A Comparison of Mixed and Partial Membership Diagnostic Classification Models with Multidimensional Item Response Models
Abstract
:1. Introduction
Purpose
2. Multidimensional Item Response Model
2.1. Between-Item Dimensionality
2.2. Within-Item Dimensionality
2.2.1. Compensatory Multidimensional IRT Model
2.2.2. Noncompensatory Multidimensional IRT Model
2.2.3. Partially Compensatory Multidimensional IRT Model
3. Diagnostic Classification Model
3.1. Between-Item Dimensionality
3.2. Within-Item Dimensionality
3.2.1. Compensatory DCM:ADCM
3.2.2. Noncompensatory DCM:DINA Model
3.2.3. Partially Compensatory DCM:GDINA Model
4. Mixed and Partial Membership Diagnostic Classification Model
4.1. Mixed Membership DCM
4.1.1. Between-Item Dimensionality
4.1.2. Within-Item Dimensionality
4.2. Partial Membership DCM
4.2.1. Between-Item Dimensionality
4.2.2. Within-Item Dimensionality
5. Heuristic Comparison of the Different Modeling Approaches
6. Empirical Examples
6.1. Method
6.2. Results
6.2.1. Dataset acl
6.2.2. Dataset data.ecpe
6.2.3. Dataset mcmi
7. Simulation Study
7.1. Method
7.2. Results
8. Discussion
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
2PL | two-parameter logistic |
4PL | four-parameter logistic |
AIC | Akaike information criterion |
ADCM | additive diagnostic classification model |
BIC | Bayesian information criterion |
CO | compensatory |
DCM | diagnostic classification model |
DGM | data-generating model |
DINA | deterministic inputs, noisy “and” gate |
GDINA | generalized deterministic inputs, noisy “and” gate |
GHP | Gilula–Haberman penalty |
IRF | item response function |
IRT | item response theory |
MIRT | multidimensional item response theory |
MM | mixed membership |
NC | noncompensatory |
PC | partially compensatory |
PM | partial membership |
Appendix A. Derivation of Equation (33)
Appendix B. Derivation of Equation (38)
References
- Lazarsfeld, P.F.; Henry, N.W. Latent Structure Analysis; Houghton Mifflin: Boston, MA, USA, 1968. [Google Scholar]
- Andersen, E.B. Latent structure analysis: A survey. Scand. J. Stat. 1982, 9, 1–12. [Google Scholar]
- Andersen, E.B. The Statistical Analysis of Categorical Data; Springer: Berlin, Germany, 1994. [Google Scholar] [CrossRef]
- Clogg, C.C.; Goodman, L.A. Latent structure analysis of a set of multidimensional contingency tables. J. Am. Stat. Assoc. 1984, 79, 762–771. [Google Scholar] [CrossRef]
- Goodman, L.A. On the estimation of parameters in latent structure analysis. Psychometrika 1979, 44, 123–128. [Google Scholar] [CrossRef]
- Yen, W.M.; Fitzpatrick, A.R. Item response theory. In Educational Measurement; Brennan, R.L., Ed.; Praeger Publishers: Westport, WT, USA, 2006; pp. 111–154. [Google Scholar]
- Cai, L.; Choi, K.; Hansen, M.; Harrell, L. Item response theory. Annu. Rev. Stat. Appl. 2016, 3, 297–321. [Google Scholar] [CrossRef]
- Chen, Y.; Li, X.; Liu, J.; Ying, Z. Item response theory—A statistical framework for educational and psychological measurement. arXiv 2021, arXiv:2108.08604. [Google Scholar] [CrossRef]
- Rupp, A.A.; Templin, J.L. Unique characteristics of diagnostic classification models: A comprehensive review of the current state-of-the-art. Meas. Interdiscip. Res. Persp. 2008, 6, 219–262. [Google Scholar] [CrossRef]
- Chang, H.H.; Wang, C.; Zhang, S. Statistical applications in educational measurement. Annu. Rev. Stat. Appl. 2021, 8, 439–461. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, J.; Ying, Z. Statistical applications to cognitive diagnostic testing. Annu. Rev. Stat. Appl. 2023, 10, 651–675. [Google Scholar] [CrossRef]
- Shang, Z.; Erosheva, E.A.; Xu, G. Partial-mastery cognitive diagnosis models. Ann. Appl. Stat. 2021, 15, 1529–1555. [Google Scholar] [CrossRef]
- Shu, T.; Luo, G.; Luo, Z.; Yu, X.; Guo, X.; Li, Y. An explicit form with continuous attribute profile of the partial mastery DINA model. J. Educ. Behav. Stat. 2023, 48, 573–602. [Google Scholar] [CrossRef]
- de la Torre, J.; Santos, K.C. On the relationship between unidimensional item response theory and higher-order cognitive diagnosis models. In Essays on Contemporary Psychometrics; van der Ark, L.A., Emons, W.H.M., Meijer, R.R., Eds.; Springer: New York, NY, USA, 2022; pp. 389–412. [Google Scholar] [CrossRef]
- Lee, Y.S.; de la Torre, J.; Park, Y.S. Relationships between cognitive diagnosis, CTT, and IRT indices: An empirical investigation. Asia Pac. Educ. Rev. 2012, 13, 333–345. [Google Scholar] [CrossRef]
- Ma, W.; Minchen, N.; de la Torre, J. Choosing between CDM and unidimensional IRT: The proportional reasoning test case. Meas. Interdiscip. Res. Persp. 2020, 18, 87–96. [Google Scholar] [CrossRef]
- Maas, L.; Madison, M.J.; Brinkhuis, M.J.S. Properties and performance of the one-parameter log-linear cognitive diagnosis model. Front. Educ. 2024, 9, 1287279. [Google Scholar] [CrossRef]
