A Novel Method Based on the Fuzzy Entropy Measure to Optimize the Fuzziness in Trapezoidal Strong Fuzzy Partitions
Abstract
:1. Introduction
2. Basic Concepts
2.1. The Fuzzy Entropy Measure
- (1)
- Iff A is a crisp set then H(A) = 0;
- (2)
- Iff μi = 0.5 for each xi then H(A) is maximum;
- (3)
- H(C(A)) = H(A) where C(A) is the complement of the fuzzy set A;
- (4)
- H(A) ≥ H(A’) where A’ is a sharpened version of A, i.e., any fuzzy set such that A’(x) ≥ A(x) if A(x) ≥ 0.5 and A’(x) ≤ A(x) if A(x) ≤ 0.5.
2.2. Trapezoidal Strong Fuzzy Partitions
3. The Proposed Method
Algorithm 1: Optimize SFP via fuzziness |
Input: Dataset given by n measures |
Output: Optimized SFP |
1. Create the SFP given by N + 1 TFNs 2. Set the fuzziness threshold HTS 3. Repeat 4. HMAX:= HTS // initialize to HTS the maximum fuzziness 5. j:= 0 // initialize to 0 the index of the TFN with maximum fuzziness 6. For k = 1 to N+1 7. Calculate the fuzziness H(Ak) by (11) 8. If H(Ak) > HMAX Then 9. HMAX:= H(Ak) 10. j:= k 11. End if 12. Next k 13. If j > 0 Then 14. CL:= (cj − bj)/100 // (cj − bj) is the length of the core of the jth TFN 15. While H(Aj)> HTS 16. If j = 1 Then 17. cj:= cj + CL 18. aj+1:= cj 19. Else if j = N + 1 Then 20. bj:= bj - CL 21. dj-1:= bj 22. Else 23. bj:= bj − CL 24. cj:= cj + CL 25. aj+1:= cj 26. dj-1:= bj 27. End if 28. Calculate the fuzziness H(Aj) by (11) 29. End while 30. End if |
31. Until j > 0 32. Return the final SFP |
4. Experiment and Results
4.1. Case Study
4.2. Results
4.2.1. Test Results
4.2.2. Results of the Comparison Tests
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zadeh, L.A. Fuzzy Sets. Inf. Control. 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy logic and approximate reasoning. Synthese 1975, 30, 407–428. [Google Scholar] [CrossRef]
- Hagras, H. Toward human-understandable Explainable AI. Computer 2018, 51, 28–36. [Google Scholar] [CrossRef]
- Zadeh, L.A. Toward human level machine intelligence: Is it achievable? the need for a paradigm shift. IEEE Comput. Intell. Mag. 2008, 3, 11–22. [Google Scholar] [CrossRef]
- Loquin, K.; Strauss, O. Fuzzy histograms and density estimation. In Soft Methods for Integrated Uncertainty Modelling; Lawry, J., Miranda, E., Bugarin, A., Li, S., Gil, M.A., Grzegorzewski, P.A., Hyrniewicz, O., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 45–52. [Google Scholar] [CrossRef]
- Casalino, G.; Castellano, G.; Cadtiello, C.; Mencar, C. Effect of fuzziness in fuzzy rule-based classifiers defined by strong fuzzy partitions and winner-takes-all inference. Soft Comput. 2022, 26, 6519–6527. [Google Scholar] [CrossRef]
- Criado, F.; Gachechiladze, T. Entropy of fuzzy events. Fuzzy Sets Syst. 1997, 88, 99–106. [Google Scholar] [CrossRef]
- Shannon, S.C.E. A mathematical theory of communication. In ACM SIGMOBILE Mobile Computing and Communications Review; Association for Computing Machinery: New York, NY, USA, 2001; Volume 5, pp. 3–55. [Google Scholar] [CrossRef]
