L-PCM: Localization and Point Cloud Registration-Based Method for Pose Calibration of Mobile Robots
Abstract
:1. Introduction
2. Related Work
2.1. Mobile Robots
2.2. Localization
2.3. Pose Estimation
2.4. Point Cloud Registration
3. Materials and Methods
3.1. The Pose Estimation Module Based on UKF Fusion Odometer and IMU
3.2. Global Initial Pose Module Based on Improved AMCL
3.3. L-PCM-Based Pose Calibration
4. Results
4.1. Experiments on the UKF Fusion Module
4.2. Experiments on Improved AMCL Module
4.3. Experiments on L-PCM Pose Calibration
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jia, Y.; Du, J.; Zhang, W. An Overview of SLAM. In Proceedings of 2018 Chinese Intelligent Systems Conference; Lecture Notes in Electrical Engineering; Springer: Singapore, 2019; Volume 528 (Volume I), pp. 673–681. [Google Scholar] [CrossRef]
- Sinisa, M. Evaluation of SLAM Methods and Adaptive Monte Carlo Localization. Ph.D. Thesis, Vienna University of Technology, Vienna, Austria, 2022. [Google Scholar]
- Hanten, R.; Buck, S.; Otte, S.; Zell, A. Vector-AMCL: Vector based Adaptive Monte Carlo Localization for Indoor Maps. In Proceedings of the 14th International Conference on Intelligent Autonomous Systems (IAS-14), Shanghai, China, 3–7 July 2016. [Google Scholar]
- Chung, M.A.; Lin, C.W. An Improved Localization of Mobile Robotic System Based on AMCL Algorithm. IEEE Sens. J. 2021, 22, 900–908. [Google Scholar] [CrossRef]
- Garcia, A.; Martín, F.; Guerrero, J.M.; Rodríguez, F.J.; Matellán, V. Portable multi-hypothesis Monte Carlo localization for mobile robots. In Proceedings of the 2023 IEEE International Conference on Robotics and Automation (ICRA), London, UK, 29 May–2 June 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1933–1939. [Google Scholar]
- Moravec, H.; Elfes, A. High resolution maps from wide angle sonar. In Proceedings of the 1985 IEEE International Conference on Robotics and Automation, St. Louis, MO, USA, 25–28 March 1985. [Google Scholar]
- Hachemi, L.; Guiatni, M.; Nemra, A. Fault Diagnosis and Reconfiguration for Mobile Robot Localization Based on Multi-Sensors Data Fusion. Unmanned Syst. 2021, 10, 69–91. [Google Scholar] [CrossRef]
- Maken, F.A.; Ramos, F.; Ott, L. Stein ICP for Uncertainty Estimation in Point Cloud Matching. IEEE Robot. Autom. Lett. 2022, 7, 1063–1070. [Google Scholar] [CrossRef]
- Bienkowski, M.A.; Hoebel, L.J. Integrating AI Components for a Military Planning Application. In Proceedings of the American Association for Artificial Intelligence, Madison, MI, USA, 26–30 July 1998. [Google Scholar]
- Hashimoto, K.; Takanishi, A. WABIAN and Other Waseda Robots. In Humanoid Robotics: A Reference; Springer: Dordrech, The Netherlands, 2019. [Google Scholar]
- Bilesan, A.; Komizunai, S.; Tsujita, T.; Konno, A. Improved 3D Human Motion Capture Using Kinect Skeleton and Depth Sensor. J. Robot. Mechatron. 2021, 33, 1408–1422. [Google Scholar] [CrossRef]
- Cheon, E.J.; Su, N.M. Integrating roboticist values into a Value Sensitive Design framework for humanoid robots. In Proceedings of the ACM/IEEE International Conference on Human-robot Interaction, Christchurch, New Zealand, 7–10 March 2016. [Google Scholar]
- Lauttia, T. Adaptive Monte Carlo Localization in ROS. Bachelor’s Thesis, Tampere University, Tampere, Finland, 2022. [Google Scholar]
- Wu, M.H.; Yu, J.C.; Lin, Y.C. Study of Autonomous Robotic Lawn Mower Using Multi-Sensor Fusion Based Simultaneous Localization and Mapping. In Proceedings of the 2022 International Conference on Advanced Robotics and Intelligent Systems (ARIS), Taipei, Taiwan, 24–27 August 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–4. [Google Scholar]
- Zhu, W.; Cheng, X. Indoor Localization Method of Mobile Educational Robot Based on Visual Sensor. J. Internet Technol. 2023, 24, 205–215. [Google Scholar]
- Zhou, G.; Luo, J.; Xu, S.; Zhang, S.; Xiang, K. An EKF-based multiple data fusion for mobile robot indoor localization. Assem. Autom. 2021. [Google Scholar] [CrossRef]
