Light-Field Image Compression Based on a Two-Dimensional Prediction Coding Structure
Abstract
:1. Introduction
2. Related Work
3. Proposed Method
3.1. Proposed Prediction Structure
3.2. Encoding Scheme
Algorithm 1 algorithm of lossless coding. |
|
3.3. Progressive Transmission
4. Experimental Results
4.1. Lossless Compression
4.2. Lossy Compression
4.3. Computational Complexity Analysis
4.4. Progressive Transmission
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Landy, M.; Movshon, J.A. The Plenoptic Function and the Elements of Early Vision. In Computational Models of Visual Processing; MIT Press: Cambridge, CA, USA, 1991; pp. 3–20. [Google Scholar]
- Levoy, M.; Hanrahan, P. Light field rendering. In Proceedings of the 23rd annual conference on Computer Graphics and Interactive Techniques, New Orleans, LA, USA, 4–9 August 1996; pp. 31–42. [Google Scholar]
- Ye, K.; Li, Y.; Li, G.; Jin, D.; Zhao, B. End-to-End Light Field Image Compression with Multi-Domain Feature Learning. Appl. Sci. 2024, 14, 2271. [Google Scholar] [CrossRef]
- Ng, R.; Levoy, M.; Brédif, M.; Duval, G.; Horowitz, M.; Hanrahan, P. Light Field Photography with a Hand-Held Plenoptic Camera. Doctoral Dissertation, Stanford University, Stanford, CA, USA, 2005. [Google Scholar]
- Sullivan, G.J.; Ohm, J.R.; Han, W.J.; Wiegand, T. Overview of the high efficiency video coding (HEVC) standard. IEEE Trans. Circuits Syst. Video Technol. 2012, 22, 1649–1668. [Google Scholar] [CrossRef]
- Skodras, A.; Christopoulos, C.; Ebrahimi, T. The JPEG 2000 still image compression standard. IEEE Signal Process. Mag. 2001, 18, 36–58. [Google Scholar] [CrossRef]
- Bach, N.G.; Tran, C.M.; Duc, T.N.; Tan, P.X.; Kamioka, E. Novel Projection Schemes for Graph-Based Light Field Coding. Sensors 2022, 22, 4948. [Google Scholar] [CrossRef] [PubMed]
- Aggoun, A. A 3D DCT compression algorithm for omnidirectional integral images. In Proceedings of the IEEE International Conference on Acoustics Speech and Signal Processing, Toulouse, France, 14–19 May 2006. [Google Scholar]
- Sgouros, N.; Kontaxakis, I.; Sangriotis, M. Effect of different traversal schemes in integral image coding. Appl. Opt. 2008, 47, D28–D37. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, M.B.; Pereira, M.P.; Alves, G.; da Silva, E.A.; Pagliari, C.L.; Pereira, F.; Testoni, V. A 4D DCT-Based Lenslet Light Field Codec. In Proceedings of the IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; pp. 435–439. [Google Scholar]
- Zayed, H.H.; Kishk, S.E.; Ahmed, H.M. 3D wavelets with SPIHT coding for integral imaging compression. Int. J. Comput. Sci. Netw. Secur. 2012, 12, 126–133. [Google Scholar]
- Said, A.; Pearlman, W.A. A new, fast, and efficient image codec based on set partitioning in hierarchical trees. IEEE Trans. Circuits Syst. Video Technol. 1996, 6, 243–250. [Google Scholar] [CrossRef]
- Higa, R.S.; Chavez, R.F.L.; Leite, R.B.; Arthur, R.; Iano, Y. Plenoptic image compression comparison between JPEG, JPEG2000 and SPITH. Cyber J. JSAT 2013, 3, 1–6. [Google Scholar]