- Pandey, K.; Mishra, A.; Rani, P.; Ali, J.; Chakrabortty, R. Selecting features by utilizing intuitionistic fuzzy Entropy method. Decis. Mak. Appl. Manag. Eng. 2023, 6, 111–133. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, H.; Yuan, Z.; Wan, J.; Li, T. Multiscale Fuzzy Entropy-Based Feature Selection. IEEE Trans. Fuzzy Syst. 2023, 31, 3248–3262. [Google Scholar] [CrossRef]
- Yang, M.; Nataliani, Y. A feature-reduction fuzzy clustering algorithm based on feature-weighted entropy. IEEE Trans. Fuzzy Syst. 2018, 26, 817–835. [Google Scholar] [CrossRef]
- Gao, C.; Lai, Z.; Zhou, J.; Wen, J.; Wong, W.K. Granular maximum decision entropy-based monotonic uncertainty measure for attribute reduction. Int. J. Approx. Reason. 2019, 104, 9–24. [Google Scholar] [CrossRef]
- Aggarwal, M. Decision aiding model with entropy-based subjective utility. Inf. Sci. 2019, 501, 558–572. [Google Scholar] [CrossRef]
- Sait Gul, A.A. A novel entropy proposition for spherical fuzzy sets and its application in multiple attribute decision-making. Int. J. Intell. Syst. 2020, 35, 1354–1374. [Google Scholar] [CrossRef]
- Arya, V.; Kumar, S. Knowledge measure and entropy: A complementary concept in fuzzy theory. Granul. Comput. 2020, 6, 631–643. [Google Scholar] [CrossRef]
- Raghu, S.; Sriraam, N.; Kumar, G.P.; Hegde, A.S. A novel approach for real-time recognition of epileptic seizures using minimum variance modified fuzzy entropy. IEEE Trans. Biomed. Eng. 2018, 65, 2612–2621. [Google Scholar] [CrossRef]
- Cardone, B.; Di Martino, F. A Novel Fuzzy Entropy-Based Method to Improve the Performance of the Fuzzy C-Means Algorithm. Electronics 2020, 9, 554. [Google Scholar] [CrossRef]
- D’Urso, P.; De Giovanni, L.; Alaimo, L.S.; Mattera, R.; Vitale, V. Fuzzy clustering with entropy regularization for interval-valued data with an application to scientific journal citations. Ann. Oper. Res. 2023, 1–24. [Google Scholar] [CrossRef]
- Cardone, B.; Di Martino, F. A Fuzzy Entropy-Based Thematic Classification Method Aimed at Improving the Reliability of Thematic Maps in GIS Environments. Electronics 2022, 11, 3509. [Google Scholar] [CrossRef]
- Cardone, B.; Di Martino, F.; Senatore, S. Emotion-based classification through fuzzy entropy-enhanced FCM clustering. In Statistical Modeling in Machine Learning; Goswami, T., Sinha, G.R., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 205–225. [Google Scholar] [CrossRef]
- Al-Sharhan, S.; Karray, F.; Gueaieb, W.; Basir, O. Fuzzy entropy: A brief survey. In Proceedings of the 10th IEEE International Conference on Fuzzy Systems. (Cat. No.01CH37297), Melbourne, VIC, Australia, 2–5 December 2001; Volume 2, pp. 1135–1139. [Google Scholar] [CrossRef]
- Aggarwal, M. Bridging the Gap Between Probabilistic and Fuzzy Entropy. IEEE Trans. Fuzzy Syst. 2020, 28, 2175–2184. [Google Scholar] [CrossRef]
