A Study of Exergame System Using Hand Gestures for Wrist Flexibility Improvement for Tenosynovitis Prevention †
Abstract
:1. Introduction
2. Related Works
2.1. Tenosynovitis
2.2. Exergame
2.3. Hand Gesture Recognition
2.4. Wrist Rehabilitation
3. Design of Hand Gestures for Game Control
3.1. Hand Exercise for Tenosynovitis Prevention
3.2. Three Hand Gesture Sets
3.2.1. Wrist Exercise Set
3.2.2. Thumb Exercise Set
3.2.3. Finger Exercise Set
4. Hand Gesture Recognition Program
4.1. Overview of Hand Gesture Recognition Program
4.2. Mediapipe Architecture
4.3. Key-Point Recognition by Mediapipe
4.4. Hand Gesture Recognition Algorithm
4.4.1. Recognition of Wrist Exercise Set
4.4.2. Recognition of Thumb Exercise Set
4.4.3. Recognition of Finger Exercise Set
4.5. Hand Gesture Recognition for Additional Keys
4.5.1. Recognition of Key Release
4.5.2. Recognition of Space Key
4.6. Image Acquisition Step
5. Five Video Games and System Operation
5.1. Overview of Video Games
5.1.1. Cave
5.1.2. Pickup Fruits
5.1.3. Blocks Game
5.1.4. SnakeBite
5.1.5. 3DTank
5.2. System Operation Procedure
- 1.
- Set up the PC at a suitable distance from the player so that the whole hand of the player can be included in the camera image.
- 2.
- Read the instruction manual to know about the installed video games, the hand gestures, and the programs to run on the system.
- 3.
- Open the HTML file of the selected video game on a browser.
- 4.
- Select one set of hand gestures to control the game.
- 5.
- Run the Python hand gesture recognition program for the selected set.
- 6.
- Play the video game using hand gestures.
- 7.
- Copy the game scores and other data from the top of the page into a text file for later collation.
- 1.
- Capture video frames from a PC camera.
- 2.
- Preprocess the captured image to adjust for input requirements.
- 3.
- Use the hand detection model of Mediapipe to recognize the hand region and detect the key points.
- 4.
- Extract the key-point coordinates from the hand detection results.
- 5.
- Recognize the gesture from the key-point coordinates.
- 6.
- Issue the key input corresponding to the detected gesture.
- 7.
- Press the “ESC” key to exit the program.
5.3. Hardware Platform
6. Evaluation
6.1. Comparison of Three Hand Gesture Sets
6.1.1. Game Score Results
6.1.2. Space Key Problem in 3DTank
6.1.3. Improved Hand Gesture for Space Key
6.2. Questionnaire Results
6.2.1. Questions in the Questionnaire
6.2.2. System Usability Scale
6.2.3. SUS Score Results
6.3. Wrist Flexibility Results
6.3.1. Measurement Setup
6.3.2. Results
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tenosynovitis: Practice Essentials, Pathophysiology, Eiology. Available online: https://emedicine.medscape.com/article/2189339-overview?form=fpf (accessed on 8 July 2024).
- Tenosynoviti. Available online: https://my.clevelandclinic.org/health/diseases/23448-tenosynovitis (accessed on 3 October 2024).
- Interactive Fitness & Gaming Products for Organizations & Health Centers. Available online: https://exergame.com/ (accessed on 2 October 2024).
- MediaPipe Framework in Python. Available online: https://ai.google.dev/edge/mediapipe/framework/getting_started/python_framework (accessed on 4 October 2024).