- Madison, M.J.; Wind, S.A.; Maas, L.; Kazuhiro Yamaguchi, S.H. A one-parameter diagnostic classification model with familiar measurement properties. J. Educ. Meas. 2024; epub ahead of print. [Google Scholar] [CrossRef]
- Liu, R. Using diagnostic classification models to obtain subskill information and explore its relationship with total scores: The case of the Michigan english test. Psychol. Test Assess. Model. 2020, 62, 487–516. [Google Scholar]
- Robitzsch, A. Relating the one-parameter logistic diagnostic classification model to the Rasch model and one-parameter logistic mixed, partial, and probabilistic membership diagnostic classification models. Foundations 2023, 3, 621–633. [Google Scholar] [CrossRef]
- von Davier, M.; DiBello, L.; Yamamoto, K.Y. Reporting Test Outcomes with Models for Cognitive Diagnosis; (Research Report No. RR-06-28); Educational Testing Service: Princeton, NJ, USA, 2006. [Google Scholar] [CrossRef]
- Bonifay, W. Multidimensional Item Response Theory; Sage: Thousand Oaks, CA, USA, 2020. [Google Scholar] [CrossRef]
- Reckase, M.D. Multidimensional Item Response Theory Models; Springer: New York, NY, USA, 2009. [Google Scholar] [CrossRef]
- Tatsuoka, K.K. Rule space: An approach for dealing with misconceptions based on item response theory. J. Educ. Meas. 1983, 20, 345–354. [Google Scholar] [CrossRef]
- da Silva, M.A.; Liu, R.; Huggins-Manley, A.C.; Bazán, J.L. Incorporating the q-matrix into multidimensional item response theory models. Educ. Psychol. Meas. 2019, 79, 665–687. [Google Scholar] [CrossRef]
- Adams, R.J.; Wilson, M.; Wang, W.c. The multidimensional random coefficients multinomial logit model. Appl. Psychol. Meas. 1997, 21, 1–23. [Google Scholar] [CrossRef]
- Hartig, J.; Höhler, J. Representation of competencies in multidimensional IRT models with within-item and between-item multidimensionality. Z. Psychol. 2008, 216, 89–101. [Google Scholar] [CrossRef]
- Feuerstahler, L.; Wilson, M. Scale alignment in between-item multidimensional Rasch models. J. Educ. Meas. 2019, 56, 280–301. [Google Scholar] [CrossRef]
- Birnbaum, A. Some latent trait models and their use in inferring an examinee’s ability. In Statistical Theories of Mental Test Scores; Lord, F.M., Novick, M.R., Eds.; MIT Press: Reading, MA, USA, 1968; pp. 397–479. [Google Scholar]
- Reckase, M.D. Logistic multidimensional models. In Handbook of Item Response Theory, Volume 1: Models; van der Linden, W.J., Ed.; CRC Press: Boca Raton, FL, USA, 2016; pp. 189–210. [Google Scholar] [CrossRef]
- Bolt, D.M.; Lall, V.F. Estimation of compensatory and noncompensatory multidimensional item response models using Markov chain Monte Carlo. Appl. Psychol. Meas. 2003, 27, 395–414. [Google Scholar] [CrossRef]
- Babcock, B. Estimating a noncompensatory IRT model using Metropolis within Gibbs sampling. Appl. Psychol. Meas. 2011, 35, 317–329. [Google Scholar] [CrossRef]
- Buchholz, J.; Hartig, J. The impact of ignoring the partially compensatory relation between ability dimensions on norm-referenced test scores. Psychol. Test Assess. Model. 2018, 60, 369–385. [Google Scholar]
- Wang, C.; Nydick, S.W. Comparing two algorithms for calibrating the restricted non-compensatory multidimensional IRT model. Appl. Psychol. Meas. 2015, 39, 119–134. [Google Scholar] [CrossRef]
- Chalmers, R.P. Partially and fully noncompensatory response models for dichotomous and polytomous items. Appl. Psychol. Meas. 2020, 44, 415–430. [Google Scholar] [CrossRef]
- Spray, J.A.; Davey, T.C.; Reckase, M.D.; Ackerman, T.A.; Carlson, J.E. Comparison of Two Logistic Multidimensional Item Response Theory Models. 1990. Research Report ONR90-8. ACT Research Report Series, Iowa City. Available online: https://apps.dtic.mil/sti/citations/tr/ADA231363 (accessed on 3 June 2024).
- DeMars, C.E. Partially compensatory multidimensional item response theory models: Two alternate model forms. Educ. Psychol. Meas. 2016, 76, 231–257. [Google Scholar] [CrossRef]
- DiBello, L.V.; Roussos, L.A.; Stout, W. A review of cognitively diagnostic assessment and a summary of psychometric models. In Handbook of Statistics, Volume 26: Psychometrics; Rao, C.R., Sinharay, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2006; pp. 979–1030. [Google Scholar] [CrossRef]
- George, A.C.; Robitzsch, A. Cognitive diagnosis models in R: A didactic. Quant. Meth. Psych. 2015, 11, 189–205. [Google Scholar] [CrossRef]
- Chen, Y.; Liang, S. BNMI-DINA: A Bayesian cognitive diagnosis model for enhanced personalized learning. Big Data Cogn. Comput. 2023, 8, 4. [Google Scholar] [CrossRef]
- Rupp, A.A.; Templin, J.; Henson, R.A. Diagnostic Measurement: Theory, Methods, and Applications; Guilford Press: New York City, NY, USA, 2010; Available online: https://rb.gy/9ix252 (accessed on 3 June 2024).