- Sahmi, P.; Kumar, R. A survey on fuzzy entropy measures and their applications. Int. J. Adv. Sci. Res. 2022, 7, 32–36. [Google Scholar]
- De Luca, A.; Termini, S. A definition of a non-probabilistic entropy in the setting of fuzzy sets theory. Inf. Control. 1972, 20, 301–312. [Google Scholar] [CrossRef]
- Alonso, J.M.; Castiello, C.; Mencar, C. Interpretability of Fuzzy Systems: Current Research Trends and Prospects. In Springer Handbook of Computational Intelligence; Kacprzyk, J., Pedrycz, W., Eds.; Springer Handbooks; Springer: Berlin/Heidelberg, Germany, 2015; pp. 219–238. [Google Scholar] [CrossRef]
- Ruspini, E.H. A new approach to clustering. Inf. Control. 1969, 15, 22–32. [Google Scholar] [CrossRef]
TFN | a | b | c | d |
---|---|---|---|---|
A1 | 0% | 0% | 25% | 50% |
A2 | 25% | 50% | 60% | 85% |
A3 | 60% | 85% | 100% | 100% |
x | µ1 | µ2 | µ3 | h(µ1) | h(µ2) | h(µ3) |
---|---|---|---|---|---|---|
34.00% | 0.64 | 0.36 | 0.00 | 0.94 | 0.94 | 0.00 |
35.00% | 0.60 | 0.40 | 0.00 | 0.97 | 0.97 | 0.00 |
37.00% | 0.52 | 0.48 | 0.00 | 1.00 | 1.00 | 0.00 |
37.50% | 0.50 | 0.50 | 0.00 | 1.00 | 1.00 | 0.00 |
38.00% | 0.48 | 0.52 | 0.00 | 1.00 | 1.00 | 0.00 |
38.50% | 0.46 | 0.54 | 0.00 | 1.00 | 1.00 | 0.00 |
39.00% | 0.44 | 0.56 | 0.00 | 0.99 | 0.99 | 0.00 |
69.00% | 0.00 | 0.64 | 0.36 | 0.00 | 0.94 | 0.94 |
70.00% | 0.00 | 0.60 | 0.40 | 0.00 | 0.97 | 0.97 |
70.50% | 0.00 | 0.58 | 0.42 | 0.00 | 0.98 | 0.98 |
71.00% | 0.00 | 0.56 | 0.44 | 0.00 | 0.99 | 0.99 |
72.00% | 0.00 | 0.52 | 0.48 | 0.00 | 1.00 | 1.00 |
72.50% | 0.00 | 0.50 | 0.50 | 0.00 | 1.00 | 1.00 |
73.50% | 0.00 | 0.46 | 0.54 | 0.00 | 1.00 | 1.00 |
74.50% | 0.00 | 0.42 | 0.58 | 0.00 | 0.98 | 0.98 |
TFN | a | b | c | d |
---|---|---|---|---|
A1 | 0% | 0% | 25% | 40% |
A2 | 25% | 40% | 70% | 85% |
A3 | 70% | 85% | 100% | 100% |
TFN | a | b | c | d |
---|---|---|---|---|
Very cold | −30 | −30 | −10 | 0 |
Cold | −10 | 0 | 5 | 10 |
Medium low | 5 | 10 | 12 | 15 |
Medium | 12 | 15 | 20 | 25 |
Medium high | 20 | 25 | 28 | 30 |
High | 28 | 30 | 35 | 40 |
Very high | 35 | 40 | 45 | 45 |
TFN | Fuzziness |
---|---|
Very cold | 0.0063 |
Cold | 0.0947 |
Medium low | 0.1400 |
Medium | 0.0898 |
Medium high | 0.0340 |
High | 0.0006 |
Very high | 0.0000 |
TFN | a | b | c | d |
---|---|---|---|---|
Very cold | −30 | −30 | −10 | 0 |
Cold | −10 | 0 | 5 | 8.9 |
Medium low | 5 | 8.9 | 13.1 | 15 |
Medium | 13.1 | 15 | 20 | 25 |
Medium high | 20 | 25 | 28 | 30 |
High | 28 | 30 | 35 | 40 |
Very high | 35 | 40 | 45 | 45 |
TFN | Fuzziness |
---|---|
Very cold | 0.0063 |
Cold | 0.0728 |
Medium low | 0.0984 |
Medium | 0.0722 |
Medium high | 0.0340 |
High | 0.0006 |
Very high | 0.0000 |
TFN | Fuzziness |
---|---|
Very cold | 0.0002 |
Cold | 0.0610 |
Medium low | 0.1250 |
Medium | 0.1353 |
Medium high | 0.0841 |
High | 0.0006 |
Very high | 0.0000 |
TFN | a | b | c | d |
---|---|---|---|---|