- Anggraini, I.T.; Xiao, Y.; Funabiki, N.; Huang, W.; Shih, C.; Fan, C.P. An implementation of hand gesture exergames for dementia development suppression. In Proceedings of the 2023 Sixth International Conference on Vocational Education and Electrical Engineering (ICVEE), Surabaya, Indonesia, 14–15 October 2023; pp. 280–285. [Google Scholar]
- Grier, R.A.; Bangor, A.; Kortum, P.; Peres, S.C. The system usability scale beyond standard usability testing. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting, Perth, Australia, 2–4 December 2013; Volume 57, pp. 187–191. [Google Scholar]
- Smith, J.A.; Robert, B.J. The effect of supination and pronation on wrist range of motion. J. Biomech. 2023, 55, 123–130. [Google Scholar]
- Benites-Zapata, K.A.; Jiménez-Torres, V.E.; Ayala-Roldán, M.P. Problematic smartphone use is associated with de Quervain’s tenosynovitis symptomatology among young adults. Musculoskelet. Sci. Pract. 2021, 53, 102356. [Google Scholar] [CrossRef] [PubMed]
- Ahari, K.; Vaiyapuri, A.; Ramachandran, A.; Jain, K.; Das, R. Smartphone induced -texting tenosynovitis: A case study. J. Coast. Life Med. 2023, 11, 236–238. [Google Scholar]
- Ferrara, P.E.; Codazza, S.; Cerulli, S.; Maccauro, G.; Ferriero, G.; Ronconi, G. Physical modalities for the conservative treatment of wrist and hand’s tenosynovitis a systematic review. Semin. Arthritis Rheum. 2020, 50, 1280–1290. [Google Scholar] [CrossRef]
- Palmer, K.T.; Harris, E.C.; Coggon, D. Compensating occupationally related tenosynovitis and epicondylitis a literature review. Occupat. Med. 2007, 57, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Liu, Q.; Guo, H.; Wang, M.; Liang, J.; Zhang, Y. Bibliometric and visual analysis of trends in tenosynovitis research from 1999 to 2021. Am. J. Trans. Res. 2023, 15, 2329–2344. [Google Scholar]
- Rutkowski, M.; Rutkowski, K. Potential effects, diagnosis, and management of De Quervain Tenosynovitis in the aesthetics community: A brief review, case example, and illustrative exercises. J. Clin. Aesthetic Dermatol. 2023, 16, 28–31. [Google Scholar]
- Sinclair, J.; Hingston, P.; Masek, M. Considerations for the design of exergames. In Proceedings of the GRAPHITE ’07: Proceedings of the 5th International Conference on Computer Graphics and Interactive Techniques in Australia and Southeast Asia, Perth, Australia, 1–4 December 2007; pp. 289–295. [Google Scholar]
- Brox, E.; Luque, L.F.; Evertsen, G.J.; Hernandez, J.E.G. Exergames for elderly social exergames to persuade seniors to increase physical activity. In Proceedings of the 2011 5th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) and Workshops, Dublin, Ireland, 23–26 May 2011; pp. 546–549. [Google Scholar]
- de Matos Jorge Ferreira, D.R.; de Lima, T.F.M.; de Assis, G.A.; Ruivo, E.L.P.; da Silva Rodrigues, B.; Correa, A.G.D. Design of exergames controlled by wearable devices for sensorimotor skills a framework proposal. In Proceedings of the 2022 IEEE 10th International Conference on Serious Games and Applications for Health(SeGAH), Sydney, Australia, 10–12 August 2022; pp. 1–8. [Google Scholar]
- Zheng, Y.; You, Y.; Du, R.; Zhang, J.; Peng, T.; Liang, J.; Zhao, B.; Ou, H.; Jiang, Y.; Feng, H.; et al. The effect of non-immersive virtual reality exergames versus band stretching on cardiovascular and cerebral hemodynamic response a functional near-infrared spectroscopy study. Front. Hum. Neurosci. 2022, 16, 902757. [Google Scholar] [CrossRef]
- Pereira, R.A.; Luz, V.S.G.; Riemer, Y.; Matos, S.N.; Lopes, R.P. The systematic mapping of serious games for the rehabilitation of fine motor coordination. In Anais Estendidos do XXI Simpósio Brasileiro de Jogos e Entretenimento Digital; SBC: Rio Grande do Norte, Brizal, 2022; pp. 552–561. [Google Scholar]
- Yu, T.C.; Chiang, C.H.; Wu, P.T.; Wu, W.L.; Chu, I.H. Effects of exergames on physical fitness in middle-aged and older adults in Taiwan. Int. J. Environ. Res. Public Health 2020, 17, 2565. [Google Scholar] [CrossRef]
