Network Structure of Online Customer Reviews and Online Hotel Reviews: A Systematic Literature Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Processing
2.2. Data Collection
2.3. Data Analysis
3. Results and Discussion
3.1. Trends
3.2. Collaboration between Authors
3.3. Collaboration among Countries and Institutions
3.4. Co-Citation Analysis by Thematic Clusters
3.5. Keyword Analysis and Identification of Relevant Research Topics
4. Conclusions and Implications
Author Contributions
Funding
Conflicts of Interest
References
- Cheng, X.; Xue, T.; Yang, B.; Ma, B. A digital transformation approach in hospitality and tourism research. Int. J. Contemp. Hosp. Manag. 2023, 35, 2944–2967. [Google Scholar] [CrossRef]
- Krajčík, V.; Novotný, O.; Civelek, M.; Zvolánková, S.S. Digital literacy and digital transformation activities of service and manufacturing SMEs. J. Tour. Serv. 2023, 26, 242–262. [Google Scholar] [CrossRef]
- Antonio, N.; Rita, P. COVID 19: The catalyst for digital transformation in the hospitality industry? Tour. Manag. Stud. 2021, 17, 41–46. [Google Scholar] [CrossRef]
- Chang, K.Y.; Ku, E.C.S. Discount or prestige: E-reputation, compatibility, and continued mobile apps usage intention of low-cost carriers. J. Tour. Serv. 2023, 26, 73–91. [Google Scholar] [CrossRef]
- Mohamad, M.A.; Radzi, S.M.; Hanafiah, M.H. Understanding tourist mobile hotel booking behaviour: Incorporating perceived enjoyment and perceived price value in the modified Technology Acceptance Model. Tour. Manag. Stud. 2021, 17, 19–30. [Google Scholar] [CrossRef]
- Wu, S.-H. Minds think alike: How do food delivery mobile applications innovate consumer service. J. Tour. Serv. 2022, 25, 137–155. [Google Scholar] [CrossRef]
- Şeker, F.; Kadirhan, G.; Erdem, A. The factors affecting tourism mobile apps usage. Tour. Manag. Stud. 2023, 19, 7–14. [Google Scholar] [CrossRef]
- Lin, Z.; Rasoolimanesh, M. Sharing tourism experiences in social media: A systematic review. Anatolia 2024, 35, 67–81. [Google Scholar] [CrossRef]
- Gavilan, D.; Avello, M.; Martinez-Navarro, G. The influence of online ratings and reviews on hotel booking consideration. Tour. Manag. 2018, 66, 53–61. [Google Scholar] [CrossRef]
- Tariyal, A.; Bisht, S.; Rana, V.; Roy, S.; Pratap, S. Utilitarian and hedonic values of eWOM media and online booking decisions for tourist destinations in India. J. Open Innov. Technol. Mark. Complex. 2022, 8, 137. [Google Scholar] [CrossRef]
- Antón-Maraña, P.; Puche-Regaliza, J.C.; Arranz-Val, P.; Aparicio-Castillo, S. Examining the relationship between online distribution channels and tourist satisfaction and loyalty. Tour. Manag. Stud. 2023, 19, 7–20. [Google Scholar] [CrossRef]
- Fu, W.; Wei, S.; Wang, J.; Kim, H.-S. Understanding the customer experience and satisfaction of casino hotels in Busan through online user-generated content. Sustainability 2022, 14, 5846. [Google Scholar] [CrossRef]
- Singh, H.P.; Alshallaqi, M.; Altamimi, M. Predicting critical factors impacting hotel online ratings: A comparison of religious and commercial destinations in Saudi Arabia. Sustainability 2023, 15, 11998. [Google Scholar] [CrossRef]
- Wei, S.; Kim, H.-S. Online customer reviews and satisfaction with an upscale hotel: A case study of Atlantis, The Palm in Dubai. Information 2022, 13, 150. [Google Scholar] [CrossRef]