- Olsson, R.; Sjostrom, M.; Xu, Y. A combined pre-processing and H. 264-compression scheme for 3D integral images. In Proceedings of the International Conference on Image Processing, Atlanta, GA, USA, 8–11 October 2006; pp. 513–516. [Google Scholar]
- Dai, F.; Zhang, J.; Ma, Y.; Zhang, Y. Lenselet image compression scheme based on subaperture images streaming. In Proceedings of the IEEE International Conference on Image Processing (ICIP), Quebec City, QC, Canada, 27–30 September 2015; pp. 4733–4737. [Google Scholar]
- Vieira, A.; Duarte, H.; Perra, C.; Tavora, L.; Assuncao, P. Data formats for high efficiency coding of Lytro-Illum light fields. In Proceedings of the International Conference on Image Processing Theory, Tools and Applications (IPTA), Orleans, France, 10–13 November 2015; pp. 494–497. [Google Scholar]
- Hariharan, H.P.; Lange, T.; Herfet, T. Low complexity light field compression based on pseudo-temporal circular sequencing. In Proceedings of the IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), Cagliari, Italy, 7–9 June 2017; pp. 1–5. [Google Scholar]
- Zhao, S.; Chen, Z.; Yang, K.; Huang, H. Light field image coding with hybrid scan order. In Proceedings of the Visual Communications and Image Processing (VCIP), Chengdu, China, 27–30 November 2016; pp. 1–4. [Google Scholar]
- Jia, C.; Yang, Y.; Zhang, X.; Zhang, X.; Wang, S.; Wang, S.; Ma, S. Optimized interview prediction based light field image compression with adaptive reconstruction. In Proceedings of the IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 4572–4576. [Google Scholar]
- Liu, D.; Wang, L.; Li, L.; Xiong, Z.; Wu, F.; Zeng, W. Pseudo-sequence-based light field image compression. In Proceedings of the IEEE International Conference on Multimedia & Expo Workshops (ICMEW), Seattle, WA, USA, 11–15 July 2016; pp. 1–4. [Google Scholar]
- Li, L.; Li, Z.; Li, B.; Liu, D.; Li, H. Pseudo-sequence-based 2-D hierarchical coding structure for light-field image compression. IEEE J. Sel. Top. Signal Process. 2017, 11, 1107–1119. [Google Scholar] [CrossRef]
- Amirpour, H.; Pinheiro, A.; Pereira, M.; Lopes, F.J.; Ghanbari, M. Efficient light field image compression with enhanced random access. ACM Trans. Multimedia Comput. Commun. Appl. 2022, 18, 1–18. [Google Scholar] [CrossRef]
- Ahmad, W.; Olsson, R.; Sjöström, M. Interpreting plenoptic images as multi-view sequences for improved compression. In Proceedings of the IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 4557–4561. [Google Scholar]
- Zhang, X.; Wang, H.; Tian, T. Light field image coding with disparity correlation based prediction. In Proceedings of the IEEE Fourth International Conference on Multimedia Big Data (BigMM), Xi’an, China, 13–16 September 2018; pp. 1–6. [Google Scholar]
- Khoury, J.; Pourazad, M.T.; Nasiopoulos, P. A new prediction structure for efficient MV-HEVC based light field video compression. In Proceedings of the International Conference on Computing, Networking and Communications (ICNC), Honolulu, HI, USA, 18–21 February 2019; pp. 588–591. [Google Scholar]
