, 108552. [Google Scholar] [CrossRef]
- Ben-Artzi, I.; Luria, R.; Shahar, N. Working memory capacity estimates moderate value learning for outcome-irrelevant features. Sci. Rep. 2022, 12, 19677. [Google Scholar] [CrossRef] [PubMed]
- Mirjalili, M.; Zomorrodi, R.; Daskalakis, Z.J.; Hill, S.; Rajji, T.K. Individualized real-time prediction of working memory performance by classifying electroencephalography signals. Int. J. Imaging Syst. Technol. 2022, 32, 575–589. [Google Scholar] [CrossRef]
- Carina Coulacoglou, D.H.S. Executive Function, Theory of Mind, and Adaptive Behavior. Psychom. Psychol. Assess. 2017, 91–130. [Google Scholar]
- Moustafa, A.A.; Gray, S.; Morris, A.; Matar, G.; Garg, A.; Helal, A.A.; Ayoub AE, A.; Hamza, E.A. Working-memory impairment in schizophrenia and schizotypal personality disorder. In Cognitive and Behavioral Dysfunction in Schizophrenia; Elsevier Academic Press: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Ygierewicz, J.; Janik, R.A.; Podolak, I.T.; Drozd, A.; Malinowska, U.; Poziomska, M.; Wojciechowski, J.; Ogniewski, P.; Niedbalski, P.; Terczynska, I.; et al. Decoding working memory-related information from repeated psychophysiological EEG experiments using convolutional and contrastive neural networks. J. Neural Eng. 2022, 19, 046053. [Google Scholar] [CrossRef] [PubMed]
- Kwak, Y.; Song, W.J.; Kim, S.E. Classification of Working Memory Performance from EEG with Deep Artificial Neural Networks. In Proceedings of the 2019 7th International Winter Conference on Brain-Computer Interface (BCI), Gangwon, South Korea, 18–20 February 2019; pp. 6–8. [Google Scholar] [CrossRef]
- Wu, Y.; Qian, H.; Yang, X.; Chu, H.; Yan, C.; Gong, X. Classification of EEG signals during Working-Memory Maintenance based on Phase Space Reconstruction of Empirical Mode Decomposition. In Proceedings of the 2020 13th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), Chengdu, China, 17–19 October 2020; pp. 675–680. [Google Scholar] [CrossRef]
- Changoluisa, V.; Poch, C.; Campo, P.; Rodriguez, F.B. Predicting Working Memory Performance Based on Specific Individual EEG Spatiotemporal Features. bioRxiv 2022, 2022.05.06.490941. Available online: https://www.biorxiv.org/content/10.1101/2022.05.06.490941v1.abstract (accessed on 10 May 2023).
- Yoo, G.; Kim, H.; Hong, S. Prediction of Cognitive Load from Electroencephalography Signals Using Long Short-Term Memory Network. Bioengineering 2023, 10, 361. [Google Scholar] [CrossRef] [PubMed]
Performance Metrics | Formula |
---|---|
Sensitivity | |
Specificity | |
F1-Score | |
Overall Accuracy (OA) | |
Kappa (K) |
Group Tested | Subject | OA (%) | Kappa (%) | Sensitivity (%) | Specificity (%) | F1-Score (%) |
---|---|---|---|---|---|---|
S01 | 100 | 100 | 97.24 | 93.87 | 100.00 | |
S02 | 100 | 100 | 100 | 100 | 100.00 | |
20 to 40 years | S03 | 98.39 | 96.78 | 97.48 | 99.32 | 97.58 |
S04 | 99.86 | 99.72 | 99.75 | 99.97 | 99.79 | |
S05 | 93.73 | 87.14 | 96.02 | 92.14 | 90.31 | |
S06 | 98.82 | 97.65 | 98.28 | 99.34 | 98.23 | |
S07 | 100 | 100 | 100 | 100 | 100.00 | |
S08 | 91.88 | 83.5 | 87.24 | 95.71 | 87.49 | |
40 to 60 years | S09 | 99 | 98.01 | 98.74 | 99.29 | 98.50 |
S10 | 90.52 | 80.85 | 91.1 | 91.67 | 85.41 | |
S11 | 99.81 | 99.61 | 100 | 99.61 | 99.71 | |
S12 | 97.75 | 95.49 | 97.71 | 97.79 | 96.61 | |
