Optimized Ensemble Learning Approach with Explainable AI for Improved Heart Disease Prediction
Abstract
:1. Introduction
2. Background
3. Materials and Methods
3.1. Heart Disease Datasets
3.2. Ensemble Classifiers
3.2.1. Random Forest
3.2.2. XGBoost
3.2.3. AdaBoost
3.3. Shapley Additive Explanations
3.4. Proposed Heart Disease Prediction Approach
Algorithm 1 Proposed Heart disease prediction approach. |
|
3.5. Performance Evaluation Metrics
4. Results and Discussion
Discussion
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | artificial intelligence |
ANN | artificial neural network |
BiLSTM | bidirectional long short-term memory |
BMI | body mass index |
CHD | coronary heart disease |
CNN | convolutional neural network |
CVD | cardiovascular disease |
DL | deep learning |
DT | decision tree |
XAI | explainable AI |
GA | genetic algorithm |
KNN | k-nearest neighbor |
LASSO | least absolute shrinkage and selection operator |
ML | machine learning |
PCA | principal component analysis |
RF | random forest |
RFE | recursive feature elimination |
SVM | support vector machine |
SMOTE | synthetic minority oversampling technique |
SMOTE-ENN | synthetic minority oversampling technique—edited nearest neighbor |
XGBoost | extreme gradient boosting |
References
- Rahman, A.U.; Alsenani, Y.; Zafar, A.; Ullah, K.; Rabie, K.; Shongwe, T. Enhancing heart disease prediction using a self-attention-based transformer model. Sci. Rep. 2024, 14, 514. [Google Scholar] [CrossRef]
- Rani, P.; Kumar, R.; Jain, A.; Lamba, R.; Sachdeva, R.K.; Kumar, K.; Kumar, M. An Extensive Review of Machine Learning and Deep Learning Techniques on Heart Disease Classification and Prediction. Arch. Comput. Methods Eng. 2024. [Google Scholar] [CrossRef]
- Atimbire, S.A.; Appati, J.K.; Owusu, E. Empirical exploration of whale optimisation algorithm for heart disease prediction. Sci. Rep. 2024, 14, 4530. [Google Scholar] [CrossRef] [PubMed]
- Mienye, I.D.; Sun, Y.; Wang, Z. Improved predictive sparse decomposition method with densenet for prediction of lung cancer. Int. J. Comput. 2020, 1, 533–541. [Google Scholar] [CrossRef]
- Pathak, A.K.; Arul Valan, J. A Predictive Model for Heart Disease Diagnosis Using Fuzzy Logic and Decision Tree. In Advances in Intelligent Systems and Computing; Springer: Singapore, 2019; pp. 131–140. [Google Scholar] [CrossRef]
- Manikandan, G.; Pragadeesh, B.; Manojkumar, V.; Karthikeyan, A.; Manikandan, R.; Gandomi, A.H. Classification models combined with Boruta feature selection for heart disease prediction. Inform. Med. Unlocked 2024, 44, 101442. [Google Scholar] [CrossRef]
- Shahhosseini, M.; Hu, G.; Pham, H. Optimizing ensemble weights and hyperparameters of machine learning models for regression problems. Mach. Learn. Appl. 2022, 7, 100251. [Google Scholar] [CrossRef]
- O’Halloran, T.; Obaido, G.; Otegbade, B.; Mienye, I.D. A deep learning approach for Maize Lethal Necrosis and Maize Streak Virus disease detection. Mach. Learn. Appl. 2024, 16, 100556. [Google Scholar] [CrossRef]
- Obaido, G.; Achilonu, O.; Ogbuokiri, B.; Amadi, C.S.; Habeebullahi, L.; Ohalloran, T.; Chukwu, C.W.; Mienye, E.D.; Aliyu, M.; Fasawe, O.; et al. An Improved Framework for Detecting Thyroid Disease Using Filter-Based Feature Selection and Stacking Ensemble. IEEE Access 2024, 12, 89098–89112. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.I. A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst. 2017, 30. [Google Scholar]
- Nohara, Y.; Matsumoto, K.; Soejima, H.; Nakashima, N. Explanation of machine learning models using shapley additive explanation and application for real data in hospital. Comput. Methods Programs Biomed. 2022, 214, 106584. [Google Scholar] [CrossRef]