Very cold | −30 | −30 | −10 | 0 |
Cold | −10 | 0 | 5 | 9.9 |
Medium low | 5 | 9.9 | 12.1 | 13.7 |
Medium | 12.1 | 13.7 | 21.3 | 25 |
Medium high | 21.3 | 25 | 28 | 30 |
High | 28 | 30 | 35 | 40 |
Very high | 35 | 40 | 45 | 45 |
TFN | Fuzziness |
---|---|
Very cold | 0.0063 |
Cold | 0.0589 |
Medium low | 0.0981 |
Medium | 0.0955 |
Medium high | 0.0655 |
High | 0.0006 |
Very high | 0.0000 |
TFN | Fuzziness |
---|---|
Very cold | 0.0501 |
Cold | 0.1351 |
Medium low | 0.1066 |
Medium | 0.0587 |
Medium high | 0.0145 |
High | 0.0000 |
Very high | 0.0000 |
TFN | a | b | c | d |
---|---|---|---|---|
Very cold | −30 | −0 | −10 | −1.2 |
Cold | −10 | −1.2 | 6.2 | 10 |
Medium low | 6.2 | 10 | 12 | 15 |
Medium | 12 | 15 | 20 | 25 |
Medium high | 20 | 25 | 28 | 30 |
High | 28 | 30 | 35 | 40 |
Very high | 35 | 40 | 45 | 45 |
TFN | Fuzziness |
---|---|
Very cold | 0.0501 |
Cold | 0.0981 |
Medium low | 0.0883 |
Medium | 0.0587 |
Medium high | 0.0145 |
High | 0.0000 |
Very high | 0.0000 |
Country | City | RMSE (°C) Method [19] | RMSE (°C) Proposed Method |
---|---|---|---|
Austria | Vienna | 1.12 | 0.44 |
Belgium | Brussels | 2.89 | 0.42 |
Croatia | Zagreb | 0.98 | 0.41 |
Cyprus | Nicosia | 1.05 | 0.40 |
Czech Republic | Prague | 1.56 | 0.39 |
Denmark | Copenhagen | 3.18 | 0.43 |
Finland | Helsinki | 0.97 | 0.45 |
France | Paris | 1.06 | 0.42 |
France | Bordeaux | 0.94 | 0.41 |
Germany | Frankfurt | 1.02 | 0.40 |
Germany | Hamburg | 1.21 | 0.45 |
Greece | Athens | 0.98 | 0.38 |
Hungary | Budapest | 1.03 | 0.44 |
Iceland | Reykjavik | 1.11 | 0.45 |
Ireland | Dublin | 0.92 | 0.43 |
Italy | Milan | 0.97 | 0.42 |
Italy | Rome | 1.34 | 0.43 |
The Netherlands | Amsterdam | 2.29 | 0.46 |
Norway | Oslo | 2.15 | 0.43 |
Portugal | Lisbon | 1.02 | 0.40 |
Russia | Moscow | 2.67 | 0.45 |
Spain | Barcelona | 1.19 | 0.41 |
Spain | Madrid | 1.98 | 0.42 |
Sweden | Stockholm | 2.11 | 0.45 |
Switzerland | Geneva | 1.34 | 0.43 |
United Kingdom | London | 1.85 | 0.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cardone, B.; Di Martino, F. A Novel Method Based on the Fuzzy Entropy Measure to Optimize the Fuzziness in Trapezoidal Strong Fuzzy Partitions. Information 2024, 15, 615. https://doi.org/10.3390/info15100615
Cardone B, Di Martino F. A Novel Method Based on the Fuzzy Entropy Measure to Optimize the Fuzziness in Trapezoidal Strong Fuzzy Partitions. Information. 2024; 15(10):615. https://doi.org/10.3390/info15100615
Chicago/Turabian StyleCardone, Barbara, and Ferdinando Di Martino. 2024. "A Novel Method Based on the Fuzzy Entropy Measure to Optimize the Fuzziness in Trapezoidal Strong Fuzzy Partitions" Information 15, no. 10: 615. https://doi.org/10.3390/info15100615
APA StyleCardone, B., & Di Martino, F. (2024). A Novel Method Based on the Fuzzy Entropy Measure to Optimize the Fuzziness in Trapezoidal Strong Fuzzy Partitions. Information, 15(10), 615. https://doi.org/10.3390/info15100615