- Ma, C.; Ouyang, J.; Xu, G. Learning latent and hierarchical structures in cognitive diagnosis models. Psychometrika 2023, 88, 175–207. [Google Scholar] [CrossRef]
- Martinez, A.J.; Templin, J. Approximate invariance testing in diagnostic classification models in the presence of attribute hierarchies: A Bayesian network approach. Psych 2023, 5, 688–714. [Google Scholar] [CrossRef]
- Wang, C.; Lu, J. Learning attribute hierarchies from data: Two exploratory approaches. J. Educ. Behav. Stat. 2021, 46, 58–84. [Google Scholar] [CrossRef]
- Junker, B.W.; Sijtsma, K. Cognitive assessment models with few assumptions, and connections with nonparametric item response theory. Appl. Psychol. Meas. 2001, 25, 258–272. [Google Scholar] [CrossRef]
- Dayton, C.M.; Macready, G.B. A probabilistic model for validation of behavioral hierarchies. Psychometrika 1976, 41, 189–204. [Google Scholar] [CrossRef]
- Haertel, E.H. Using restricted latent class models to map the skill structure of achievement items. J. Educ. Meas. 1989, 26, 301–321. [Google Scholar] [CrossRef]
- de la Torre, J. The generalized DINA model framework. Psychometrika 2011, 76, 179–199. [Google Scholar] [CrossRef]
- Henson, R.A.; Templin, J.L.; Willse, J.T. Defining a family of cognitive diagnosis models using log-linear models with latent variables. Psychometrika 2009, 74, 191–210. [Google Scholar] [CrossRef]
- de la Torre, J. DINA model and parameter estimation: A didactic. J. Educ. Behav. Stat. 2009, 34, 115–130. [Google Scholar] [CrossRef]
- Ma, W.; de la Torre, J. GDINA: An R package for cognitive diagnosis modeling. J. Stat. Softw. 2020, 93, 1–26. [Google Scholar] [CrossRef]
- Shi, Q.; Ma, W.; Robitzsch, A.; Sorrel, M.A.; Man, K. Cognitively diagnostic analysis using the G-DINA model in R. Psych 2021, 3, 812–835. [Google Scholar] [CrossRef]
- de la Torre, J.; Lee, Y.S. A note on the invariance of the DINA model parameters. J. Educ. Meas. 2010, 47, 115–127. [Google Scholar] [CrossRef]
- Huang, Q.; Bolt, D.M. Relative robustness of CDMs and (M)IRT in measuring growth in latent skills. Educ. Psychol. Meas. 2023, 83, 808–830. [Google Scholar] [CrossRef]
- Ma, W.; Chen, J.; Jiang, Z. Attribute continuity in cognitive diagnosis models: Impact on parameter estimation and its detection. Behaviormetrika 2023, 50, 217–240. [Google Scholar] [CrossRef]
- Chen, L.; Gu, Y. A spectral method for identifiable grade of membership analysis with binary responses. Psychometrika 2024, 89, 626–657. [Google Scholar] [CrossRef]
- Erosheva, E.A. Comparing latent structures of the grade of membership, Rasch, and latent class models. Psychometrika 2005, 70, 619–628. [Google Scholar] [CrossRef]
- Gu, Y.; Erosheva, E.E.; Xu, G.; Dunson, D.B. Dimension-grouped mixed membership models for multivariate categorical data. J. Mach. Learn. Res. 2023, 24, 1–49. [Google Scholar]
- Manton, K.G.; Woodbury, M.A.; Stallard, E.; Corder, L.S. The use of grade-of-membership techniques to estimate regression relationships. Sociol. Methodol. 1992, 22, 321–381. [Google Scholar] [CrossRef]
- Qing, H. Estimating mixed memberships in directed networks by spectral clustering. Entropy 2023, 25, 345. [Google Scholar] [CrossRef]
- Wang, Y.S.; Erosheva, E.A. Fitting Mixed Membership Models Using Mixedmem; Technical Report; 2020. Available online: https://tinyurl.com/9fxt54v6 (accessed on 3 June 2024).
- Woodbury, M.A.; Clive, J.; Garson, A., Jr. Mathematical typology: A grade of membership technique for obtaining disease definition. Comput. Biomed. Res. 1978, 11, 277–298. [Google Scholar] [CrossRef]
- Erosheva, E.A.; Fienberg, S.E.; Junker, B.W. Alternative statistical models and representations for large sparse multi-dimensional contingency tables. Ann. Faculté Sci. Toulouse Math. 2002, 11, 485–505. [Google Scholar] [CrossRef]
- Erosheva, E.A.; Fienberg, S.E.; Joutard, C. Describing disability through individual-level mixture models for multivariate binary data. Ann. Appl. Stat. 2007, 1, 346–384. [Google Scholar] [CrossRef]
- Finch, H.W. Performance of the grade of membership model under a variety of sample sizes, group size ratios, and differential group response probabilities for dichotomous indicators. Educ. Psychol. Meas. 2021, 81, 523–548. [Google Scholar] [CrossRef]
- Paisley, J.; Wang, C.; Blei, D.M. The discrete infinite logistic normal distribution. Bayesian Anal. 2012, 7, 997–1034. [Google Scholar] [CrossRef]