- Sixian, L.; Imamura, Y.; Ahmed, A. Application of Shapley Additive Explanation towards Determining Personalized Triage from Health Checkup Data. In Pervasive Computing Technologies for Healthcare; Tsanas, A., Triantafyllidis, A., Eds.; Springer: Cham, Switzerland, 2023; pp. 496–509. [Google Scholar]
- Mehrabi, N.; Morstatter, F.; Saxena, N.; Lerman, K.; Galstyan, A. A survey on bias and fairness in machine learning. ACM Comput. Surv. (CSUR) 2021, 54, 1–35. [Google Scholar] [CrossRef]
- Mienye, I.D.; Ainah, P.K.; Emmanuel, I.D.; Esenogho, E. Sparse noise minimization in image classification using Genetic Algorithm and DenseNet. In Proceedings of the 2021 Conference on Information Communications Technology and Society (ICTAS), Durban, South Africa, 10–11 March 2021; pp. 103–108. [Google Scholar]
- Yang, L.; Wu, H.; Jin, X.; Zheng, P.; Hu, S.; Xu, X.; Yu, W.; Yan, J. Study of cardiovascular disease prediction model based on random forest in eastern China. Sci. Rep. 2020, 10, 5245. [Google Scholar] [CrossRef] [PubMed]
- Mahesh, T.; Kumar, V.D.; Kumar, V.V.; Asghar, J.; Geman, O.; Arulkumaran, G.; Arun, N. AdaBoost ensemble methods using K-fold cross validation for survivability with the early detection of heart disease. Comput. Intell. Neurosci. 2022, 2022, 9005278. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.Y.; Amin Ali, A.; Shaban Hassan, H.; Anwar, E.M. Improving the accuracy for analyzing heart diseases prediction based on the ensemble method. Complexity 2021, 2021, 66634550. [Google Scholar] [CrossRef]
- Shi, R.; Xu, X.; Li, J.; Li, Y. Prediction and analysis of train arrival delay based on XGBoost and Bayesian optimization. Appl. Soft Comput. 2021, 109, 107538. [Google Scholar] [CrossRef]
- Asan, O.; Bayrak, A.E.; Choudhury, A. Artificial intelligence and human trust in healthcare: Focus on clinicians. J. Med. Internet Res. 2020, 22, e15154. [Google Scholar] [CrossRef] [PubMed]
- Debjit, K.; Islam, M.S.; Rahman, M.A.; Pinki, F.T.; Nath, R.D.; Al-Ahmadi, S.; Hossain, M.S.; Mumenin, K.M.; Awal, M.A. An improved machine-learning approach for COVID-19 prediction using Harris Hawks optimization and feature analysis using SHAP. Diagnostics 2022, 12, 1023. [Google Scholar] [CrossRef] [PubMed]
- Tama, B.A.; Im, S.; Lee, S. Improving an intelligent detection system for coronary heart disease using a two-tier classifier ensemble. BioMed Res. Int. 2020, 2020, 9816142. [Google Scholar] [CrossRef] [PubMed]
- Andersson, C.; Johnson, A.D.; Benjamin, E.J.; Levy, D.; Vasan, R.S. 70-year legacy of the Framingham Heart Study. Nat. Rev. Cardiol. 2019, 16, 687–698. [Google Scholar] [CrossRef]
- Sagi, O.; Rokach, L. Explainable decision forest: Transforming a decision forest into an interpretable tree. Inf. Fusion 2020, 61, 124–138. [Google Scholar] [CrossRef]
- Lee, S.J.; Tseng, C.H.; Yang, H.Y.; Jin, X.; Jiang, Q.; Pu, B.; Hu, W.H.; Liu, D.R.; Huang, Y.; Zhao, N. Random rotboost: An ensemble classification method based on rotation forest and adaboost in random subsets and its application to clinical decision support. Entropy 2022, 24, 617. [Google Scholar] [CrossRef] [PubMed]
- Mienye, I.D.; Jere, N. A Survey of Decision Trees: Concepts, Algorithms, and Applications. IEEE Access 2024, 12, 86716–86727. [Google Scholar] [CrossRef]
- Sarica, A.; Cerasa, A.; Quattrone, A. Random forest algorithm for the classification of neuroimaging data in Alzheimer’s disease: A systematic review. Front. Aging Neurosci. 2017, 9, 329. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Carretero, R.; Holgado-Cuadrado, R.; Barquero-Pérez, Ó. Assessment of classification models and relevant features on nonalcoholic steatohepatitis using random forest. Entropy 2021, 23, 763. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Yang, N.; Qian, Z.; Zhang, G. What Makes an Online Review More Helpful: An Interpretation Framework Using XGBoost and SHAP Values. J. Theor. Appl. Electron. Commer. Res. 2021, 16, 466–490. [Google Scholar] [CrossRef]
