Implementation of a Reduced Decoding Algorithm Complexity for Quasi-Cyclic Split-Row Threshold Low-Density Parity-Check Decoders
Abstract
:1. Introduction
2. Decoding Algorithms for LDPC Codes
2.1. LDPC Quasi-Cyclic Codes
2.2. Min-Sum Decoding
- Initialization: is the initialization of to the received symbol’s () log-likelihood ratio for each and . The computed messages α and β are exchanged between VNs and CNs through the graph’s edges by the following steps (2–4) during each iteration.
- The check node update or row processing: Compute the messages based on β received messages from all other VNs that are connected to CN , excluding the β information coming from :
- The early product in Equation (2) is the update of the parity (sign), and the reliability (magnitude) update is the second product term. The S parameter denotes a binary bit representing the sign product of all β messages received from the corresponding VNs.
- Column processing/VN update: The incoming α messages from all other check nodes besides are used to compute the messages.
- Inspect for syndromes and terminate early: Following the completion of column processing, each bit in column is updated based on the addition of channel information () alpha messages from nearby check nodes.
2.3. Split-Row Threshold and Split-Row Decoding Algorithms
2.4. Layered Decoding Algorithm
Algorithm 1: Layered Min-sum decoding algorithm |
Received word is the channel output alphabet Estimated codeword Initialization ; The iteration loop includes the following steps in each decoding iteration. do Variable node processing do Check-node processing do A posteriori information update do End (looping horizontal layers) Hard decision Syndrome check then exit the iteration loop End iteration loop |
3. Split-Row Threshold Algorithm for a Layered Decoder
Algorithm 2: Split-row threshold layered min-sum decoding algorithm |
For each layer L: Initialization For each partition, finding the first and second minimums is based on the following relationships: Where ) 1- 1 2- 1 1 Then else end if 3- Then 0 4-else 0 End if |
4. Co-Design and Implementation of the Split-Row Threshold Layered Min-Sum (SRTLMS) Algorithm
4.1. Co-Design of the SRTLMS Algorithm
4.2. Implementation of the SRT Design
5. Results
5.1. BER Simulation Results
5.2. Implementation Results
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gallager, R. Low-density parity-check codes. IRE Trans. Inf. Theory 1962, 8, 1962. [Google Scholar] [CrossRef]
- MacKay, D.; Neal, R.M. Near Shano Limit Performance of Low-Density-Parity-Check Codes. Electron. Lett. 1996, 32, 1645–1946. [Google Scholar] [CrossRef]
- Chung, S.Y.; Forney, G.D.; Richardson, T.J.; Urbanke, R. On the Design of Low-Density Parity-Check Codes within 0.0045 dB of the Shannon Limit. IEEE Commun. Lett. 2001, 5, 58–60. [Google Scholar] [CrossRef]
- European Telecommunications Standards Institute (ETSI). Digital Video Broadcasting (DVB); EN 302 307-1, 2014, V1.4.1; European Telecommunications Standards Institute (ETSI): Sophia Antipolis, France, 2014. [Google Scholar]
- Landolsi, M. Semi-random LDPC codes for CDMA communication over non-linear band-limited satellite channels. Int. J. Satell. Commun. Netw. 2006, 24, 303–317. [Google Scholar] [CrossRef]
- Mejmaa, B.; Marktani, M.A.; Akharraz, I.; Ahaitouf, A. An Efficient QC-LDPC Decoder Architecture for 5G-NR Wireless Communication Standards Targeting FPGA. Computers 2024, 13, 195. [Google Scholar] [CrossRef]
- Li, H.; Guo, J.; Guo, C.; Wang, D. A low-complexity min-sum decoding algorithm for LDPC codes. In Proceedings of the 17th International Conference on Communication Technology (ICCT), Chengdu, China, 27–30 October 2017; IEEE: Piscataway, NJ, USA. [Google Scholar]
