Leveraging Machine Learning to Analyze Semantic User Interactions in Visual Analytics
Abstract
:1. Introduction
- We designed a visualization that connects users’ analysis procedures and their decisions within the visualization.
- We analyzed captured semantic user interactions and their conclusions within the visualization;
- We presented an approach to analyze the captured semantic user interactions by classifying them depending on users’ analytical decisions;
- To the best of our knowledge, our study is the first to analyze the captured semantic user interactions with classification machine learning algorithms.
2. Previous Work
2.1. Using Eye-Tracking Devices to Understand User Interactions in Visualizations
2.2. Capturing and Analyzing Semantic User Interactions in Visualizations
3. Understanding Semantic User Interactions with Visualization
3.1. Wire Transaction Analysis
3.2. User Investigation Tracing
4. Tracking Semantic User Interactions
4.1. Initiating User Interactions
4.2. Capturing User Interactions
4.3. Connecting Investigation Results to User Interactions
5. Analyzing Semantic User Interactions
- State Space (): A set of states that represent the changes in the current visual representation generated by user interactions. For example, in our visualization system, the state space is defined as . Each state is created whenever the user initiates a user interaction. It can be clusters, accounts, keywords, or a combination of clusters and keywords or accounts.
- Transition Matrix (): This is defined as a square matrix to describe the probabilities of moving from one state to another. Depending on the size n of the state space, will be matrix, where the entry gives the probability of transitioning from state i to state j in one step (called transition probabilities).
- Initial State or Initial Distribution (): This describes the starting (i.e., initial) state of the analysis. Since each state transition is mapped from one state to another, the probability distribution over the initial states is set to zero. The transitional distribution is measured by examining the duration of time the user spends in each state.
6. Evaluating Semantic User Interactions
6.1. Data Vectorization
6.2. Data Oversampling
6.3. Classifying Analysis Sessions
7. Discussion
8. Conclusions and Future Works
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Valtakari, N.V.; Hooge, I.T.C.; Viktorsson, C.; Nyström, P.; Falck-Ytter, T.; Hessels, R.S. Eye tracking in human interaction: Possibilities and limitations. Behav. Res. Methods 2021, 53, 1592–1608. [Google Scholar] [CrossRef] [PubMed]
- Jeong, D.H.; Dou, W.; Lipford, H.; Stukes, F.; Chang, R.; Ribarsky, W. Evaluating the relationship between user interaction and financial visual analysis. In Proceedings of the 2008 IEEE Symposium on Visual Analytics Science and Technology, VAST’ 08, Columbus, OH, USA, 19–24 October 2008; pp. 83–90. [Google Scholar]
- Dou, W.; Jeong, D.H.; Stukes, F.; Ribarsky, W.; Lipford, H.R.; Chang, R. Recovering reasoning processes from user interactions. IEEE Comput. Graph. Appl. 2009, 29, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Endert, A.; Fiaux, P.; North, C. Semantic interaction for visual text analytics. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Austin, TX, USA, 5–10 May 2012; pp. 473–482. [Google Scholar]