- Oliveira, A.S.; Renda, A.I.; Correia, M.B.; Antonio, N. Hotel customer segmentation and sentiment analysis through online reviews: An analysis of selected European markets. Tour. Manag. Stud. 2022, 18, 29–40. [Google Scholar] [CrossRef]
- Yuan, Y.; You, T.; Xu, T.; Yu, X. Customer-oriented strategic planning for hotel competitiveness improvement based on online reviews. Sustainability 2022, 14, 15299. [Google Scholar] [CrossRef]
- Wu, D.C.; Zhong, S.; Qio, R.T.R.; Wu, J. Are customer reviews just reviews? Hotel forecasting using sentiment analysis. Tour. Econ. 2022, 28, 795–816. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, Y.; Song, B.; Feng, Q.; Lin, H.; Tang, J. The interactive effects of extrinsic and intrinsic motivations on service recovery performance in the hospitality industry: The mediating role of self-efficacy. Tour. Manag. Stud. 2023, 19, 7–22. [Google Scholar] [CrossRef]
- Sann, R.; Lai, P.-C.; Liaw, S.-Y.; Chen, C.-T. Predicting online complaining behavior in the hospitality industry: Application of big data analytics to online reviews. Sustainability 2022, 14, 1800. [Google Scholar] [CrossRef]
- Liu, X.; Mehraliyev, F.; Liu, C.; Schuckert, M. The roles of social media in tourists’ choices of travel components. Tour. Stud. 2020, 20, 27–48. [Google Scholar] [CrossRef]
- Su, L.; Yang, Q.; Swanson, S.R.; Chen, N.C. The impact of online reviews on destination trust and travel intention: The moderating role of online review trustworthiness. J. Vacat. Mark. 2022, 28, 406–423. [Google Scholar] [CrossRef]
- Çevrimkaya, M.; Zengin, B. The mediating role of memorable tourism experience on tourist behavior: A perspective on organised tours. Tour. Manag. Stud. 2023, 19, 61–72. [Google Scholar] [CrossRef]
- Morosan, C.; Bowen, J.T. Analytic perspectives on online purchasing in hotels: A review of literature and research directions. Int. J. Contemp. Hosp. Manag. 2017, 30, 557–580. [Google Scholar] [CrossRef]
- Pala, T.; Cetin, G. Exploring transformative travel experiences: The case of Turkish travelers. Tour. Manag. Stud. 2022, 18, 7–17. [Google Scholar] [CrossRef]
- Tiwari, A.V.; Bajpal, N.; Pandey, P.K. The role of human emotions in memorable tourism experience and revisit intention. Tour. Manag. Stud. 2023, 19, 15–27. [Google Scholar] [CrossRef]
- Antonio, N.; de Almeida, A.; Nunes, L.; Batista, F.; Ribeiro, R. Hotel online reviews: Different languages, different opinions. Inf. Technol. Tour. 2018, 18, 157–185. [Google Scholar] [CrossRef]
- Goethals, P. Multilingualism and international tourism: A content- and discourse-based approach to language-related judgments in Web 2.0 hotel reviews. Lang. Intercult. Commun. 2016, 16, 235–253. [Google Scholar] [CrossRef]
- Wu, L.; Han, S.; Alei, F.; Anna, S.M. The impact of language style on consumers’ reactions to online reviews. Tour. Manag. 2017, 59, 590–596. [Google Scholar] [CrossRef]
- Broeder, P. Self-disclosure and trust in the shared economy: A cross-cultural comparison. Tour. Manag. Stud. 2023, 19, 73–82. [Google Scholar] [CrossRef]
- Zhou, L.; Amadi, U.; Zhang, D. Is self-citation biased? An investigation via the lens of citation polarity, density, and location. Inf. Syst. 2018, 22, 77–90. [Google Scholar] [CrossRef]