- Vermaand, A.; Shrestha, R. A New Partially-Parallel VLSI-Architecture of Quasi-Cyclic LDPC Decoder for 5G New-Radio. In Proceedings of the 33rd International Conference on VLSI Design and 19th International Conference on Embedded Systems, Bangalore, India, 4–8 January 2020; IEEE: New York, NY, USA, 2020. [Google Scholar]
- Kou, Y.; Lin, S.; Fossorier, M. Low-density parity check codes based on finite geometries: A rediscovery and more. IEEE Trans. Inform. Theory 2001, 47, 2711–2736. [Google Scholar] [CrossRef]
- Zhang, J.; Fossorier, M.P.C. A modified weighted bit flipping decoding of low-density parity-check codes. Commun. Lett. IEEE 2004, 8, 165–167. [Google Scholar] [CrossRef]
- Jiang, M.; Zhao, C.; Shi, Z.; Chen, Y. An improvement on the modified weighted bit flipping decoding algorithm for LDPC codes. Commun. Lett. IEEE 2005, 9, 814–816. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, G. Cyclic Switching Weighted Bit-Flipping Decoding for Low-Density Parity-Check Codes. IET Commun. 2018, 12, 271–275. [Google Scholar] [CrossRef]
- Chang, T.C.Y.; Wang, P.H.; Su, Y.T. Multi-Stage Bit-Flipping Decoding Algorithms for LDPC Codes. IEEE Commun. Lett. 2019, 23, 1524–1528. [Google Scholar] [CrossRef]
- Aqil, C.; Akharraz, I.; Ahaitouf, A. A New Reliability Ratio Weighted Bit Flipping Algorithm for Decoding LDPC Codes. Wirel. Commun. Mob. Comput. 2021, 2021, 6698602. [Google Scholar] [CrossRef]
- Chen, J.; Dholakia, A.; Eleftheriou, E.; Fossorier, M.; Hu, X.Y. Reduced-complexity decoding of LDPC codes. IEEE Trans. Commun. 2005, 53, 1288–1299. [Google Scholar] [CrossRef]
- Zhao, J.; Zarkeshvari, F.; Banihashemi, A.H. On implementation of min-sum algorithm and its modifications for decoding low-density Paritycheck (LDPC) codes. IEEE Trans. Commun. 2005, 53, 549–554. [Google Scholar] [CrossRef]
- Hajiyat, Z.R.M.; Sali, A.; Mokhtar, M.; Hashim, F. Channel Coding Scheme for 5G Mobile Communication System for Short Length Message Transmission. Wirel. Pers. Commun. 2019, 106, 377–400. [Google Scholar] [CrossRef]
- Hemati, S.; Leduc-Primeau, F.; Gross, W.J. A Relaxed Min-Sum LDPC Decoder with Simplified Check Nodes. IEEE Commun. Lett. 2016, 20, 422–425. [Google Scholar] [CrossRef]
- Mohsenin, T.; Baas, B. Split-row: A reduced complexity, high throughput LDPC decode architecture. In Proceedings of the 2006 International Conference on Computer Design, San Jose, CA, USA, 1–4 October 2006; IEEE: New York, NY, USA, 2006. [Google Scholar]
- Mohsenin, T.; Truong, D.; Baas, B. Multi-split row threshold decoding implementations for LDPC codes. In Proceedings of the 2009 IEEE International Symposium on Circuits and Systems, Taipei, Taiwan, 24–27 May 2009; IEEE: New York, NY, USA, 2009; pp. 2449–2452. [Google Scholar]
- El Alami, R.; Mrabti, M.; Gueye, C.B. Reduced Complexity of Decoding Algorithm for Irregular LDPC Codes Using a Split Row Method. J. Wirel. Netw. Commun. 2012, 4, 29–34. [Google Scholar] [CrossRef]
- Aqil, C.; El Alami, R.; Akharraz, I.; Ahaitouf, A. Threshold Multi Split-Row algorithm for decoding irregular LDPC codes. In Proceedings of the International Conference on Applied Mathematics, Taza, Morocco, 19–20 October 2017; pp. 88–93. [Google Scholar]
- Gunnam, K.K.; Choi, G.S.; Yeary, M.B. A Parallel VLSI Architecture for Layered Decoding for Array LDPC Codes. In Proceedings of the 20th International Conference on VLSI Design held jointly with 6th International Conference on Embedded Systems (VLSID’07), Bangalore, India, 6–10 January 2007; IEEE: New York, NY, USA, 2007; pp. 738–743. [Google Scholar]