- Shin, C.; Jeon, H.G.; Yoon, Y.; Kweon, I.S.; Kim, S.J. Epinet: A fully convolutional neural network using epipolar geometry for depth from light field images. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 4748–4757. [Google Scholar]
- Hedayati, E.; Havens, T.C.; Bos, J.P. Light field compression by residual CNN-assisted JPEG. In Proceedings of the International Joint Conference on Neural Networks (IJCNN), Shenzhen, China, 18–22 July 2021; pp. 1–9. [Google Scholar]
- Bakir, N.; Hamidouche, W.; Fezza, S.A.; Samrouth, K.; Deforges, O. Light field image coding using VVC standard and view synthesis based on dual discriminator GAN. IEEE Trans. Multimed. 2021, 23, 2972–2985. [Google Scholar] [CrossRef]
- Jia, C.; Zhang, X.; Wang, S.; Wang, S.; Ma, S. Light field image compression using generative adversarial network-based view synthesis. IEEE J. Emerg. Sel. Top. Circuits Syst. 2018, 9, 177–189. [Google Scholar] [CrossRef]
- Yang, L.; An, P.; Liu, D.; Ma, R.; Shen, L. Three-dimensional holoscopic image-coding scheme using a sparse viewpoint image array and disparities. J. Electron. Imaging 2018, 27, 033030. [Google Scholar] [CrossRef]
- Liu, D.; Huang, Y.; Fang, Y.; Zuo, Y.; An, P. Multi-stream dense view reconstruction network for light field image compression. IEEE Trans. Multimed. 2022, 25, 4400–4414. [Google Scholar] [CrossRef]
- Mehajabin, N.; Pourazad, M.T.; Nasiopoulos, P. An efficient pseudo-sequence-based light field video coding utilizing view similarities for prediction structure. IEEE Trans. Circuits Syst. Video Technol. 2021, 32, 2356–2370. [Google Scholar] [CrossRef]
- Honauer, K.; Johannsen, O.; Kondermann, D.; Goldluecke, B. A dataset and evaluation methodology for depth estimation on 4D light fields. In Proceedings of the Computer Vision—ACCV 2016: 13th Asian Conference on Computer Vision, Taipei, Taiwan, 20–24 November 2016; pp. 19–34. [Google Scholar]
- Kiran, A.V.; Vinkler, M.; Sumin, D.; Mantiuk, R.K.; Myszkowski, K.; Seidel, H.P.; Didyk, P. Towards a quality metric for dense light fields. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 58–67. [Google Scholar]
- Rizkallah, M.; Maugey, T.; Yaacoub, C.; Guillemot, C. Impact of light field compression on focus stack and extended focus images. In Proceedings of the European Signal Processing Conference (EUSIPCO), Budapest, Hungary, 29 August–2 September 2016; pp. 898–902. [Google Scholar]
- High Efficiency Video Coding Test Model, HM-16.20. Available online: https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/HM-16.20/ (accessed on 5 May 2024).
Length | Level | Number | Range |
---|---|---|---|
2 | 00 | 0 | |
4 | 010 | 0,1 | −1;1 |
5 | 011 | 00-11 | −3,−2;2,3 |
6 | 100 | 000-111 | −7, …,−4;4, …,7 |
7 | 101 | 0000-1111 | −15, …,−8;8, …,15 |
8 | 110 | 00000-11111 | −31, …,−16;16, …,31 |
10 | 1110 | 000000-111111 | −63, …,−32;32, …,63 |
12 | 11110 | 0000000-1111111 | −127, …,−64;64, …,127 |
13 | 11111 | 00000000-11111111 | −255, …,−128;128, …,255 |
Method | Car | Room | Corner | Cotton | Dino | Antinous | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Spiral | 2.31 | 2.37 | 2.41 | 2.32 | 2.15 | 2.03 | 2.57 | 2.11 | 2.25 | 1.94 | 2.18 | 1.95 |