- Rey-Moreno, M.; Sánchez-Franco, M.J.; Rey-Tienda, M.S. Examining transaction-specific satisfaction and trust in Airbnb and hotels. An application of BERTopic and Zero-shot text classification. Tour. Manag. Stud. 2023, 19, 21–37. [Google Scholar] [CrossRef]
- Lincényi, M.; Bulanda, I. Use of marketing communication tools in tourism in accommodation facilities during the COVID-19 pandemic. J. Tour. Serv. 2022, 26, 25–44. [Google Scholar] [CrossRef]
- Taherdoost, H.; Madanchian, M. Artificial intelligence and sentiment analysis: A review in competitive research. Computers 2023, 12, 37. [Google Scholar] [CrossRef]
- Ülkü, A. Artificial intelligence-based large language models and integrity of exams and assignments in higher education: The case of tourism courses. Tour. Manag. Stud. 2023, 19, 21–34. [Google Scholar] [CrossRef]
- Pop, R.-A.; Săplăcan, Z.; Dabija, D.-C.; Alt, M.-A. The impact of social media influencers on travel decisions: The role of trust in consumer decision journey. Curr. Issues Tour. 2022, 25, 823–843. [Google Scholar] [CrossRef]
- Roy, G.; Datta, B.; Mukherjee, S.; Eckert, S.; Dixit, S.K. How online travel reviews sources affect travelers’ behavioral intentions? Analysis with source credibility theory. Tour. Plan. Dev. 2024, 21, 299–329. [Google Scholar] [CrossRef]
- Sainaghi, R.; Baggio, R.; Phillips, P.; Mauri, A.G. Hotel performance and research streams: A network cluster analysis. Int. J. Contemp. Hosp. Manag. 2018, 30, 425–462. [Google Scholar] [CrossRef]
- Arici, H.E.; Arıcı, N.C.; Altinay, L. The use of big data analytics to discover customers’ perceptions of and satisfaction with green hotel service quality. Curr. Issues Tour. 2023, 26, 270–288. [Google Scholar] [CrossRef]
- Izzo, F.; Picone, Q. Defining an integrated and computed methodology approach for sentiment and psychographic analysis in tourism research. J. Tour. Serv. 2022, 13, 1–21. [Google Scholar] [CrossRef]
- Mariani, M.; Borghi, M. Exploring environmental concerns on digital platforms through big data: The effect of online consumers’ environmental discourse on online review ratings. J. Sustain. Tour. 2023, 31, 2592–2611. [Google Scholar] [CrossRef]
- Babaç, E.; Yüncü, H.R. Determination of user experience on food business websites using neuromarketing techniques. Tour. Manag. Stud. 2022, 18, 49–64. [Google Scholar] [CrossRef]
- Casais, B.; Fernandes, J.; Sarmento, M. Tourism innovation through relationship marketing and value co-creation: A study on peer-to-peer online platforms for sharing accommodation. J. Hosp. Tour. Manag. 2020, 42, 51–57. [Google Scholar] [CrossRef]
- Barbosa, B.; Rocha, A.; Pina, L. Guerrilla marketing on Facebook: A mixed-method study on the effects on brand image and content sharing intentions. Tour. Manag. Stud. 2022, 18, 37–47. [Google Scholar] [CrossRef]
- Fang, B.; Ye, Q.; Kucukusta, D.; Law, R. Analysis of the perceived value of online tourism reviews: Influence of readability and reviewer characteristics. Tour. Manag. 2016, 52, 498–506. [Google Scholar] [CrossRef]
- Reyes-Menendez, A.; Ramon-Saura, J.; Filipe, F. The importance of behavioral data to identify online fake reviews for tourism businesses: A systematic review. Peer J. Comput. Sci. 2019, 5, e219. [Google Scholar] [CrossRef] [PubMed]