- Held, L.; Sabanés Bové, D. Applied Statistical Inference; Springer: Berlin, Germany, 2014. [Google Scholar] [CrossRef]
- Gruhl, J.; Erosheva, E.A.; Ghahramani, Z.; Mohamed, S.; Heller, K. A tale of two (types of) memberships: Comparing mixed and partial membership with a continuous data example. In Handbook of Mixed Membership Models and Their Applications; Airoldi, E.M., Blei, D., Erosheva, E.A., Fienberg, S.E., Eds.; Chapman & Hall: Boca Raton, FL, USA, 2014; pp. 15–38. [Google Scholar] [CrossRef]
- Heller, K.A.; Williamson, S.; Ghahramani, Z. Statistical models for partial membership. In Proceedings of the 25th International Conference on Machine Learning, Helsinki, Finland, 5–9 July 2008; pp. 392–399. [Google Scholar] [CrossRef]
- Ghahramani, Z.; Mohamed, S.; Heller, K. A simple and general exponential family framework for partial membership and factor analysis. In Handbook of Mixed Membership Models and Their Applications; Airoldi, E.M., Blei, D., Erosheva, E.A., Fienberg, S.E., Eds.; Chapman & Hall: Boca Raton, FL, USA, 2014; pp. 101–122. [Google Scholar] [CrossRef]
- Liu, Q.; Wu, R.; Chen, E.; Xu, G.; Su, Y.; Chen, Z.; Hu, G. Fuzzy cognitive diagnosis for modelling examinee performance. ACM Trans. Intell. Syst. Technol. 2018, 9, 1–26. [Google Scholar] [CrossRef]
- Zhan, P.; Wang, W.C.; Jiao, H.; Bian, Y. Probabilistic-input, noisy conjunctive models for cognitive diagnosis. Front. Psychol. 2018, 9, 997. [Google Scholar] [CrossRef]
- Zhan, P.; Tian, Y.; Yu, Z.; Li, F.; Wang, L. A comparative study of probabilistic logic and fuzzy logic in refined learning diagnosis. J. Psychol. Sci. 2020, 43, 1258–1266. [Google Scholar]
- Zhan, P. Refined learning tracking with a longitudinal probabilistic diagnostic model. Educ. Meas. 2021, 40, 44–58. [Google Scholar] [CrossRef]
- Tian, Y.; Zhan, P.; Wang, L. Joint cognitive diagnostic modeling for probabilistic attributes incorporating item responses and response times. Acta Psychol. Sin. 2023, 55, 1573–1586. [Google Scholar] [CrossRef]
- Marini, M.M.; Li, X.; Fan, P.L. Characterizing latent structure: Factor analytic and grade of membership models. Sociol. Methodol. 1996, 26, 133–164. [Google Scholar] [CrossRef]
- Van der Linden, W.J. Unidimensional logistic response models. In Handbook of Item Response Theory, Volume 1: Models; van der Linden, W.J., Ed.; CRC Press: Boca Raton, FL, USA, 2016; pp. 11–30. [Google Scholar] [CrossRef]
- Templin, J.L.; Henson, R.A. Measurement of psychological disorders using cognitive diagnosis models. Psychol. Methods 2006, 11, 287–305. [Google Scholar] [CrossRef]
- Culpepper, S.A. The prevalence and implications of slipping on low-stakes, large-scale assessments. J. Educ. Behav. Stat. 2017, 42, 706–725. [Google Scholar] [CrossRef]
- Loken, E.; Rulison, K.L. Estimation of a four-parameter item response theory model. Brit. J. Math. Stat. Psychol. 2010, 63, 509–525. [Google Scholar] [CrossRef]
- Reise, S.P.; Waller, N.G. How many IRT parameters does it take to model psychopathology items? Psychol. Methods 2003, 8, 164–184. [Google Scholar] [CrossRef]
- Robitzsch, A. Four-parameter guessing model and related item response models. Math. Comput. Appl. 2022, 27, 95. [Google Scholar] [CrossRef]
- Fu, Z.; Zhang, S.; Su, Y.H.; Shi, N.; Tao, J. A Gibbs sampler for the multidimensional four-parameter logistic item response model via a data augmentation scheme. Brit. J. Math. Stat. Psychol. 2021, 74, 427–464. [Google Scholar] [CrossRef]
- Guo, S.; Chen, Y.; Zheng, C.; Li, G. Mixture-modelling-based Bayesian MH-RM algorithm for the multidimensional 4PLM. Brit. J. Math. Stat. Psychol. 2023, 76, 585–604. [Google Scholar] [CrossRef]
- Kalkan, Ö.K.; Çuhadar, I. An evaluation of 4PL IRT and DINA models for estimating pseudo-guessing and slipping parameters. J. Meas. Eval. Educ. Psychol. 2020, 11, 131–146. [Google Scholar] [CrossRef]
- Liu, J.; Meng, X.; Xu, G.; Gao, W.; Shi, N. MSAEM estimation for confirmatory multidimensional four-parameter normal ogive models. J. Educ. Meas. 2024, 61, 99–124. [Google Scholar] [CrossRef]
- Liu, T.; Wang, C.; Xu, G. Estimating three-and four-parameter MIRT models with importance-weighted sampling enhanced variational auto-encoder. Front. Psychol. 2022, 13, 935419. [Google Scholar] [CrossRef]
- Bolt, D.M.; Kim, J.S. Parameter invariance and skill attribute continuity in the DINA model. J. Educ. Meas. 2018, 55, 264–280. [Google Scholar] [CrossRef]