- Jeong, D.H.; Ji, S.Y.; Ribarsky, W.; Chang, R. A state transition approach to understanding users’ interactions. In Proceedings of the 2011 IEEE Conference on Visual Analytics Science and Technology (VAST), Providence, RI, USA, 23–28 October 2011; pp. 285–286. [Google Scholar] [CrossRef]
- Meyn, S.; Tweedie, R. Markov Chains and Stochastic Stability, 1st ed.; Springer: New York, NY, USA, 1996. [Google Scholar]
- Spiller, M.; Liu, Y.H.; Hossain, M.Z.; Gedeon, T.; Geissler, J.; Nürnberger, A. Predicting Visual Search Task Success from Eye Gaze Data as a Basis for User-Adaptive Information Visualization Systems. ACM Trans. Interact. Intell. Syst. 2021, 11, 14. [Google Scholar] [CrossRef]
- Steichen, B.; Conati, C.; Carenini, G. Inferring Visualization Task Properties, User Performance, and User Cognitive Abilities from Eye Gaze Data. ACM Trans. Interact. Intell. Syst. 2014, 4, 11. [Google Scholar] [CrossRef]
- Conati, C.; Lallé, S.; Rahman, M.A.; Toker, D. Comparing and Combining Interaction Data and Eye-tracking Data for the Real-time Prediction of User Cognitive Abilities in Visualization Tasks. ACM Trans. Interact. Intell. Syst. 2020, 10, 12. [Google Scholar] [CrossRef]
- Blascheck, T.; Ertl, T. Towards analyzing eye tracking data for evaluating interactive visualization systems. In Proceedings of the Fifth Workshop on Beyond Time and Errors: Novel Evaluation Methods for Visualization, Paris, France, 10 November 2014; pp. 70–77. [Google Scholar]
- Blascheck, T.; John, M.; Koch, S.; Bruder, L.; Ertl, T. Triangulating user behavior using eye movement, interaction, and think aloud data. In Proceedings of the Ninth Biennial ACM Symposium on Eye Tracking Research & Applications, Charleston, SC, USA, 14–17 March 2016; pp. 175–182. [Google Scholar]
- Alam, S.S.; Jianu, R. Analyzing Eye-Tracking Information in Visualization and Data Space: From Where on the Screen to What on the Screen. IEEE Trans. Vis. Comput. Graph. 2017, 23, 1492–1505. [Google Scholar] [CrossRef] [PubMed]
- Blascheck, T.; Kurzhals, K.; Raschke, M.; Burch, M.; Weiskopf, D.; Ertl, T. Visualization of Eye Tracking Data: A Taxonomy and Survey. Comput. Graph. Forum 2017, 36, 260–284. [Google Scholar] [CrossRef]
- von Landesberger, T.; Fiebig, S.; Bremm, S.; Kuijper, A.; Fellner, D.W. Interaction Taxonomy for Tracking of User Actions in Visual Analytics Applications. In Handbook of Human Centric Visualization; Springer: New York, NY, USA, 2014. [Google Scholar]
- Muller, N.H.; Liebold, B.; Pietschmann, D.; Ohler, P.; Rosenthal, P. Visualizations for Hierarchical Data: Analyzing User Behavior and Performance with Eye Tracking. Int. J. Adv. Softw. 2017, 10, 385–396. [Google Scholar]
- Dai, H.; Mobasher, B. Integrating Semantic Knowledge with Web Usage Mining for Personalization. In Intelligent User Interfaces: Adaptation and Personalization Systems and Technologies; IGI Global: Hershey, PA, USA, 2009. [Google Scholar]
- Wall, E.; Narechania, A.; Coscia, A.J.; Paden, J.; Endert, A. Left, Right, and Gender: Exploring Interaction Traces to Mitigate Human Biases. IEEE Trans. Vis. Comput. Graph. 2021, 28, 966–975. [Google Scholar] [CrossRef]