>60 years | S13 | 98.03 | 96.01 | 97.75 | 98.37 | 97.01 |
S14 | 93.61 | 87.12 | 90.92 | 97.13 | 90.25 | |
S15 | 98.36 | 96.67 | 98.04 | 98.23 | 97.51 | |
Subjects with MCI | S16 | 99.66 | 87.14 | 99.53 | 99.76 | 99.64 |
S17 | 99.68 | 99.32 | 99.43 | 99.83 | 99.63 | |
S18 | 96.23 | 92.21 | 97.88 | 95.74 | 96.8 |
20 to 40 Years | 40 to 60 Years | Above 60 Years | Subjects with MCI | |
---|---|---|---|---|
100.00 | 100.00 | 99.81 | 93.61 | |
100.00 | 91.88 | 97.75 | 98.36 | |
98.39 | 99.00 | 98.03 | 99.66 | |
99.86 | 90.52 | 99.68 | ||
93.73 | 96.23 | |||
98.82 | ||||
Average | 98.47 | 95.35 | 98.53 | 97.51 |
Std. dev. | 2.42 | 4.84 | 1.12 | 2.59 |
Group Tested | p-Value | F-Critical Value | F-Value |
---|---|---|---|
20–40 years | 1.26 × 10−11 | 4.96 | 1134.56 |
40–60 years | 1.04 × 10−05 | 5.99 | 181.40 |
above 60 years | 0.01929 | 7.71 | 14.35 |
Subjects with MCI | 5.08 × 10−05 | 5.32 | 61.37 |
Year | Publication | Conference/Journal | Algorithm | Patient Specific Channels | Number of EEG Electrodes | Overall Accuracy |
---|---|---|---|---|---|---|
2012 | P. Zarjam, J. Epps, F. Chen, and N. H. Lovell [31] | 19th Intl. conf. neural information processing | Wavelet features + Artificial neural network | No | 17 | 83.94% |
2016 | A. Abrantes, E. Comitz, P. Mosaly, and L. Mazur [26] | Advances in intelligent systems and computing | Lasso regression and SVM | No | - | 69.7% |
2019 | Y. Kwak, W.J. Song, and S.E. Kim [32] | 7th Intl. conference on BCI | Power ratio feature + DNN | No | 30 | 61% |
2020 | Y. Wu, H. Qian et al. [33] | 13th Intl. congress image and signal processing, biomedical engineering | EMD features + SVM, kNN, RF classifiers | No | 128 | 73.6% |
2020 | Y. Zhang et al. [26] | Journal of neuroscience methods | Functional linear regression | No | 32 | 73% |
2022 | J. Zygierewicż et al. [34] | Journal of neural engineering | Convolutional neural network | No | 19 | 66.05% |
2020 | A. Puszta et al. [23] | Frontiers in Human neuroscience | Theta and alpha phase connectivity for WM load prediction | No | 64 | 75% |
2022 | V. Changoluisa et al. [34] | BioRxiv | Spatiotemporal features | yes | 128 | - |
2023 | G. Yoo et al. [35] | Bioengineering | Cognitive load prediction using LSTM | No | 2 to 10 | 87.1% |
AVG PSD of IMFs between Low WM and High WM Load | p-Value | F-Critical Value | F-Value |
---|---|---|---|
Normal subjects | 0.0469 | 4.03 | 4.14 |
Subjects with MCI | 0.0145 | 5.32 | 9.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sridhar, S.; Romney, A.; Manian, V. A Deep Neural Network for Working Memory Load Prediction from EEG Ensemble Empirical Mode Decomposition. Information 2023, 14, 473. https://doi.org/10.3390/info14090473
Sridhar S, Romney A, Manian V. A Deep Neural Network for Working Memory Load Prediction from EEG Ensemble Empirical Mode Decomposition. Information. 2023; 14(9):473. https://doi.org/10.3390/info14090473
Chicago/Turabian StyleSridhar, Sriniketan, Anibal Romney, and Vidya Manian. 2023. "A Deep Neural Network for Working Memory Load Prediction from EEG Ensemble Empirical Mode Decomposition" Information 14, no. 9: 473. https://doi.org/10.3390/info14090473
APA StyleSridhar, S., Romney, A., & Manian, V. (2023). A Deep Neural Network for Working Memory Load Prediction from EEG Ensemble Empirical Mode Decomposition. Information, 14(9), 473. https://doi.org/10.3390/info14090473