- Muffert, M. Incremental Map Building with Markov Random Fields and its Evaluation. Ph.D. Thesis, Universitäts-und Landesbibliothek Bonn, Bonn, Germany, 2018. [Google Scholar]
- Fox, D.; Burgard, W.; Dellaert, F.; Thrun, S. Monte Carlo Localization: Efficient Position Estimation for Mobile Robots. In Proceedings of the Sixteenth National Conference on Artificial Intelligence and Eleventh Conference on Innovative Applications of Artificial Intelligence, Orlando, FL, USA, 18–22 July 1999. [Google Scholar]
- Do, H.N.; Jadaliha, M.; Temel, M.; Choi, J. Fully Bayesian Field Slam Using Gaussian Markov Random Fields. Asian J. Control 2016, 18, 1175–1188. [Google Scholar] [CrossRef]
- Gimenez, J.; Amicarelli, A.; Toibero, J.M.; Sciascio, F.D.; Carelli, R.O. Iterated Conditional Modes to Solve Simultaneous Localization and Mapping in Markov Random Fields Context. Int. J. Autom. Comput. 2018, 15, 310–324. [Google Scholar] [CrossRef]
- Ge, G.; Zhang, Y.; Wang, W.; Jiang, Q.; Hu, L.; Wang, Y. Text-MCL: Autonomous mobile robot localization in similar environment using text-level semantic information. Machines 2022, 10, 169. [Google Scholar] [CrossRef]
- Fikri, A.A.; Anifah, L. Mapping and Positioning System on Omnidirectional Robot Using Simultaneous Localization and Mapping (Slam) Method Based on Lidar. J. Teknol. 2021, 83, 41–52. [Google Scholar] [CrossRef]
- Kim, K. Integration of Real-Time Semantic Building Map Updating with Adaptive Monte Carlo Localization (AMCL) for Robust Indoor Mobile Robot Localization. Appl. Sci. 2023, 13, 909. [Google Scholar]
- Kaczmarek, A.; Rohm, W.; Klingbeil, L.; Tchorzewski, J. Experimental 2D extended Kalman filter sensor fusion for low-cost GNSS/IMU/Odometers precise positioning system. Measurement 2022, 193, 110963. [Google Scholar] [CrossRef]
- Alhamdi, E.; Hedjar, R. Comparative Study of Two Localization Approaches for Mobile Robots in an Indoor Environment. J. Robot. 2022, 2022, 1999082. [Google Scholar] [CrossRef]
- Montemarlo, M. FastSLAM: A Factored Solution to the Simultaneous Localization and Mapping Problem. In Proceedings of the American Association for Artificial Intelligence, North Falmouth, MA, USA, 15–17 November 2002. [Google Scholar]
- Woo, A.; Fidan, B.; Melek, W.W.; Zekavat, S.A.R.; Buehrer, R.M. Localization for Autonomous Driving; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2019. [Google Scholar]
- Zhu, D.; Sun, X.; Wang, L.; Liu, B.; Ji, K. Mobile Robot SLAM Algorithm Based on Improved Firefly Particle Filter. In Proceedings of the International Conference on Robots & Intelligent System, Macau, China, 4–8 November 2019. [Google Scholar]
- Zhao, S.; Gu, J.; Ou, Y.; Zhang, W.; Peng, H. IRobot self-localization using EKF. In Proceedings of the 2016 IEEE International Conference on Information and Automation (ICIA), Ningbo, China, 1–8 August 2016. [Google Scholar]
- Chen, C.L.; Li, J.; Li, M.; Xie, L. Model Predictive Trajectory Tracking Control of Automated Guided Vehicle in Complex Environments. In Proceedings of the 2018 IEEE 14th International Conference on Control and Automation (ICCA), Anchorage, AK, USA, 12–15 June 2018. [Google Scholar]
- Rashidi, H.; Tsang, E.P.K. A Complete and an Incomplete Algorithm for Automated Guided Vehicle Scheduling in Container Terminals; Pergamon Press, Inc.: Oxford, UK, 2011. [Google Scholar]
- Perez, R.J.I.; Álvarez, G.P.J. Application of mixed-integer linear programming in a car seats assembling process. Pesqui. Oper. 2011, 31, 593–610. [Google Scholar]
- Julier, S.J.; Laviola, J.J. On Kalman Filtering With Nonlinear Equality Constraints. IEEE Trans. Signal Process. Publ. IEEE Signal Process. Soc. 2007, 55, 2774–2784. [Google Scholar] [CrossRef]
- Zeng, Q.; Tao, X.; Yu, H.; Ji, X.; Chang, T.; Hu, Y. An Indoor 2D LiDAR SLAM and Localization Method Based on Artificial Landmark Assistance. IEEE Sens. J. 2023, 24, 3681–3692. [Google Scholar] [CrossRef]