- Keith Norambuena, B.F.; Mitra, T.; North, C. Mixed Multi-Model Semantic Interaction for Graph-based Narrative Visualizations. In Proceedings of the 28th International Conference on Intelligent User Interfaces, Sydney, Australia, 27–31 March 2023; pp. 866–888. [Google Scholar]
- Batch, A.; Ji, Y.; Fan, M.; Zhao, J.; Elmqvist, N. uxSense: Supporting User Experience Analysis with Visualization and Computer Vision. IEEE Trans. Vis. Comput. Graph. 2023, 1–15. [Google Scholar] [CrossRef]
- Endert, A.; Fiaux, P.; North, C. Semantic Interaction for sense-making: Inferring Analytical Reasoning for Model Steering. IEEE Trans. Vis. Comput. Graph. 2012, 18, 2879–2888. [Google Scholar] [CrossRef] [PubMed]
- Blascheck, T.; Vermeulen, L.M.; Vermeulen, J.; Perin, C.; Willett, W.; Ertl, T.; Carpendale, S. Exploration Strategies for Discovery of Interactivity in Visualizations. IEEE Trans. Vis. Comput. Graph. 2019, 25, 1407–1420. [Google Scholar] [CrossRef] [PubMed]
- Ottley, A.; Wan, R.G.R. Follow The Clicks: Learning and Anticipating Mouse Interactions During Exploratory Data Analysis. Comput. Graph. Forum 2019, 38, 41–52. [Google Scholar] [CrossRef]
- Xu, K.; Ottley, A.; Walchshofer, C.; Streit, M.; Chang, R.; Wenskovitch, J. Survey on the Analysis of User Interactions and Visualization Provenance. Comput. Graph. Forum 2020, 39, 757–783. [Google Scholar] [CrossRef]
- Chang, R.; Ghoniem, M.; Kosara, R.; Ribarsky, W.; Yang, J.; Suma, E.; Ziemkiewicz, C.; Kern, D.; Sudjianto, A. WireVis: Visualization of Categorical, Time-Varying Data from Financial Transactions. In Proceedings of the 2007 IEEE Symposium on Visual Analytics Science and Technology, VAST’ 07, Sacramento, CA, USA, 30 October–1 November 2007; pp. 155–162. [Google Scholar]
- Jolliffe, I.T. Principal Component Analysis; Springer Series in Statistics; Springer: New York, NY, USA, 2002. [Google Scholar] [CrossRef]
- Gewers, F.L.; Ferreira, G.R.; Arruda, H.F.D.; Silva, F.N.; Comin, C.H.; Amancio, D.R.; Costa, L.D.F. Principal Component Analysis: A Natural Approach to Data Exploration. ACM Comput. Surv. 2021, 54, 70. [Google Scholar] [CrossRef]
- Jeong, D.H.; Ji, S.Y.; Suma, E.A.; Yu, B.; Chang, R. Designing a collaborative visual analytics system to support users’ continuous analytical processes. Hum.-Centric Comput. Inf. Sci. 2015, 5, 5. [Google Scholar] [CrossRef]
- Endert, A.; Chang, R.; North, C.; Zhou, M. Semantic Interaction: Coupling Cognition and Computation through Usable Interactive Analytics. IEEE Comput. Graph. Appl. 2015, 35, 94–99. [Google Scholar] [CrossRef]
- Jeong, D.H.; Ziemkiewicz, C.; Fisher, B.; Ribarsky, W.; Chang, R. iPCA: An Interactive System for PCA-based Visual Analytics. Comput. Graph. Forum 2009, 28, 767–774. [Google Scholar] [CrossRef]
- Lipford, H.R.; Stukes, F.; Dou, W.; Hawkins, M.E.; Chang, R. Helping users recall their reasoning process. In Proceedings of the 2010 IEEE Symposium on Visual Analytics Science and Technology, Salt Lake City, UT, USA, 25–26 October 2010; pp. 187–194. [Google Scholar] [CrossRef]
- Li, Q.; Peng, H.; Li, J.; Xia, C.; Yang, R.; Sun, L.; Yu, P.S.; He, L. A Survey on Text Classification: From Traditional to Deep Learning. ACM Trans. Intell. Syst. Technol. 2022, 13, 31. [Google Scholar] [CrossRef]