- Kim, D.; Kim, W.; Park, S.P. Effects of exercise type and gameplay mode on physical activity in exergame. Electronics 2022, 11, 3086. [Google Scholar] [CrossRef]
- Wang, W.; Huang, Y.; Xu, J.; Bao, D. Interaction preference differences between elderly and younger exergame users. Int. J. Environ. Res. Public Health 2021, 18, 12583. [Google Scholar] [CrossRef]
- Drummond, D.; Hadchouel, A.; Tesnière, A. Serious games for health: Three steps forwards. Adv. Simul. 2017, 2, 3. [Google Scholar] [CrossRef]
- Finkelstein, S.; Nickel, A.; Lipps, Z.; Barnes, T.; Wartell, Z.; Suma, S.A. Astrojumper: Motivating exercise with an Immersive virtual reality exergame. Presence Teleoperators Virtual Environ. 2011, 20, 78–92. [Google Scholar] [CrossRef]
- Reis, E.; Postolache, G.; Teixeira, L.; Arriaga, P.; Lima, M.L.; Postolache, O. Exergames for motor rehabilitation in older adults: An umbrella review. Phys. Ther. Rev. 2019, 24, 84–99. [Google Scholar] [CrossRef]
- Desai, K.; Bahirat, K.; Ramalingam, S.; Prabhakaran, B.; Annaswamy, T.; Makris, U.E. Augmented reality-based exergames for rehabilitation. In Proceedings of the MMSys ’16: Proceedings of the 7th International Conference on Multimedia System, Klagenfurt, Austria, 10–13 May 2016; Volume 22, pp. 1–10.
- Sung, G.; Sokal, K.; Uboweja, E.; Bazarevsky, V.; Baccash, J.; Bazavan, E.G.; Chang, C.; Grundmann, M. On-device real-time hand gesture recognition. arXiv 2021, arXiv:2111.00038. [Google Scholar]
- Padhi, P.; Das, M. Hand gesture recognition using DenseNet201-Mediapipe hybrid modelling. In Proceedings of the 2022 International Conference on Automation, Computing and Renewable Systems (ICACRS), Pudukkottai, India, 13–15 December 2022; pp. 995–999. [Google Scholar]
- Chen, F.; Fu, C.; Huang, C. Hand gesture recognition using a real-time tracking method and hidden Markov models. Image Vision Comput. 2023, 21, 745–758. [Google Scholar] [CrossRef]
- Chandwani, L.; Khilari, J.; Gurjar, K.; Maragale, P.; Sonare, A.; Kakade, S.; Bhatt, A.; Kulkarni, R. Gesture based sign language recognition system using Mediapipe. Res. Sq. 2023, 1. [Google Scholar]
- Vicente, D.; Schwarz, M.; Meixner, G. Improving ergonomic training using augmented reality feedback. In Proceedings of the Digital Human Modeling and Applications in Health, Safety, Ergonomics and Risk Management, Copenhagen, Denmark, 23–28 July 2023; pp. 256–275. [Google Scholar]
- Sundar, B.; Bagyammal, T. American sign language recognition for alphabets using MediaPipe and LSTM. Procedia Comput. Sci. 2022, 215, 642–651. [Google Scholar] [CrossRef]
- Hsieh, W.; Hwang, Y.; Chen, S.; Tan, S.; Chen, C.; Chen, Y. Application of the Blobo bluetooth ball in wrist rehabilitation training. J. Phys. Ther. Sci. 2016, 28, 27–32. [Google Scholar] [CrossRef]
- Li, Z.M.; Kuxhaus, L.; Fisk, J.A. Coupling between wrist flexion–extension and radial–ulnar deviation. Clin. Biomech. 2005, 20, 177–183. [Google Scholar] [CrossRef]
- Hagert, E. Proprioception of the wrist joint: A review of current concepts and possible implications on the rehabilitation of the wrist. J. Hand Therapy 2010, 23, 2–17. [Google Scholar] [CrossRef]
- Ferreira, J.D. Serious Games for Hand and Wrist Rehabilitation. Master’s Thesis, University of Porto, Porto, Portugal, 2022. [Google Scholar]
- Bouteraa, Y.; Ben Abdallah, I.; Alnowaiser, K.; Islam, M.R.; Ibrahim, A.; Gebali, F. Design and development of a smart IoT-based robotic solution for wrist rehabilitation. Micromachines 2022, 13, 973. [Google Scholar] [CrossRef] [PubMed]
- Farahanipad, F.; Nambiappan, H.R.; Jaiswal, A.; Kyrarini, M.; Makedon, F. HAND-REHA: Dynamic hand gesture recognition for game-based wrist rehabilitation. In PETRA ’20, Proceedings of the 13th ACM International Conference on PErvasive Technologies Related to Assistive Environments, Corfu, Greece, 30 June–3 July 2020; Volume 17, pp. 1–9.