- He, S.; Song, T.; Wu, X. An improved adaptive monte carlo localization (amcl) for automated mobile robot (amr). In Proceedings of the 22nd COTA International Conference of Transportation Professionals, Changsha, China, 8–11 July 2022; pp. 171–181. [Google Scholar]
- Huang, Y.H.; Lin, C.T. Indoor Localization Method for a Mobile Robot Using LiDAR and a Dual AprilTag. Electronics 2023, 12, 1023. [Google Scholar] [CrossRef]
- Serafin, J.; Grisetti, G. NICP: Dense Normal Based Point Cloud Registration; IEEE: Piscataway, NJ, USA, 2015. [Google Scholar]
- Nüchter, A. Parallelization of Scan Matching for Robotic 3D Mapping. In Proceedings of the 3rd European Conference on Mobile Robots, EMCR 2007, Freiburg, Germany, 19–21 September 2007. [Google Scholar]
- Best, P.J. A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Vis. 1992, 14, 586–606. [Google Scholar]
- Liu, Y.; Wang, C.; Wu, H.; Wei, Y.; Ren, M.; Zhao, C. Improved LiDAR localization method for mobile robots based on multi-sensing. Remote Sens. 2022, 14, 6133. [Google Scholar] [CrossRef]
- He, S.; Song, T.; Wang, P.; Ding, C.; Wu, X. An Enhanced Adaptive Monte Carlo Localization for Service Robots in Dynamic and Featureless Environments. J. Intell. Robot. Syst. 2023, 108, 6. [Google Scholar] [CrossRef]
- Sandoval-Castro, Y.; Ruiz-Torres, M.; Martínez, A.I.R.; Borade, Y. Comparison of different techniques of 2D simultaneous localization and mapping for a mobile robot by using ROS. In Proceedings of the XVI International Engineering Congress—CONiiN 2020, Hong Kong, China, 20–21 August 2020. [Google Scholar]
Improvement of AMCL Pose | L-PCM-Calibrated Pose | True Pose | |
---|---|---|---|
1 | (2.8513, −1.0408, 0.5687) | (2.8545, −1.1833, 0.5613) | (2.8556, −1.2076, 0.5616) |
2 | (2.7267, −0.0908, 0.7909) | (2.7453, −0.1647, 0.7836) | (2.7459, −0.1444, 0.7894) |
3 | (2.6047, 0.5160, 0.7781) | (2.5819, 0.5274, 0.7800) | (2.5823, 0.5648, 0.7819) |
4 | (2.3900, 1.5448, 0.7677) | (2.3958, 1.4058, 0.7693) | (2.3957, 1.4715, 0.7722) |
5 | (1.7737, 1.7000, 0.9274) | (1.7555, 1.6905, 0.9291) | (1.7586, 1.6709, 0.9249) |
Improvement of AMCL Pose Errors | L-PCM-Calibrated Pose Errors | |||||
---|---|---|---|---|---|---|
/m | /m | /rad | /m | /m | /rad | |
1 | −0.0043 | 0.1668 | 0.0071 | −0.0011 | 0.0243 | −0.0003 |
2 | −0.0192 | 0.0536 | 0.0015 | −0.0006 | −0.0203 | −0.0058 |
3 | 0.0224 | −0.0488 | −0.0038 | −0.0004 | −0.0374 | −0.0019 |
4 | −0.0057 | 0.0733 | −0.0045 | −0.0657 | −0.0029 | |
5 | 0.0151 | 0.0291 | 0.0025 | −0.0031 | 0.0196 | 0.0042 |
|Maximum Values| | 0.0224 | 0.1668 | 0.0071 | 0.0031 | 0.0657 | 0.0058 |
|Minimum Values| | 0.0043 | 0.0291 | 0.0015 | 0.0196 | 0.0003 | |
|Average Values| | 0.01334 | 0.07432 | 0.00388 | 0.00106 | 0.03346 | 0.00302 |
Position Error Mean (m) | Position Error Variance (m) | Angle Error Mean (rad) | Angle Error Variance (rad) | |
---|---|---|---|---|
Odom [23] | 2.3201 | 2.8716 | 2.1495 | 3.8112 |
EKF [7,16] | 1.2079 | 2.7475 | 1.0254 | 3.7484 |
UKF | 0.7732 | 2.4570 | 0.6142 | 3.1002 |
Gmapping [42] | 0.4275 | 0.1023 | 0.2754 | 2.8970 |
Cartographer [40] | 0.0827 | 0.0247 | 0.0037 | 0.4541 |
AMCL [41] | 0.1146 | 0.0319 | 0.0199 | 1.7524 |
Ours | 0.0163 | 0.0226 | 0.0040 | 0.4832 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ning, D.; Huang, S. L-PCM: Localization and Point Cloud Registration-Based Method for Pose Calibration of Mobile Robots. Information 2024, 15, 269. https://doi.org/10.3390/info15050269
Ning D, Huang S. L-PCM: Localization and Point Cloud Registration-Based Method for Pose Calibration of Mobile Robots. Information. 2024; 15(5):269. https://doi.org/10.3390/info15050269
Chicago/Turabian StyleNing, Dandan, and Shucheng Huang. 2024. "L-PCM: Localization and Point Cloud Registration-Based Method for Pose Calibration of Mobile Robots" Information 15, no. 5: 269. https://doi.org/10.3390/info15050269
APA StyleNing, D., & Huang, S. (2024). L-PCM: Localization and Point Cloud Registration-Based Method for Pose Calibration of Mobile Robots. Information, 15(5), 269. https://doi.org/10.3390/info15050269