- He, H.; Ma, Y. Imbalanced Learning: Foundations, Algorithms, and Applications, 1st ed.; Wiley-IEEE Press: Piscataway, NJ, USA, 2013. [Google Scholar]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Int. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Aggarwal, C. Data Classification: Algorithms and Applications; Chapman & Hall/CRC Data Mining and Knowledge Discovery Series; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference and Prediction, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Cristianini, N.; Shawe-Taylor, J. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Manning, C.D.; Raghavan, P.; Schütze, H. Introduction to Information Retrieval; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Vapnik, V.N. Statistical Learning Theory; Wiley-Interscience: Hoboken, NJ, USA, 1998. [Google Scholar]
- Huang, K.; Zheng, D.; Sun, J.; Hotta, Y.; Fujimoto, K.; Naoi, S. Sparse learning for support vector classification. Pattern Recognit. Lett. 2010, 31, 1944–1951. [Google Scholar] [CrossRef]
- Grömping, U. Variable Importance Assessment in Regression: Linear Regression versus Random Forest. Am. Stat. 2009, 63, 308–319. [Google Scholar] [CrossRef]
- Alanazi, A.H.; Cradock, A.; Rainford, L. Development of lumbar spine MRI referrals vetting models using machine learning and deep learning algorithms: Comparison models vs healthcare professionals. Radiography 2022, 28, 674–683. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.W.; Gil, J.M. Research paper classification systems based on TF-IDF and LDA schemes. Hum.-Centric Comput. Inf. Sci. 2019, 9, 30. [Google Scholar] [CrossRef]
- Zhao, Z. A Comparison Study: Comparison between Different Classifiers for Emotion Classification Using Real Human-to-Human Chat Log Dataset. Master’s Thesis, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA, 2019. [Google Scholar] [CrossRef]
- Lalapura, V.S.; Amudha, J.; Satheesh, H.S. Recurrent Neural Networks for Edge Intelligence: A Survey. ACM Comput. Surv. 2021, 54, 91. [Google Scholar] [CrossRef]
Button | Description | Button | Description |
---|---|---|---|
Going back to the initial state | Creating multiple user workspaces | ||
History forward and backward | Rotating and closing workspace | ||
Navigating on hierarchical clusters | Enabling toggle selection | ||
Canceling of all activated menu buttons | Representing wire transactions with polylines | ||
Switching between the heatmap view and the strings and beds view | Highlighting the wire transactions that have investigation results marked by analysts | ||
Entering the investigator’s conclusion (suspicious, not suspicious, or inconclusive) | Representing clusters of investigation results on wire transactions made by the same users | ||
Enabling text and drawing annotations | Initiating zooming (in and out) user interactions | ||
Individual and multiple item sections | Initiating panning (left, right, up, and down) user interactions |
Data Type | Metric | MultinomialNB | SVC | RF | LR | GB |
---|---|---|---|---|---|---|
BOW | Accuracy | 0.79 ± 0.11 | 0.67 ± 0.09 | 0.74 ± 0.08 | 0.74 ± 0.12 | 0.64 ± 0.04 |
Precision | 0.80 ± 0.11 | 0.77 ± 0.08 | 0.76 ± 0.08 | 0.75 ± 0.13 | 0.65 ± 0.05 | |
Recall | 0.79 ± 0.11 | 0.66 ± 0.09 | 0.74 ± 0.07 | 0.74 ± 0.12 | 0.64 ± 0.04 | |