- Simeon, M.I.; Buonincontri, P.; Cinquegrani, F.; Martone, A. Exploring tourists’ cultural experiences in Naples through online reviews. J. Hosp. Tour. Technol. 2017, 8, 220–238. [Google Scholar] [CrossRef]
- Jeong, M.; Jeon, M.M. Customer reviews of hotel experiences through consumer generated media (CGM). J. Hosp. Mark. Manag. 2008, 17, 121–138. [Google Scholar] [CrossRef]
- Schuckert, M.; Liu, Z.; Law, R. Hospitality and tourism online reviews: Recent trends and future directions. J. Travel Tour. Mark. 2015, 32, 608–621. [Google Scholar] [CrossRef]
- Zheng, X.; Huang, J.H.; Wu, J.; Sun, S.; Wang, S. Emerging trends in online reviews research in hospitality and tourism: A scientometric update (2000−2020). Tour. Manag. Perspect. 2023, 47, 101105. [Google Scholar] [CrossRef]
- Santos, M.C.; Veiga, C.; Águas, P.; Santos, J.A.C. Sustainability as a success factor for tourism destinations: A systematic literature review. Worldw. Hosp. Tour. Themes 2022, 14, 20–37. [Google Scholar] [CrossRef]
- Patwal, A.S.; Rana, V.; Pathak, V.K. Predictors influencing the choice of lodging option: A systematic literature review of homestays. J. Tour. Serv. 2023, 26, 263–284. [Google Scholar] [CrossRef]
- Alsharif, A.H.; Salleh, N.Z.; Pilelienė, L.; Al-Zahrani, S.A. Exploring the tourism, neuro-tourism, and hospitality nexus: A comprehensive bibliometric analysis. J. Tour. Serv. 2023, 14, 197–221. [Google Scholar] [CrossRef]
- Pestana, M.H.; Sánchez, A.V.; Moutinho, L. The network science approach in determining the intellectual structure, emerging trends and future research opportunities: An application to senior tourism research. Tour. Manag. Perspect. 2019, 31, 370–382. [Google Scholar] [CrossRef]
- Chen, C. Citespace II: Detecting and visualising emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 2006, 57, 359–397. [Google Scholar] [CrossRef]
- Van-Eck, N.-J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Liu, W. A tale of two databases: The use of Web of Science and Scopus in academic papers. Scientometrics 2020, 123, 321–335. [Google Scholar] [CrossRef]
- Ye, Q.; Li, T.; Law, R. A co-authorship network analysis of tourism and hospitality research collaboration. J. Hosp. Tour. Res. 2013, 37, 51–76. [Google Scholar] [CrossRef]
- Basenach, L.; Rennenberg, B.; Salbach, H.; Dreier, M.; Wölfling, K. Systematic reviews and meta-analyses of treatment interventions for Internet use disorders: Critical analysis of the methodical quality according to the PRISMA guidelines. J. Behav. Addict. 2023, 12, 9–25. [Google Scholar] [CrossRef]
- Dinç, A.; Bahar, M.; Topsakal, Y. Ecotourism research: A bibliometric review. Tour. Manag. Stud. 2023, 19, 29–40. [Google Scholar] [CrossRef]
- Chen, C.; Dubin, R.; Kim, M.C. Emerging trends and new developments in regenerative medicine: A scientometric update (2000–2014). Expert Opin. Biol. Ther. 2014, 14, 1295–1317. [Google Scholar] [CrossRef]
- Wang, L.H.; Wang, Q.H.; Zhang, X.; Cai, W.W.; Sun, X.H. A bibliometric analysis of anaerobic digestion for methane research during the period 1994–2011. J. Mater. Cycles Waste Manag. 2013, 15, 1–8. [Google Scholar] [CrossRef]
- Tseng, Y.-H.; Lin, Y.-I.; Lee, Y.-Y.; Hung, W.-C.; Lee, C.-H. A comparison of methods for detecting hot topics. Scientometrics 2009, 81, 73–90. [Google Scholar] [CrossRef]
