Emerging Applications and Translational Challenges for AI in Healthcare
Funding
Conflicts of Interest
List of Contributions
- Roychowdhury, S. NUMSnet: Nested-U Multi-Class Segmentation Network for 3D Medical Image Stacks. Information 2023, 14, 333.
- Taj, F.; Klein, M.C.A.; Van Halteren, A. Motivating Machines: The Potential of Modeling Motivation as MoA for Behavior Change Systems. Information 2022, 13, 258.
- Qu, R.; Xiao, Z. An Attentive Multi-Modal CNN for Brain Tumor Radiogenomic Classification. Information 2022, 13, 124.
- Bardhi, O.; Sierra-Sosa, D.; Garcia-Zapirain, B.; Bujanda, L. Deep Learning Models for Colorectal Polyps. Information 2021, 12, 245.
- Uddin, M.J.; Ahamad, M.M.; Hoque, M.N.; Walid, M.A.A.; Aktar, S.; Alotaibi, N.; Alyami, S.A.; Kabir, M.A.; Moni, M.A. A Comparison of Machine Learning Techniques for the Detection of Type-2 Diabetes Mellitus: Experiences from Bangladesh. Information 2023, 14, 376.
- Feng, Y.-Z.; Liu, S.; Cheng, Z.-Y.; Quiroz, J.C.; Rezazadegan, D.; Chen, P.-K.; Lin, Q.-T.; Qian, L.; Liu, X.-F.; Berkovsky, S.; et al. Severity Assessment and Progression Prediction of COVID-19 Patients Based on the LesionEncoder Framework and Chest CT. Information 2021, 12, 471.
- Castillo-Olea, C.; Conte-Galván, R.; Zuñiga, C.; Siono, A.; Huerta, A.; Bardhi, O.; Ortiz, E. Early Stage Identification of COVID-19 Patients in Mexico Using Machine Learning: A Case Study for the Tijuana General Hospital. Information 2021, 12, 490.
- Cingolani, A.; Kostopoulou, K.; Luraschi, A.; Pnevmatikakis, A.; Lamonica, S.; Kyriazakos, S.; Iacomini, C.; Segala, F.V.; Micheli, G.; Seguiti, C.; et al. HIV Patients’ Tracer for Clinical Assistance and Research during the COVID-19 Epidemic (INTERFACE): A Paradigm for Chronic Conditions. Information 2022, 13, 76.
- Zhou, H.; Luo, H.; Lau, K.K.-L.; Qian, X.; Ren, C.; Chau, P. Predicting Emergency Department Utilization among Older Hong Kong Population in Hot Season: A Machine Learning Approach. Information 2022, 13, 410.
- Zhou, H.; Luo, H.; Lau, K.K.-L.; Qian, X.; Ren, C.; Chau, P. Public Health Implications for Effective Community Interventions Based on Hospital Patient Data Analysis Using Deep Learning Technology in Indonesia. Information 2024, 15, 41.
- Pham, H.V.; Long, C.K.; Khanh, P.H.; Trung, H.Q. A Fuzzy Knowledge Graph Pairs-Based Application for Classification in Decision Making: Case Study of Preeclampsia Signs. Information 2023, 14, 104.
- Ahmed, A.; Ramesh, J.; Ganguly, S.; Aburukba, R.; Sagahyroon, A.; Aloul, F. Investigating the Feasibility of Assessing Depression Severity and Valence-Arousal with Wearable Sensors Using Discrete Wavelet Transforms and Machine Learning. Information 2022, 13, 406.
References
- Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial networks. arXiv 2014, arXiv:1406.2661. [Google Scholar] [CrossRef]
- Brown, T.B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al. Language models are few-short learners. arXiv 2020, arXiv:2005.14165. [Google Scholar]
- Bommasani, R.; Hudson, D.A.; Adeli, E.; Altman, R.; Arora, S.; von Arx, S.; Bernstein, M.S.; Bohg, J.; Bosselut, A.; Brunskill, E.; et al. On the opportunities and risks of foundation models. arXiv 2023, arXiv:2108.07258. [Google Scholar]
- Shneiderman, B. Human-centered AI: Ensuring human control while increasing automation. In Proceedings of the 5th Workshop on Human Factors in Hypertext, Barcelona, Spain, 28 June 2022; Article 1. pp. 1–2. [Google Scholar]
- Degtiar, I.; Rose, S. A Review of Generalizability and Transportability. Annu. Rev. Stat. Its Appl. 2023, 10, 501–524. [Google Scholar] [CrossRef]
- Blacklaws, C. Algorithms: Transparency and accountability. Philos. Trans. R. Soc. A 2018, 376, 20170352. [Google Scholar] [CrossRef] [PubMed]
- Hutter, F.; Kotthoff, L.; Vanschoren, J. Automated Machine Learning: Methods, Systems, Challenges; The Springer Series on Challenges in Machine Learning; Springer International Publishing: Cham, Switzerland, 2019; ISBN 978-3-03005-317-8. [Google Scholar]
- Singh, R.; Gill, S. Edge AI: A survey. Internet Things Cyber-Phys. Syst. 2023, 3, 71–92. [Google Scholar] [CrossRef]
- Irvin, J.; Rajpurkar, P.; Ko, M.; Yu, Y.; Ciurea-Ilcus, S.; Chute, C.; Marklund, H.; Haghgoo, B.; Ball, R.; Shpanskaya, K.; et al. CheXpert: A large chest radiograph dataset with uncertainty labels and expert comparison. In Proceedings of the 33rd AAAI Conference on Artificial Intelligence and 31st Innovative Applications of Artificial Intelligence Conference and 9th AAAI Symposium on Educational Advances in Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; p. 73. [Google Scholar]
- Liu, S.; Graham, S.L.; Schulz, A.; Kalloniatis, M.; Zangerl, B.; Cai, W.; Gao, Y.; Chua, B.; Arvind, H.; Grigg, J.; et al. A deep learning-based algorithm identifies glaucomatous discs using monoscopic fundus photographs. Ophthalmol. Glaucoma 2018, 1, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Coiera, E. The fate of medicine in the time of AI. Lancet 2018, 392, 2331–2332. [Google Scholar] [CrossRef] [PubMed]
- Tu, T.; Azizi, S.; Driess, D.; Schaekermann, M.; Amin, M.; Chang, P.-C.; Carroll, A.; Lau, C.; Tanno, R.; Ktena, I.; et al. Towards Generalist Biomedical AI. arXiv 2023, arXiv:2307.14334. [Google Scholar]
- Coiera, E.; Liu, S. Evidence synthesis, digital scribes, and translational challenges for artificial intelligence in healthcare. Cell Rep. Med. 2022, 3, 100860. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Castillo-Olea, C.; Berkovsky, S. Emerging Applications and Translational Challenges for AI in Healthcare. Information 2024, 15, 90. https://doi.org/10.3390/info15020090
Liu S, Castillo-Olea C, Berkovsky S. Emerging Applications and Translational Challenges for AI in Healthcare. Information. 2024; 15(2):90. https://doi.org/10.3390/info15020090
Chicago/Turabian StyleLiu, Sidong, Cristián Castillo-Olea, and Shlomo Berkovsky. 2024. "Emerging Applications and Translational Challenges for AI in Healthcare" Information 15, no. 2: 90. https://doi.org/10.3390/info15020090
APA StyleLiu, S., Castillo-Olea, C., & Berkovsky, S. (2024). Emerging Applications and Translational Challenges for AI in Healthcare. Information, 15(2), 90. https://doi.org/10.3390/info15020090