- Bolt, D.M. Bifactor MIRT as an appealing and related alternative to CDMs in the presence of skill attribute continuity. In Handbook of Diagnostic Classification Models; von Davier, M., Lee, Y.S., Eds.; Springer: Cham, Switzerland, 2019; pp. 395–417. [Google Scholar] [CrossRef]
- Huang, Q.; Bolt, D.M. The potential for interpretational confounding in cognitive diagnosis models. Appl. Psychol. Meas. 2022, 46, 303–320. [Google Scholar] [CrossRef]
- Hong, H.; Wang, C.; Lim, Y.S.; Douglas, J. Efficient models for cognitive diagnosis with continuous and mixed-type latent variables. Appl. Psychol. Meas. 2015, 39, 31–43. [Google Scholar] [CrossRef]
- Haberman, S.J.; von Davier, M.; Lee, Y.H. Comparison of Multidimensional Item Response Models: Multivariate Normal Ability Distributions versus Multivariate Polytomous Distributions; Research Report No. RR-08-45; Educational Testing Service: Princeton, NJ, USA, 2008. [Google Scholar] [CrossRef]
- Von Davier, M. A general diagnostic model applied to language testing data. Brit. J. Math. Stat. Psychol. 2008, 61, 287–307. [Google Scholar] [CrossRef]
- Von Davier, M. Mixture Distribution Diagnostic Models; Research Report No. RR-07-32; Educational Testing Service: Princeton, NJ, USA, 2007. [Google Scholar] [CrossRef]
- Von Davier, M. Hierarchical mixtures of diagnostic models. Psychol. Test Assess. Model. 2010, 52, 8–28. [Google Scholar]
- Xu, X.; von Davier, M. Comparing Multiple-Group Multinomial Log-Linear Models for Multidimensional Skill Distributions in the General Diagnostic Model; Research Report No. RR-08-35; Educational Testing Service: Princeton, NJ, USA, 2008. [Google Scholar] [CrossRef]
- Van der Ark, L.A. Mokken scale analysis in R. J. Stat. Softw. 2007, 20, 1–19. [Google Scholar] [CrossRef]
- Van der Ark, L.A. New developments in Mokken scale analysis in R. J. Stat. Softw. 2012, 48, 1–27. [Google Scholar] [CrossRef]
- Templin, J.; Hoffman, L. Obtaining diagnostic classification model estimates using Mplus. Educ. Meas. 2013, 32, 37–50. [Google Scholar] [CrossRef]
- Templin, J.; Bradshaw, L. Hierarchical diagnostic classification models: A family of models for estimating and testing attribute hierarchies. Psychometrika 2014, 79, 317–339. [Google Scholar] [CrossRef]
- Feng, Y.; Habing, B.T.; Huebner, A. Parameter estimation of the reduced RUM using the EM algorithm. Appl. Psychol. Meas. 2014, 38, 137–150. [Google Scholar] [CrossRef]
- Robitzsch, A.; George, A.C. The R package CDM for diagnostic modeling. In Handbook of Diagnostic Classification Models; von Davier, M., Lee, Y.S., Eds.; Springer: Cham, Switzerland, 2019; pp. 549–572. [Google Scholar] [CrossRef]
- George, A.C.; Robitzsch, A.; Kiefer, T.; Groß, J.; Ünlü, A. The R package CDM for cognitive diagnosis models. J. Stat. Softw. 2016, 74, 1–24. [Google Scholar] [CrossRef]
- de la Torre, J.; van der Ark, L.A.; Rossi, G. Analysis of clinical data from a cognitive diagnosis modeling framework. Meas. Eval. Couns. Dev. 2018, 51, 281–296. [Google Scholar] [CrossRef]
- Sijtsma, K.; van der Ark, L.A. Measurement Models for Psychological Attributes; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar] [CrossRef]
- Cavanaugh, J.E.; Neath, A.A. The Akaike information criterion: Background, derivation, properties, application, interpretation, and refinements. WIREs Comput. Stat. 2019, 11, e1460. [Google Scholar] [CrossRef]
- Neath, A.A.; Cavanaugh, J.E. The Bayesian information criterion: Background, derivation, and applications. WIREs Comput. Stat. 2012, 4, 199–203. [Google Scholar] [CrossRef]
- Burnham, K.P.; Anderson, D.R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach; Springer: New York, NY, USA, 2002. [Google Scholar] [CrossRef]
- Gilula, Z.; Haberman, S.J. Conditional log-linear models for analyzing categorical panel data. J. Am. Stat. Assoc. 1994, 89, 645–656. [Google Scholar] [CrossRef]
- Gilula, Z.; Haberman, S.J. Prediction functions for categorical panel data. Ann. Stat. 1995, 23, 1130–1142. [Google Scholar] [CrossRef]
- Haberman, S.J. The Information a Test Provides on an Ability Parameter; Research Report No. RR-07-18; Educational Testing Service: Princeton, NJ, USA, 2007. [Google Scholar] [CrossRef]
- van Rijn, P.W.; Sinharay, S.; Haberman, S.J.; Johnson, M.S. Assessment of fit of item response theory models used in large-scale educational survey assessments. Large-Scale Assess. Educ. 2016, 4, 10. [Google Scholar] [CrossRef]