- Kaur, A.; Kumar, V.; Sindhwani, R.; Singh, P.L.; Behl, A. Public debt sustainability: A bibliometric co-citation visualisation analysis. Int. J. Emerg. Mark. 2024, 19, 1090–1110. [Google Scholar] [CrossRef]
- Wider, W.; Gao, Y.; Chan, C.K.; Lin, J.; Li, J.; Tanucan, J.C.M.; Fauzi, M.A. Unveiling trends in digital tourism research: A bibliometric analysis of co-citation and co-word analysis. Environ. Sustain. Indic. 2023, 20, 100308. [Google Scholar] [CrossRef]
- de Solla Price, D.J. Networks of scientific papers: The pattern of bibliographic references indicates the nature of the scientific research front. Science 1965, 149, 510–515. [Google Scholar] [CrossRef] [PubMed]
- Maghsoudi, M.; Shokouhyar, S.; Ataei, A.; Ahmadi, S.; Shokoohyar, S. Co-authorship network analysis of AI applications in sustainable supply chains: Key players and themes. J. Clean. Prod. 2023, 422, 138472. [Google Scholar] [CrossRef]
- Chen, Z.; Guanb, J. The impact of small world on innovation: An empirical study of 16 countries. J. Informetr. 2010, 4, 97–106. [Google Scholar] [CrossRef]
- Vivona, R.; Demircioglu, M.A.; Audretsch, D.B. The costs of collaborative innovation. J. Technol. Transf. 2023, 48, 873–899. [Google Scholar] [CrossRef]
- Fan, W.; Li, G.; Law, R. Analysing co-authoring communities of tourism research collaboration. Tour. Manag. Perspect. 2020, 33, 100607. [Google Scholar] [CrossRef]
- van Duijn, M.A.J.; Vermunt, J.K. What is special about social network analysis? Methodology 2006, 2, 2–6. [Google Scholar] [CrossRef]
- Philips, P.; Antonio, N.; Almeida, A.; Nunes, L. The influence of geographic and psychic distance on online hotel ratings. J. Travel Res. 2019, 59, 722–741. [Google Scholar] [CrossRef]
- Pera, R.; Viglia, G.; Grazzini, L.; Dalli, D. When empathy prevents negative reviewing behavior. Ann. Tour. Res. 2019, 75, 265–278. [Google Scholar] [CrossRef]
- Jiang, Y.; Brent, W.; Ritchie, B.W.; Benckendorff, P. Bibliometric visualisation: An application in tourism crisis and disaster management research. Curr. Issues Tour. 2019, 22, 1925–1957. [Google Scholar] [CrossRef]
- Haythornthwaite, C. Social network analysis: An approach and technique for the study of information exchange. Libr. Inf. Sci. Res. 1996, 18, 323–342. [Google Scholar] [CrossRef]
- Burt, R.S. Structural Holes; Harvard University Press: Cambridge, MA, USA, 1992; pp. 1–324. [Google Scholar]
- Vermeulen, I.E.; Seegers, D. Tried and tested: The impact of online hotel reviews on consumer consideration. Tour. Manag. 2009, 30, 123–127. [Google Scholar] [CrossRef]
- Sparks, B.A.; Browning, V. The impact of online reviews on hotel booking intentions and perception of trust. Tour. Manag. 2011, 32, 1310–1323. [Google Scholar] [CrossRef]
- Pantedelis, I.S. Electronic meal experience: A content analysis of online restaurant comments. Cornell Hosp. Q. 2010, 51, 3–11. [Google Scholar] [CrossRef]
- Narong, D.K.; Hallinger, P. A Keyword co-occurrence analysis of research on service learning: Conceptual foci and emerging research trends. Educ. Sci. 2023, 13, 339. [Google Scholar] [CrossRef]
- Ballester, E.; Rubio, N.; Ruiz, C. Emojis and users’ brand engagement in Instagram. The case of eco-friendly restaurants. J. Tour. Serv. 2023, 14, 64–88. [Google Scholar] [CrossRef]