- 6 Moves to Bookmark on How to Effectively Prevent Tenosinovitis. Available online: https://zhuanlan.zhihu.com/p/85716187 (accessed on 23 December 2023).
- Beware of Tenosynovitis When You Play with Your Cell Phone All the Time. Available online: https://www.sohu.com/a/600182442_121118852 (accessed on 6 July 2024).
- Controlling R/C Cars with MediaPipe. Available online: https://qiita.com/sthasmn/items/d430880f5c0fe19f83c7 (accessed on 30 December 2023).
- GitHub—erichare/Hand-Tracking: An OpenCV Module. Available online: https://github.com/erichare/Hand-Tracking (accessed on 3 October 2024).
- Tanaka, K. HTML5+CSS+JavaScript Programming That Is Fun to Learn While Making Games; Impress R&D: Tokyo, Japan, 2017. [Google Scholar]
- Pick Up Fruits. Available online: https://github.com/MrCo/Fruits-Game?tab=readme-ovf0 (accessed on 7 October 2024).
- Brooke, J. SUS: A quick and dirty usability scale. Usability Eval. Ind. 1996, 189, 4–7. [Google Scholar]
Item | Specification | |
---|---|---|
PC | OS; Windows 10 Home 64 bit | |
Memory: 16 GB | ||
Processor: Intel(R) Core(TM) i7-10750H CPU | ||
Camera | Integrated | Webcam |
Wireless mouse | Legion | R9000P |
Game | Wrist Exercise | Thumb Exercise | Finger Exercise |
---|---|---|---|
Cave | 0.449 | 0.343 | 0.192 |
Pick up fruits | 0.267 | 0.226 | 0.152 |
Blocks | 0.664 | 0.447 | 0.410 |
Snakebite | 0.730 | 0.408 | 0.327 |
3DTank | 0.253 | 0.271 | 0.085 |
Total | 2.363 | 1.695 | 1.166 |
ID | Question |
---|---|
1 | I think that patients with tenosynovitis can receive benefits from hand exercises. |
2 | It is difficult to play the game with hand gestures. |
3 | The exercise game is enjoyable to play. |
4 | The system is not capable of accurately recognizing hand gestures. |
5 | I think the wrist exercise set in the hand gesture set is good for relieving wrist. |
6 | The gestures are difficult to remember. |
7 | I think the thumb exercise set in the hand gesture set is good for relieving the muscles of thumb. |
8 | The finger exercise set in the hand gesture set is difficult to play. |
9 | I want to continue the exercise game using hand gestures. |
10 | I did not feel comfortable using the exercise game. |
User | Answer the Questions | SUS Raw Score | SUS Final Score | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |||
1 | 4 | 2 | 4 | 2 | 4 | 4 | 5 | 2 | 4 | 1 | 30 | 75 |
2 | 5 | 2 | 4 | 2 | 4 | 3 | 4 | 2 | 4 | 2 | 30 | 75 |
3 | 5 | 2 | 4 | 2 | 4 | 2 | 5 | 2 | 4 | 2 | 32 | 80 |
4 | 4 | 2 | 4 | 2 | 4 | 2 | 4 | 1 | 4 | 2 | 31 | 77.5 |