- Robitzsch, A. On the choice of the item response model for scaling PISA data: Model selection based on information criteria and quantifying model uncertainty. Entropy 2022, 24, 760. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2023; Available online: https://www.R-project.org/ (accessed on 15 March 2023).
- Robitzsch, A. sirt: Supplementary Item Response Theory Models; 2024. R Package Version 4.1-15. Available online: https://CRAN.R-project.org/package=sirt (accessed on 6 February 2024).
- Glas, C.A.W. Maximum-likelihood estimation. In Handbook of Item Response Theory, Volume 2: Statistical Tools; van der Linden, W.J., Ed.; CRC Press: Boca Raton, FL, USA, 2016; pp. 197–216. [Google Scholar] [CrossRef]
- Aitkin, M. Expectation maximization algorithm and extensions. In Handbook of Item Response Theory, Volume 2: Statistical Tools; van der Linden, W.J., Ed.; CRC Press: Boca Raton, FL, USA, 2016; pp. 217–236. [Google Scholar] [CrossRef]
- Katsikatsou, M.; Moustaki, I.; Yang-Wallentin, F.; Jöreskog, K.G. Pairwise likelihood estimation for factor analysis models with ordinal data. Comput. Stat. Data Anal. 2012, 56, 4243–4258. [Google Scholar] [CrossRef]
- Varin, C.; Reid, N.; Firth, D. An overview of composite likelihood methods. Stat. Sin. 2011, 21, 5–42. [Google Scholar]
- Robitzsch, A. Pairwise likelihood estimation of the 2PL model with locally dependent item responses. Appl. Sci. 2024, 14, 2652. [Google Scholar] [CrossRef]
- Yamaguchi, K.; Okada, K. Variational Bayes inference algorithm for the saturated diagnostic classification model. Psychometrika 2020, 85, 973–995. [Google Scholar] [CrossRef]
- Tamano, H.; Mochihashi, D. Dynamical non-compensatory multidimensional IRT model using variational approximation. Psychometrika 2023, 88, 487–526. [Google Scholar] [CrossRef]
- Ulitzsch, E.; Nestler, S. Evaluating Stan’s variational Bayes algorithm for estimating multidimensional IRT models. Psych 2022, 4, 73–88. [Google Scholar] [CrossRef]
- Culpepper, S.A. Bayesian estimation of the DINA model with Gibbs sampling. J. Educ. Behav. Stat. 2015, 40, 454–476. [Google Scholar] [CrossRef]
- Yamaguchi, K.; Templin, J. A Gibbs sampling algorithm with monotonicity constraints for diagnostic classification models. J. Classif. 2022, 39, 24–54. [Google Scholar] [CrossRef]
- Yamaguchi, K. Bayesian analysis methods for two-level diagnosis classification models. J. Educ. Behav. Stat. 2023, 48, 773–809. [Google Scholar] [CrossRef]
- Cizek, G.J.; Bunch, M.B.; Koons, H. Setting performance standards: Contemporary methods. Educ. Meas. 2004, 23, 31–50. [Google Scholar] [CrossRef]
- Pant, H.A.; Rupp, A.A.; Tiffin-Richards, S.P.; Köller, O. Validity issues in standard-setting studies. Stud. Educ. Eval. 2009, 35, 95–101. [Google Scholar] [CrossRef]
- Tiffin-Richards, S.P.; Pant, H.A.; Köller, O. Setting standards for English foreign language assessment: Methodology, validation, and a degree of arbitrariness. Educ. Meas. 2013, 32, 15–25. [Google Scholar] [CrossRef]
- Liao, X.; Bolt, D.M. Guesses and slips as proficiency-related phenomena and impacts on parameter invariance. Educ. Meas. 2024; epub ahead of print. [Google Scholar] [CrossRef]
- Bradshaw, L.P.; Madison, M.J. Invariance properties for general diagnostic classification models. Int. J. Test. 2016, 16, 99–118. [Google Scholar] [CrossRef]
- Ravand, H.; Baghaei, P.; Doebler, P. Examining parameter invariance in a general diagnostic classification model. Front. Psychol. 2020, 10, 2930. [Google Scholar] [CrossRef]
Model | ||
---|---|---|
DCM | 167 | 97 |
MM-NO | 79 | 46 |
MM-NP | 0 ‡ | 0 ‡ |
PM-NO | 5 | 3 |
PM-NP | 11 | 6 |
MIRT | 5 | 3 |
DCM | MM-NP | PM-NO | MIRT | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Item | ||||||||||||
A1 | −1.27 | 2.67 | −3.21 | 6.86 | −4.11 | 7.55 | −0.29 | 2.23 | ||||
A2 | −0.84 | 1.67 | −2.41 | 5.13 | −2.68 | 4.88 | −0.17 | 1.13 | ||||
A3 | −0.81 | 1.84 | −2.31 | 5.66 | −2.88 | 5.41 | −0.06 | 1.11 | ||||
A4 | −1.22 | 1.70 | −3.07 | 4.50 | −2.79 | 4.52 | −0.48 | 1.01 | ||||
A5 | −1.45 | 2.95 | −3.47 | 7.22 | −4.51 | 8.22 | −0.37 | 2.53 | ||||
A6 | −0.26 | 1.87 | −0.98 | 5.22 | −2.28 | 5.16 | 0.52 | 1.10 | ||||
A7 | −0.10 | 1.54 | −0.67 | 4.24 | −1.73 | 4.22 | 0.59 | 0.95 | ||||
A8 | −0.88 | 2.27 | −2.18 | 6.23 | −3.29 | 6.34 | 0.00 | 1.42 | ||||
A9 | −1.75 | 1.86 | −3.55 | 4.11 | −3.47 | 5.09 | −0.93 | 1.04 | ||||