- Zhang, K.; Huang, X. High-Throughput Layered Decoder Implementation for Quasi-Cyclic LDPC Codes. IEEE J. Sel. Areas Commun. 2009, 27, 985–994. [Google Scholar] [CrossRef]
- Kakde, S.; Khobragade, A.; Ambatkar, S.; Nandanwar, P. Implementation of Decoding Architecture for LDPC Code Using a Layered Min-Sum Algorithm. IUM Eng. J. 2017, 18, 128–136. [Google Scholar] [CrossRef]
- Zheng, X.; Hu, Q.; Feng, J. Two improved algorithms for layered QC-LDPC decoding algorithm. In Proceedings of the 2018 IEEE Canadian Conference on Electrical & Computer Engineering (CCECE), Quebec, QC, Canada, 13–16 May 2018; IEEE: New York, NY, USA, 2018. [Google Scholar]
- Xiao, Y. IEEE 802.11N: Enhancements for higher throughput in wireless LANs. IEEE Wirel. Commun. 2006, 12, 82–91. [Google Scholar] [CrossRef]
- Singh, H.; Yong, S.K.; Oh, J.; Ngo, C. Principles of IEEE 802.15.3c: Multi-Gigabit Millimeter-Wave Wireless PAN. In Proceedings of the 18th International Conference on Computer Communications and Networks, San Francisco, CA, USA, 3–6 August 2009; IEEE: New York, NY, USA, 2009. [Google Scholar]
- Liu, C.H.; Yen, S.W.; Chen, C.L.; Chang, H.C.; Lee, C.Y.; Hsu, Y.S.; Jou, S.J. An LDPC Decoder Chip Based on Self-Routing Network for IEEE 802.16e Applications. IEEE J. Solid-State Circuits 2008, 43, 684–694. [Google Scholar] [CrossRef]
- Li, H.; Xu, H.; Chen, C.; Bai, B. Efficient construction of quasi-cyclic LDPC codes with multiple lifting sizes. IEEE Commun. Lett. 2024, 28, 754–758. [Google Scholar] [CrossRef]
- Tran-Thi, B.N.; Nguyen-Ly, T.T.; Hoang, T. An FPGA design with high memory efficiency and decoding performance for 5G LDPC decoder. Electronics 2023, 12, 3667. [Google Scholar] [CrossRef]
- Katyushnyj, A.; Krylov, A.; Rashich, A.; Zhang, C.; Peng, K. FPGA implementation of LDPC decoder for 5G NR with parallel layered architecture and adaptive normalization. In Proceedings of the 2020 IEEE International Conference on Electrical Engineering and Photonics (EExPolytech), St. Petersburg, Russia, 15–16 October 2020; IEEE: New York, NY, USA, 2020; pp. 34–37. [Google Scholar]
Synthesis Strategy | This Work | [32] | ||||
---|---|---|---|---|---|---|
Flow_Perfoptimized_High | Flow_AreaOptimized_High | Flow_AlternateRoutability | Flow_PerfOptimized_High | Flow_AreaOptimized_High | Flow_AlternateRoutability | |
Max. Frequency (MHz) | 98 | 101 | 93 | 71 | 71 | 71 |
WNS (ns) | 0.039 | 0.062 | 0.022 | 0.186 | −3.722 | 1.365 |
Total Power (W) | 0.814 | 0.767 | 0.723 | - | - | - |
LUTs | 76,815 | 78,475 | 74,228 | 57,439 | 58,089 | 63,644 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mejmaa, B.; Aqil, C.; Akharraz, I.; Ahaitouf, A. Implementation of a Reduced Decoding Algorithm Complexity for Quasi-Cyclic Split-Row Threshold Low-Density Parity-Check Decoders. Information 2024, 15, 684. https://doi.org/10.3390/info15110684
Mejmaa B, Aqil C, Akharraz I, Ahaitouf A. Implementation of a Reduced Decoding Algorithm Complexity for Quasi-Cyclic Split-Row Threshold Low-Density Parity-Check Decoders. Information. 2024; 15(11):684. https://doi.org/10.3390/info15110684
Chicago/Turabian StyleMejmaa, Bilal, Chakir Aqil, Ismail Akharraz, and Abdelaziz Ahaitouf. 2024. "Implementation of a Reduced Decoding Algorithm Complexity for Quasi-Cyclic Split-Row Threshold Low-Density Parity-Check Decoders" Information 15, no. 11: 684. https://doi.org/10.3390/info15110684
APA StyleMejmaa, B., Aqil, C., Akharraz, I., & Ahaitouf, A. (2024). Implementation of a Reduced Decoding Algorithm Complexity for Quasi-Cyclic Split-Row Threshold Low-Density Parity-Check Decoders. Information, 15(11), 684. https://doi.org/10.3390/info15110684