5 | 4 | 4 | 4 | 2 | 4 | 2 | 4 | 2 | 4 | 2 | 28 | 70 |
6 | 4 | 2 | 4 | 2 | 5 | 3 | 5 | 2 | 5 | 1 | 33 | 82.5 |
7 | 4 | 2 | 4 | 3 | 5 | 2 | 4 | 3 | 3 | 2 | 29 | 72.5 |
8 | 5 | 2 | 5 | 4 | 4 | 2 | 4 | 2 | 4 | 1 | 33 | 82.5 |
9 | 5 | 2 | 5 | 2 | 5 | 1 | 5 | 1 | 5 | 1 | 38 | 95 |
10 | 5 | 4 | 5 | 1 | 4 | 1 | 5 | 1 | 5 | 1 | 36 | 90 |
Average | 32.2 | 80.5 |
Student ID | Times | Gesture 1 | Gesture 2 | Gesture 3 | Gesture 4 | Average |
---|---|---|---|---|---|---|
1 | 1 | 120 | 126 | 145 | 140 | 132.75 |
2 | 120 | 115 | 150 | 135 | 130 | |
3 | 105 | 110 | 145 | 135 | 127.5 | |
4 | 115 | 115 | 155 | 125 | 127.5 | |
5 | 105 | 108 | 155 | 125 | 123.25 | |
2 | 1 | 135 | 105 | 135 | 140 | 128.75 |
2 | 108 | 106 | 138 | 118 | 117.5 | |
3 | 105 | 102 | 128 | 127 | 115.5 | |
4 | 108 | 105 | 139 | 128 | 120 | |
5 | 110 | 105 | 135 | 120 | 117.5 | |
3 | 1 | 125 | 100 | 150 | 112 | 121.75 |
2 | 118 | 105 | 150 | 105 | 119.5 | |
3 | 118 | 110 | 149 | 110 | 121.75 | |
4 | 117 | 98 | 150 | 115 | 120 | |
5 | 110 | 110 | 140 | 109 | 117.25 | |
4 | 1 | 130 | 108 | 165 | 120 | 130.75 |
2 | 120 | 103 | 155 | 120 | 124.5 | |
3 | 118 | 110 | 149 | 120 | 124.25 | |
4 | 117 | 110 | 150 | 115 | 123 | |
5 | 118 | 105 | 150 | 115 | 122 | |
5 | 1 | 135 | 110 | 160 | 135 | 135 |
2 | 135 | 108 | 155 | 135 | 133.25 | |
3 | 138 | 110 | 152 | 130 | 132.5 | |
4 | 135 | 105 | 155 | 130 | 131.25 | |
5 | 132 | 105 | 153 | 128 | 129.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, Y.; Funabiki, N.; Anggraini, I.T.; Shih, C.-L.; Fan, C.-P. A Study of Exergame System Using Hand Gestures for Wrist Flexibility Improvement for Tenosynovitis Prevention. Information 2024, 15, 622. https://doi.org/10.3390/info15100622
Xiao Y, Funabiki N, Anggraini IT, Shih C-L, Fan C-P. A Study of Exergame System Using Hand Gestures for Wrist Flexibility Improvement for Tenosynovitis Prevention. Information. 2024; 15(10):622. https://doi.org/10.3390/info15100622
Chicago/Turabian StyleXiao, Yanqi, Nobuo Funabiki, Irin Tri Anggraini, Cheng-Liang Shih, and Chih-Peng Fan. 2024. "A Study of Exergame System Using Hand Gestures for Wrist Flexibility Improvement for Tenosynovitis Prevention" Information 15, no. 10: 622. https://doi.org/10.3390/info15100622
APA StyleXiao, Y., Funabiki, N., Anggraini, I. T., Shih, C. -L., & Fan, C. -P. (2024). A Study of Exergame System Using Hand Gestures for Wrist Flexibility Improvement for Tenosynovitis Prevention. Information, 15(10), 622. https://doi.org/10.3390/info15100622