A10 | −1.59 | 2.53 | −4.00 | 6.58 | −4.53 | 7.84 | −0.61 | 1.61 | ||||
D1 | 0.87 | 2.96 | 0.85 | 2.16 | −0.54 | 5.11 | 1.80 | 0.84 | ||||
D2 | −0.66 | 4.16 | −1.20 | 5.41 | −3.66 | 7.27 | 0.85 | 1.70 | ||||
D3 | −1.89 | 1.42 | −3.81 | 4.07 | −3.81 | 3.09 | −1.12 | 0.97 | ||||
D4 | −1.67 | 3.07 | −2.69 | 2.56 | −2.79 | 1.41 | −1.15 | 0.61 | ||||
D5 | −1.40 | 2.77 | −2.74 | 6.32 | −4.45 | 7.02 | 0.14 | 1.80 | ||||
D6 | −1.45 | 2.48 | −3.13 | 5.82 | −4.15 | 6.09 | −0.10 | 1.53 | ||||
D7 | −0.95 | 3.45 | −3.19 | 4.62 | −2.77 | 3.93 | −0.10 | 1.01 | ||||
D8 | −1.09 | 1.29 | −2.98 | 4.05 | −2.63 | 3.16 | −0.31 | 0.88 | ||||
D9 | −1.52 | 2.85 | −2.82 | 6.24 | −4.42 | 6.83 | 0.07 | 1.73 | ||||
D10 | −1.98 | 2.88 | −3.93 | 5.79 | −4.76 | 6.45 | −0.36 | 1.69 |
MM-NP | PM-NP | ||
---|---|---|---|
0 | 0 | 0.14 | 0.09 |
0.5 | 0 | 0.06 | 0.13 |
1 | 0 | 0.01 | 0.00 |
0 | 0.5 | 0.11 | 0.13 |
0.5 | 0.5 | 0.25 | 0.27 |
1 | 0.5 | 0.08 | 0.13 |
0 | 1 | 0.03 | 0.00 |
0.5 | 1 | 0.18 | 0.14 |
1 | 1 | 0.14 | 0.11 |
Model | GDINA | ADCM | DINA | GDINA | ADCM | DINA |
---|---|---|---|---|---|---|
DCM | 456 | 454 | 599 | 35 | 35 | 47 |
MM-NO | 169 | 179 | 295 | 13 | 14 | 23 |
MM-NP | 184 | 206 | 274 | 14 | 16 | 21 |
PM-NO | 10 | 0 ‡ | 29 | 1 | 0 ‡ | 2 |
PM-NP | 88 | 80 | 145 | 7 | 6 | 11 |
PC | CO | NC | PC | CO | NC | |
MIRT | 104 | 75 | 102 | 8 | 6 | 8 |
DCM:GDINA | MM-NO:GDINA | PM-NO:GDINA | MIRT:PC | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Item | |||||||||||||||||
E3 | −0.31 | 0.98 | 0.54 | 0.31 | −1.40 | 2.07 | 0.28 | 1.90 | −0.56 | 1.81 | 1.66 | 1.33 | 0.49 | 0.82 | 1.17 | 0.25 | 0.51 |
E4 | −0.12 | 1.69 | −1.42 | 4.08 | −1.11 | 3.81 | 1.03 | 0.95 | |||||||||
E5 | 0.98 | 2.31 | 0.63 | 3.93 | −0.11 | 3.87 | 2.31 | 1.00 | |||||||||
E6 | 0.84 | 1.77 | 0.27 | 3.83 | −0.19 | 3.63 | 1.94 | 0.87 | |||||||||
E7 | −0.14 | 1.20 | 1.13 | 0.70 | −1.51 | 3.08 | 1.82 | 2.57 | −0.78 | 2.33 | 2.72 | 2.01 | 0.91 | 1.00 | 1.47 | 0.72 | 0.25 |
E9 | 0.10 | 1.26 | −0.92 | 3.32 | −0.81 | 3.19 | 0.95 | 0.74 | |||||||||
E10 | 0.10 | 2.01 | −0.84 | 4.24 | 0.39 | 4.16 | 0.77 | 0.92 | |||||||||
E11 | −0.08 | 1.00 | 1.11 | 0.59 | −1.34 | 2.77 | 1.70 | 2.46 | −0.65 | 2.02 | 2.54 | 1.77 | 0.84 | 0.84 | 1.34 | 0.63 | 0.23 |
E12 | −1.72 | 0.69 | 1.31 | 1.06 | −3.11 | 2.06 | 0.09 | 3.79 | −2.18 | 2.15 | 2.94 | 2.52 | 0.20 | 1.27 | 0.70 | 1.11 | 0.66 |
E13 | 0.68 | 1.59 | −0.08 | 3.70 | 1.09 | 3.75 | 1.25 | 0.80 | |||||||||
E14 | 0.23 | 1.30 | −0.77 | 3.20 | 0.39 | 3.30 | 0.68 | 0.66 | |||||||||
E15 | 0.93 | 2.30 | 0.55 | 3.98 | −0.24 | 3.99 | 2.29 | 1.05 | |||||||||
E16 | −0.13 | 1.07 | 1.02 | 0.44 | −1.37 | 2.83 | 1.50 | 2.41 | −0.68 | 2.07 | 2.40 | 1.70 | 0.87 | 0.86 | 1.37 | 0.63 | 0.28 |
E18 | 0.86 | 1.52 | 0.24 | 3.52 | −0.08 | 3.38 | 1.83 | 0.76 | |||||||||
E19 | −0.23 | 1.96 | −1.52 | 4.40 | −1.25 | 4.12 | 1.09 | 1.06 | |||||||||
E20 | −1.46 | 0.89 | 1.02 | 0.86 | −2.82 | 2.34 | 0.08 | 3.52 | −1.85 | 2.35 | 2.68 | 2.41 | 0.21 | 1.28 | 0.93 | 0.91 | 0.65 |
E21 | 0.14 | 0.82 | 1.24 | 0.31 | −1.16 | 2.52 | 2.16 | 2.21 | −0.41 | 1.81 | 2.60 | 1.52 | 1.02 | 0.63 | 1.34 | 0.79 | 0.21 |
E22 | −0.90 | 2.33 | −2.58 | 4.67 | −1.89 | 4.67 | 0.72 | 1.35 | |||||||||
E25 | 0.12 | 1.14 | −0.86 | 2.77 | 0.23 | 3.02 | 0.52 | 0.57 | |||||||||
E26 | 0.15 | 1.16 | −0.57 | 2.76 | −0.59 | 2.77 | 0.92 | 0.59 | |||||||||
E27 | −0.87 | 1.76 | −2.58 | 3.74 | −0.66 | 4.01 | −0.26 | 0.97 | |||||||||
E28 | 0.51 | 1.90 | −0.16 | 4.07 | −0.51 | 3.95 | 1.74 | 0.99 |
Model | GDINA | ADCM | DINA | GDINA | ADCM | DINA |
---|---|---|---|---|---|---|
DCM | 979 | 977 | 1225 | 184 | 184 | 230 |
MM-NO | 1125 | 1157 | 1373 | 212 | 218 | 258 |
MM-NP | 281 | 353 | 466 | 53 | 66 | 88 |
PM-NO | 0 ‡ | 16 | 84 | 0 ‡ | 3 | 16 |
PM-NP | 250 | 256 | 483 | 47 | 48 | 91 |
PC | CO | NC | PC | CO | NC | |
MIRT | 31 | 31 | 65 | 6 | 6 | 12 |
DCM:GDINA | MM-NP:GDINA | PM-NO:GDINA | MIRT:PC | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Item | |||||||||||||||||
1 | −2.51 | 2.22 | 2.27 | 0.28 | −3.33 | 4.05 | 3.45 | 2.46 | −5.40 | 4.45 | 2.79 | 5.47 | −0.21 | 2.60 | 0.27 | 1.80 | 0.22 |
2 | −2.31 | 2.08 | 1.98 | 0.26 | −3.17 | 3.85 | 2.66 | 2.39 | −5.05 | 4.32 | 2.42 | 5.11 | −0.41 | 2.14 | 0.46 | 1.68 | 0.24 |
3 | −3.02 | 1.77 | −3.75 | 2.19 | −3.69 | 3.52 | −2.39 | 1.03 | |||||||||
5 | −1.09 | 2.61 | −1.50 | 3.89 | −3.20 | 6.16 | 0.08 | 1.94 | |||||||||
6 | −2.85 | 2.04 | −3.24 | 2.63 | −3.99 | 4.05 | −2.07 | 1.21 | |||||||||