- Garg, A.; Kumar, J. Social media marketing influence on Boutique Hotel customers’ purchase intention in Malaysia. Tour. Manag. Stud. 2021, 17, 51–62. [Google Scholar] [CrossRef]
- Tung, L.T.; My, D.T.H. Electronic Word of Mouth, attitude, motivation, and travel intention in the post-COVID-19 pandemic. J. Tour. Serv. 2023, 14, 181–196. [Google Scholar] [CrossRef]
- Björk, P.; Kauppinen-Räisänen, H. A netnographic examination of travelers’ online discussions of risks. Tour. Manag. Perspect. 2012, 2–3, 65–71. [Google Scholar] [CrossRef]
- Dimitrios, B.; Ioannis, R.; Angelos, N.; Nikolaos, T. Digital marketing: The case of digital marketing strategies on luxurious hotels. Procedia Comput. Sci. 2023, 219, 688–696. [Google Scholar] [CrossRef]
Co-Authors’ Institutions | Total | Country | Link |
---|---|---|---|
Publications | Strength | ||
Online customer reviews: | |||
Hong Kong Polytech Univ | 25 | China | 1 |
Cornell Univ | 7 | USA | 2 |
Univ Salford | 9 | UK | 3 |
Online hotel reviews: | |||
Hong Kong Polytech Univ | 17 | China | 9 |
National Chung Cheng Univ | 8 | Taiwan | 2 |
Virginia Polytechnic Int. S. University | 6 | USA | 3 |
(a) | ||||||
OCR | OCR | Author | Year | Source | Cluster # | Number |
Citations | Centrality | Authors | ||||
2468 | 0.34 | Litvin, S.W., Goldsmith, R.E. and Pan, B. | 2008 | TM | 0; 1 | 3 |
1085 | 0.33 | Vermeulen, I.E. and Seegers, D. | 2009 | TM | 1; 6 | 2 |
927 | 0.35 | Sparks, B.A. and Browning, V. | 2011 | TM | 0; 1; 2 | 2 |
422 | 0.31 | Catallops, A.S. and Salvi, F. | 2014 | IJHM | 0; 1 | 2 |
312 | 0.32 | Xiang, Z., Schwartz, Z., Gerdes, J.H., Jr. and Uysal, M. | 2015 | IJHM | 0; 1 | 4 |
201 | 0.32 | Liu, Z. and Park, S. | 2015 | TM | 0; 2 | 2 |
201 | 0.37 | Pantelidis, I.S. | 2010 | CHQ | 9; 14 | 1 |
154 | 0.36 | Mauri, A.G. and Minazzi, R. | 2013 | IJHM | 0; 1 | 2 |
147 | 0.31 | Fang, B., Ye, Q., Kucukusta, D. and Law, R. | 2016 | TM | 2 | 4 |
33 | 0.33 | Kwok, L. and Xie, K.L. | 2016 | IJCHM | 0; 5 | 2 |
(b) | ||||||
OHR | OHR | Author | Year | Source | Cluster # | Number |
Citations | Centrality | Authors | ||||
1085 | 0.34 | Vermeulen, I.E. and Seegers, D. | 2009 | TM | 0;1 | 2 |
252 | 0.33 | Xie, H., Miao, L., Kuo, P.J. and Lee, B.Y. | 2011 | IJHM | 0 | 4 |
197 | 0.33 | Kim, E.E.K., Mattila, A.S. and Baloglu, S. | 2011 | CHQ | 0 | 3 |
137 | 0.37 | Sparks, B.A., So, K.K.F. and Bradley, G.L. | 2016 | TM | 0 | 3 |
134 | 0.19 | Li, H.Y., Ye, Q. and Law, R. | 2013 | APJTR | 4 | 3 |
133 | 0.35 | Berezina, K., Bilgihan, A., Cobanoglu, C. and Okumus, F. | 2016 | JHMM | 3 | 4 |
129 | 0.34 | Browning, V., So, K.K.F. and Sparks, B. | 2013 | JTTM | 0 | 3 |
(a) | ||||||
OCR | Count (Centrality) (Rank) | |||||
Keywords | Total | 2008–2009 | 2010–2012 | 2013–2015 | 2016–2018 | 2019–2021 |
Sale | 258 | 131 (0.01) (1) | 17 (0.1) (5) | 42 (0.28) (1) | 61 (0.13) (1) | 7 (0.36) (1) |
Word of mouth | 118 | 61 (0.11) (1) | 13 (0.18) (5) | 41 (0.14) (2) | 3 (0.1) (4) | |
Sentiment analysis | 96 | 51 (0.13) (2) | 14 (0.16) (4) | 27 (0.24) (5) | 4 (0.07) (3) | |
Text mining | 89 | 49 (0.01) (2) | 10 (0.1) (8) | 27 (0.12) (6) | 3 (0.04) (5) | |
Customer satisfaction | 60 | 32 (0.16) (3) | 7 (0.29) (6) | 6 (0.06) (10) | 12 (0.11) (9) | 3 (0.02) (4) |
Data mining | 54 | 7 (0.05) (9) | 14 (0.33) (4) | 28 (0.26) (4) | 5 (0.07) (2) | |
Impact | 50 | 30 (0.09) (2) | 20 (0.15) (7) | |||