Raster | 2.26 | 2.33 | 2.34 | 2.29 | 2.14 | 2.02 | 2.45 | 2.06 | 2.45 | 1.91 | 2.19 | 1.95 |
MVI | 2.16 | 2.18 | 2.30 | 2.17 | 2.10 | 1.97 | 2.40 | 2.05 | 2.40 | 1.86 | 2.09 | 1.91 |
2-DKS | 2.32 | 2.34 | 2.43 | 2.29 | 2.15 | 2.10 | 2.49 | 2.08 | 2.37 | 1.91 | 2.12 | 1.92 |
2-DHS | 2.62 | 2.66 | 2.67 | 2.52 | 2.42 | 2.37 | 2.29 | 1.97 | 2.21 | 1.82 | 2.03 | 1.87 |
MSHPE | 2.81 | 2.85 | 2.83 | 2.66 | 2.60 | 2.45 | 2.64 | 2.14 | 2.42 | 1.97 | 2.28 | 2.01 |
Method | Car | Room | Corner | Cotton | Dino | Antinous | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Spiral | −17.8% | −16.8% | −14.8% | −12.8% | −17.3% | −17.1% | −2.7% | −1.4% | −8.2% | −1.5% | −4.6% | −3.0% |
Raster | −19.6% | −18.2% | −17.3% | −13.9% | −17.7% | −17.6% | −7.2% | −3.8% | −1.2% | −3.1% | −4.1% | −3.0% |
MVI | −23.1% | −23.5% | −18.1% | −18.4% | −19.2% | −19.6% | −9.1% | −4.3% | −2.0% | −5.6% | −8.7% | −5.0% |
2-DKS | −17.4% | −18.1% | −14.2% | −13.2% | −16.0% | −12.5% | −5.3% | −2.1% | −1.8% | −2.1% | −5.7% | −3.2% |
2-DHS | −6.7% | −6.8% | −5.7% | −5.0% | −6.4% | −2.8% | −12.5% | −6.0% | −7.5% | −5.3% | −8.9% | −5.0% |
Method/QP | 17 | 22 | 27 | 32 | 37 | 42 | 47 | 51 |
HEVC | 27,241.28 | 14,138.73 | 6364.79 | 2771.37 | 1187.28 | 589.00 | 313.44 | 194.10 |
44.44 | 42.05 | 38.69 | 36.14 | 34.04 | 32.38 | 30.78 | 29.29 | |
MSHPE | 24,939.49 | 11,930.01 | 3150.57 | 726.07 | 160.4 | 59.53 | 47.64 | 43.80 |
37.60 | 34.60 | 32.17 | 30.35 | 29.02 | 28.59 | 27.31 | 24.76 |
L2 | L2+L3 | L2+L3+L4 | L2+L3+L4+L5 | |||||
---|---|---|---|---|---|---|---|---|
QP | Bitrate | PSNR | Bitrate | PSNR | Bitrate | PSNR | Bitrate | PSNR |
10 | 45,264.50 | 46.27 | 45,200.30 | 43.26 | 45,166.53 | 41.04 | 45,151.50 | 39.28 |
15 | 30,548.90 | 44.39 | 30,477.13 | 41.83 | 30,431.38 | 39.93 | 30,407.29 | 38.42 |
20 | 17,211.10 | 40.78 | 17,094.67 | 38.65 | 17,051.17 | 37.07 | 17,035.74 | 35.80 |
25 | 5806.15 | 37.14 | 5710.57 | 35.01 | 5667.79 | 34.12 | 5661.16 | 33.07 |
30 | 1449.05 | 35.01 | 1369.47 | 33.29 | 1333.54 | 32.01 | 1314.24 | 31.01 |
35 | 347.40 | 33.55 | 305.03 | 31.72 | 285.99 | 30.43 | 277.95 | 29.45 |
40 | 98.35 | 32.55 | 88.00 | 30.81 | 82.26 | 29.65 | 79.71 | 28.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, J.; Bai, E.; Jiang, X.; Wu, Y. Light-Field Image Compression Based on a Two-Dimensional Prediction Coding Structure. Information 2024, 15, 339. https://doi.org/10.3390/info15060339
Shao J, Bai E, Jiang X, Wu Y. Light-Field Image Compression Based on a Two-Dimensional Prediction Coding Structure. Information. 2024; 15(6):339. https://doi.org/10.3390/info15060339
Chicago/Turabian StyleShao, Jianrui, Enjian Bai, Xueqin Jiang, and Yun Wu. 2024. "Light-Field Image Compression Based on a Two-Dimensional Prediction Coding Structure" Information 15, no. 6: 339. https://doi.org/10.3390/info15060339
APA StyleShao, J., Bai, E., Jiang, X., & Wu, Y. (2024). Light-Field Image Compression Based on a Two-Dimensional Prediction Coding Structure. Information, 15(6), 339. https://doi.org/10.3390/info15060339