8 | −1.54 | 3.61 | −2.05 | 5.68 | −4.54 | 7.97 | 0.04 | 2.90 | |||||||||
9 | −2.35 | 1.92 | 1.79 | 0.30 | −3.09 | 3.31 | 2.23 | 1.85 | −4.60 | 3.92 | 2.18 | 4.55 | −0.47 | 2.01 | 0.41 | 1.41 | 0.41 |
15 | −2.33 | 1.87 | 1.35 | −0.01 | −2.98 | 3.33 | 1.47 | 1.19 | −4.20 | 3.63 | 1.69 | 3.69 | −0.74 | 2.11 | 0.73 | 0.89 | 0.54 |
16 | −1.73 | 2.64 | −2.28 | 3.60 | −3.73 | 6.06 | −0.67 | 1.79 | |||||||||
21 | −2.33 | 2.24 | −3.06 | 3.30 | −3.93 | 5.14 | −1.42 | 1.57 | |||||||||
22 | −2.82 | 1.03 | 1.40 | 0.25 | −3.39 | 1.99 | 1.19 | 1.55 | −4.35 | 2.45 | 1.45 | 3.19 | −1.05 | 1.51 | −0.03 | 0.85 | 0.76 |
25 | −2.15 | 1.03 | 1.52 | 0.15 | −2.67 | 1.50 | 2.58 | 1.68 | −3.89 | 2.41 | 2.46 | 3.42 | −0.13 | 0.83 | −0.12 | 1.52 | 0.48 |
28 | −3.17 | 3.02 | −3.98 | 4.09 | −4.41 | 5.59 | −1.79 | 1.79 | |||||||||
29 | −2.78 | 1.85 | 2.13 | 0.35 | −3.80 | 2.99 | 2.91 | 2.94 | −5.19 | 3.83 | 2.61 | 5.38 | −0.44 | 1.94 | −0.31 | 1.92 | 0.31 |
32 | −2.38 | 3.58 | −3.27 | 5.35 | −4.77 | 7.85 | −0.87 | 2.92 | |||||||||
33 | −1.00 | 2.54 | −1.37 | 4.07 | −3.25 | 6.32 | 0.22 | 1.89 | |||||||||
35 | −1.90 | 1.13 | 1.98 | 0.14 | −2.32 | 1.50 | 2.95 | 2.69 | −3.90 | 2.53 | 3.00 | 4.31 | −0.34 | 0.15 | −0.48 | 1.87 | 0.00 |
36 | −2.22 | 2.15 | −2.83 | 3.01 | −3.74 | 4.90 | −1.32 | 1.47 | |||||||||
37 | −3.60 | 3.72 | −4.42 | 4.99 | −5.41 | 7.43 | −2.19 | 2.96 | |||||||||
38 | −2.43 | 2.52 | −2.93 | 3.40 | −4.08 | 5.55 | −1.34 | 1.67 | |||||||||
39 | −1.26 | 1.27 | −1.63 | 1.65 | −2.21 | 3.15 | −0.65 | 0.81 | |||||||||
44 | −2.63 | 2.86 | −3.21 | 3.93 | −4.47 | 6.30 | −1.41 | 1.96 |
DCM | MM-NO | MM-NP | PM-NO | PM-NP | MIRT | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Crit | Model | 500 | 1000 | 2000 | 500 | 1000 | 2000 | 500 | 1000 | 2000 | 500 | 1000 | 2000 | 500 | 1000 | 2000 | 500 | 1000 | 2000 |
AIC | DCM | 97 | 98 | 98 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
MM-NO | 0 | 0 | 0 | 9 | 39 | 76 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
MM-NP | 2 | 1 | 1 | 26 | 23 | 13 | 97 | 100 | 100 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | |
PM-NO | 0 | 0 | 0 | 5 | 5 | 4 | 0 | 0 | 0 | 31 | 57 | 83 | 0 | 0 | 0 | 3 | 3 | 2 | |
PM-NP | 1 | 1 | 1 | 6 | 4 | 1 | 2 | 0 | 0 | 2 | 1 | 0 | 98 | 100 | 100 | 2 | 1 | 0 | |
MIRT | 0 | 0 | 0 | 53 | 27 | 6 | 0 | 0 | 0 | 66 | 42 | 17 | 1 | 0 | 0 | 95 | 97 | 98 | |
BIC | DCM | 100 | 100 | 100 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
MM-NO | 0 | 0 | 0 | 0 | 1 | 15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
MM-NP | 0 | 0 | 0 | 0 | 0 | 0 | 67 | 99 | 100 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | |
PM-NO | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 6 | 1 | 0 | 0 | 0 | 0 | 0 | |
PM-NP | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 42 | 96 | 100 | 0 | 0 | 0 | |
MIRT | 0 | 0 | 0 | 100 | 99 | 85 | 32 | 1 | 0 | 100 | 99 | 94 | 57 | 4 | 0 | 100 | 100 | 100 | |
DCM | 0 ‡ | 0 ‡ | 0 ‡ | 16 | 18 | 19 | 100 | 103 | 104 | 35 | 36 | 37 | 105 | 109 | 110 | 64 | 65 | 64 | |
MM-NO | 59 | 56 | 54 | 0 ‡ | 0 ‡ | 0 ‡ | 52 | 48 | 46 | 15 | 12 | 11 | 55 | 52 | 50 | 49 | 44 | 42 | |
MM-NP | 4 | 2 | 1 | −1 | 0 | 1 | 0 ‡ | 0 ‡ | 0 ‡ | 7 | 6 | 6 | 13 | 13 | 13 | 15 | 14 | 13 | |
PM-NO | 30 | 29 | 28 | 0 | 1 | 1 | 20 | 20 | 20 | 0 ‡ | 0 ‡ | 0 ‡ | 19 | 20 | 20 | 4 | 2 | 1 | |
PM-NP | 4 | 2 | 1 | 1 | 2 | 2 | 9 | 9 | 9 | 5 | 5 | 4 | 0 ‡ | 0 ‡ | 0 ‡ | 8 | 7 | 7 | |
MIRT | 48 | 50 | 50 | −2 | 1 | 2 | 18 | 20 | 20 | −1 | 0 | 1 | 14 | 16 | 17 | 0 ‡ | 0 ‡ | 0 ‡ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Robitzsch , A. A Comparison of Mixed and Partial Membership Diagnostic Classification Models with Multidimensional Item Response Models. Information 2024, 15, 331. https://doi.org/10.3390/info15060331
Robitzsch A. A Comparison of Mixed and Partial Membership Diagnostic Classification Models with Multidimensional Item Response Models. Information. 2024; 15(6):331. https://doi.org/10.3390/info15060331
Chicago/Turabian StyleRobitzsch , Alexander. 2024. "A Comparison of Mixed and Partial Membership Diagnostic Classification Models with Multidimensional Item Response Models" Information 15, no. 6: 331. https://doi.org/10.3390/info15060331
APA StyleRobitzsch , A. (2024). A Comparison of Mixed and Partial Membership Diagnostic Classification Models with Multidimensional Item Response Models. Information, 15(6), 331. https://doi.org/10.3390/info15060331