Information | 35 | 21 (0.37) (3) | 14 (0.14) (8) | |||
Social media | 14 | 14 (0.11) (4) | ||||
Behaviour | 13 | 13 (0.1) (5) | ||||
eWOM | 11 | 11 (0.04) (6) | ||||
Review helpfulness | 10 | 10 (0.11) (7) | ||||
Service failure | 2 | 2 (0.00) (6) | ||||
Storytelling | 2 | 2 (0.00) (6) | ||||
(b) | ||||||
OHR | Count (Centrality) (Rank) | |||||
Keywords | Total | 2010–2012 | 2013–2015 | 2016–2018 | 2019–2021 | |
Word of mouth | 73 | 39 (0.27) (2) | 6 (0.12) (9) | 25 (0.16) (1) | 3 (0.43) (2) | |
Sentiment analysis | 40 | 22(0.14) (3) | 18 (0.23) (4) | |||
Impact | 37 | 21 (0.13) (2) | 14 (0.3) (5) | 2 (0.6) (3) | ||
eWOM | 33 | 17 (0.87) (4) | 5 (0.13) (10) | 9 (0.11) (9) | 2 (0.16) (3) | |
Information | 25 | 15 (0.16) (5) | 10 (0.05) (8) | |||
Customer satisfaction | 23 | 14 (0.24) (4) | 9 (0.0) (9) | |||
Text mining | 16 | 13 (0.11) (5) | 3 (0.14) (2) | |||
Service failure | 13 | 6 (0.11) (9) | 7 (0.04)(10) | |||
Tripadvisor | 13 | 13 (0.07) (6) | ||||
Satisfaction | 12 | 10 (0.21) (8) | 2 (0.04) (3) | |||
Tourism | 12 | 12 (0.13) (7) | ||||
Service quality | 11 | 11 (0.21) (6) | ||||
Sale | 10 | 10 (0.04)(8) | ||||
Review helpfulness | 9 | 9 (0.05)(9) | ||||
Booking intention | 8 | 8 (0.82) (9) | ||||
Communication | 7 | 7 (0.17) ((8) | ||||
Intention | 7 | 7 (0.l6) (8) | ||||
Reviewer expertise | 5 | 3 (0.17) (10) | 2 (0) (3) | |||
Motivation | 3 | 3 (0.2) (10) | ||||
Big data | 2 | 2 (0.28) (3) | ||||
Customer dissatisfaction | 2 | 2 (0.4) (3) | ||||
Heuristics | 2 | 2 (0.25) (3) | ||||
Perception | 2 | 2 (0) (3) | ||||
Review rating consistency | 2 | 2 (0) (3) |
(a) | ||||
Keywords OCR | Strength | Begin | End | 2008—2021 |
Text mining | 3.3761 | 2008 | 2010 | ▃▃▃▃▂▂▂▂▂▂▂▂▂ |
Customer satisfaction | 3.7272 | 2008 | 2011 | ▃▃▃▃▃▂▂▂▂▂▂▂▂ |
Sale | 1.1643 | 2013 | 2016 | ▂▂▂▂▂▂▃▃▃▃▂▂▂ |
WOM | 1.9619 | 2014 | 2015 | ▂▂▂▂▂▂▂▃▃▂▂▂▂ |
eWOM | 1.3059 | 2016 | 2017 | ▂▂▂▂▂▂▂▂▂▃▃▂▂ |
Review helpfulness | 2.0927 | 2017 | 2021 | ▂▂▂▂▂▂▂▂▂▂▃▃▃ |
(b) | ||||
Keywords OHR | Strength | Begin | End | 2008—2021 |
Word of mouth | 1.9358 | 2012 | 2013 | ▂▂▂▂▂▃▃▂▂▂▂▂▂ |
eWOM | 0.9231 | 2015 | 2016 | ▂▂▂▂▂▂▂▂▃▃▂▂▂ |
Impact | 0.5604 | 2016 | 2017 | ▂▂▂▂▂▂▂▂▂▃▃▂▂ |
Tripadvisor | 0.5546 | 2017 | 2021 | ▂▂▂▂▂▂▂▂▂▂▃▃▃ |
Customer satisfaction | 0.7743 | 2017 | 2021 | ▂▂▂▂▂▂▂▂▂▂▃▃▃ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pestana, M.H.; Gageiro, M.; Santos, J.A.C.; Santos, M.C. Network Structure of Online Customer Reviews and Online Hotel Reviews: A Systematic Literature Review. Information 2024, 15, 334. https://doi.org/10.3390/info15060334
Pestana MH, Gageiro M, Santos JAC, Santos MC. Network Structure of Online Customer Reviews and Online Hotel Reviews: A Systematic Literature Review. Information. 2024; 15(6):334. https://doi.org/10.3390/info15060334
Chicago/Turabian StylePestana, Maria Helena, Manuel Gageiro, José António C. Santos, and Margarida Custódio Santos. 2024. "Network Structure of Online Customer Reviews and Online Hotel Reviews: A Systematic Literature Review" Information 15, no. 6: 334. https://doi.org/10.3390/info15060334
APA StylePestana, M. H., Gageiro, M., Santos, J. A. C., & Santos, M. C. (2024). Network Structure of Online Customer Reviews and Online Hotel Reviews: A Systematic Literature Review. Information, 15(6), 334. https://doi.org/10.3390/info15060334