F1-score | 0.79 ± 0.11 | 0.64 ± 0.11 | 0.74 ± 0.07 | 0.72 ± 0.13 | 0.64 ± 0.05 | |
TF-IDF | Accuracy | 0.79 ± 0.11 | 0.67 ± 0.09 | 0.69 ± 0.11 | 0.74 ± 0.12 | 0.63 ± 0.04 |
Precision | 0.80 ± 0.11 | 0.77 ± 0.08 | 0.73 ± 0.10 | 0.75 ± 0.13 | 0.65 ± 0.05 | |
Recall | 0.79 ± 0.11 | 0.66 ± 0.09 | 0.69 ± 0.10 | 0.74 ± 0.12 | 0.63 ± 0.04 | |
F1-score | 0.79 ± 0.11 | 0.64 ± 0.11 | 0.67 ± 0.11 | 0.72 ± 0.13 | 0.63 ± 0.05 |
Data Type | Metric | Decision * | MultinomialNB | SVC | RF | LR | GB |
---|---|---|---|---|---|---|---|
BOW | Accuracy | I | 0.96 ± 0.08 | 0.64 ± 0.25 | 0.81 ± 0.11 | 0.93 ± 0.09 | 0.81 ± 0.02 |
N | 0.77 ± 0.15 | 0.43 ± 0.21 | 0.81 ± 0.13 | 0.81 ± 0.13 | 0.67 ± 0.07 | ||
S | 0.64 ± 0.19 | 0.92 ± 0.16 | 0.37 ± 0.11 | 0.47 ± 0.22 | 0.45 ± 0.16 | ||
Precision | I | 0.83 ± 0.09 | 0.96 ± 0.08 | 0.75 ± 0.17 | 0.74 ± 0.1 | 0.80 ± 0.12 | |
N | 0.79 ± 0.19 | 0.80 ± 0.27 | 0.66 ± 0.11 | 0.76 ± 0.21 | 0.63 ± 0.2 | ||
S | 0.79 ± 0.13 | 0.55 ± 0.09 | 0.72 ± 0.28 | 0.75 ± 0.17 | 0.54 ± 0.05 | ||
Recall | I | 0.96 ± 0.08 | 0.64 ± 0.25 | 0.81 ± 0.11 | 0.93 ± 0.09 | 0.81 ± 0.02 | |
N | 0.77 ± 0.15 | 0.43 ± 0.21 | 0.81 ± 0.13 | 0.81 ± 0.13 | 0.67 ± 0.07 | ||
S | 0.64 ± 0.19 | 0.92 ± 0.16 | 0.37 ± 0.11 | 0.47 ± 0.22 | 0.45 ± 0.16 | ||
F1-score | I | 0.88 ± 0.07 | 0.73 ± 0.18 | 0.77 ± 0.09 | 0.82 ± 0.09 | 0.80 ± 0.06 | |
N | 0.78 ± 0.16 | 0.52 ± 0.21 | 0.71 ± 0.06 | 0.77 ± 0.14 | 0.63 ± 0.08 | ||
S | 0.69 ± 0.13 | 0.68 ± 0.09 | 0.49 ± 0.16 | 0.56 ± 0.19 | 0.48 ± 0.12 | ||
TF-IDF | Accuracy | I | 0.96 ± 0.08 | 0.64 ± 0.25 | 0.85 ± 0.08 | 0.93 ± 0.09 | 0.81 ± 0.02 |
N | 0.77 ± 0.15 | 0.43 ± 0.21 | 0.85 ± 0.08 | 0.81 ± 0.13 | 0.63 ± 0.13 | ||
S | 0.64 ± 0.19 | 0.92 ± 0.16 | 0.44 ± 0.17 | 0.47 ± 0.22 | 0.41 ± 0.14 | ||
Precision | I | 0.83 ± 0.09 | 0.96 ± 0.08 | 0.78 ± 0.19 | 0.74 ± 0.1 | 0.79 ± 0.13 | |
N | 0.79 ± 0.19 | 0.80 ± 0.27 | 0.72 ± 0.17 | 0.76 ± 0.21 | 0.57 ± 0.09 | ||
S | 0.79 ± 0.13 | 0.55 ± 0.09 | 0.72 ± 0.16 | 0.75 ± 0.17 | 0.52 ± 0.07 | ||
Recall | I | 0.96 ± 0.08 | 0.64 ± 0.25 | 0.85 ± 0.08 | 0.93 ± 0.09 | 0.81 ± 0.02 | |
N | 0.77 ± 0.15 | 0.43 ± 0.21 | 0.85 ± 0.08 | 0.81 ± 0.13 | 0.63 ± 0.13 | ||
S | 0.64 ± 0.19 | 0.92 ± 0.16 | 0.44 ± 0.17 | 0.47 ± 0.22 | 0.41 ± 0.14 | ||
F1-score | I | 0.88 ± 0.07 | 0.73 ± 0.18 | 0.80 ± 0.11 | 0.82 ± 0.09 | 0.79 ± 0.07 | |
N | 0.78 ± 0.16 | 0.52 ± 0.21 | 0.76 ± 0.09 | 0.77 ± 0.14 | 0.58 ± 0.07 | ||
S | 0.69 ± 0.13 | 0.68 ± 0.09 | 0.54 ± 0.18 | 0.56 ± 0.19 | 0.45 ± 0.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, D.H.; Jeong, B.K.; Ji, S.Y. Leveraging Machine Learning to Analyze Semantic User Interactions in Visual Analytics. Information 2024, 15, 351. https://doi.org/10.3390/info15060351
Jeong DH, Jeong BK, Ji SY. Leveraging Machine Learning to Analyze Semantic User Interactions in Visual Analytics. Information. 2024; 15(6):351. https://doi.org/10.3390/info15060351
Chicago/Turabian StyleJeong, Dong Hyun, Bong Keun Jeong, and Soo Yeon Ji. 2024. "Leveraging Machine Learning to Analyze Semantic User Interactions in Visual Analytics" Information 15, no. 6: 351. https://doi.org/10.3390/info15060351
APA StyleJeong, D. H., Jeong, B. K., & Ji, S. Y. (2024). Leveraging Machine Learning to Analyze Semantic User Interactions in Visual Analytics. Information, 15(6), 351. https://doi.org/10.3390/info15060351