- Zhang, P.; Jia, Y.; Shang, Y. Research and application of XGBoost in imbalanced data. Int. J. Distrib. Sens. Netw. 2022, 18, 15501329221106935. [Google Scholar] [CrossRef]
- Ogunleye, A.; Wang, Q.G. XGBoost Model for Chronic Kidney Disease Diagnosis. IEEE/ACM Trans. Comput. Biol. Bioinform. 2020, 17, 2131–2140. [Google Scholar] [CrossRef]
- Budholiya, K.; Shrivastava, S.K.; Sharma, V. An optimized XGBoost based diagnostic system for effective prediction of heart disease. J. King Saud Univ.-Comput. Inf. Sci. 2022, 34, 4514–4523. [Google Scholar] [CrossRef]
- Dalal, S.; Seth, B.; Radulescu, M.; Secara, C.; Tolea, C. Predicting Fraud in Financial Payment Services through Optimized Hyper-Parameter-Tuned XGBoost Model. Mathematics 2022, 10, 4679. [Google Scholar] [CrossRef]
- Shahraki, A.; Abbasi, M.; Haugen, Ø. Boosting algorithms for network intrusion detection: A comparative evaluation of Real AdaBoost, Gentle AdaBoost and Modest AdaBoost. Eng. Appl. Artif. Intell. 2020, 94, 103770. [Google Scholar] [CrossRef]
- Ding, Y.; Zhu, H.; Chen, R.; Li, R. An efficient AdaBoost algorithm with the multiple thresholds classification. Appl. Sci. 2022, 12, 5872. [Google Scholar] [CrossRef]
- Hatwell, J.; Gaber, M.M.; Atif Azad, R.M. Ada-WHIPS: Explaining AdaBoost classification with applications in the health sciences. BMC Med. Inform. Decis. Mak. 2020, 20, 250. [Google Scholar] [CrossRef] [PubMed]
- Schapire, R.E. Explaining adaboost. In Empirical Inference: Festschrift in Honor of Vladimir N. Vapnik; Springer: Berlin/Heidelberg, Germany, 2013; pp. 37–52. [Google Scholar]
- Vega García, M.; Aznarte, J.L. Shapley additive explanations for NO2 forecasting. Ecol. Inform. 2020, 56, 101039. [Google Scholar] [CrossRef]
- Baptista, M.L.; Goebel, K.; Henriques, E.M. Relation between prognostics predictor evaluation metrics and local interpretability SHAP values. Artif. Intell. 2022, 306, 103667. [Google Scholar] [CrossRef]
- Sahlaoui, H.; Nayyar, A.; Agoujil, S.; Jaber, M.M. Predicting and interpreting student performance using ensemble models and shapley additive explanations. IEEE Access 2021, 9, 152688–152703. [Google Scholar] [CrossRef]
- Heuillet, A.; Couthouis, F.; Díaz-Rodríguez, N. Collective explainable AI: Explaining cooperative strategies and agent contribution in multiagent reinforcement learning with shapley values. IEEE Comput. Intell. Mag. 2022, 17, 59–71. [Google Scholar] [CrossRef]
- Richens, J.G.; Lee, C.M.; Johri, S. Improving the accuracy of medical diagnosis with causal machine learning. Nat. Commun. 2020, 11, 3923. [Google Scholar] [CrossRef] [PubMed]
- Obaido, G.; Ogbuokiri, B.; Chukwu, C.W.; Osaye, F.J.; Egbelowo, O.F.; Uzochukwu, M.I.; Mienye, I.D.; Aruleba, K.; Primus, M.; Achilonu, O. An Improved Ensemble Method for Predicting Hyperchloremia in Adults with Diabetic Ketoacidosis. IEEE Access 2024, 12, 9536–9549. [Google Scholar] [CrossRef]
- Mienye, I.D.; Sun, Y. A Machine Learning Method with Hybrid Feature Selection for Improved Credit Card Fraud Detection. Appl. Sci. 2023, 13, 7254. [Google Scholar] [CrossRef]
- Mienye, I.D.; Obaido, G.; Aruleba, K.; Dada, O.A. Enhanced prediction of chronic kidney disease using feature selection and boosted classifiers. In International Conference on Intelligent Systems Design and Applications; Springer: Cham, Switzerland, 2021; pp. 527–537. [Google Scholar]
- Whiting, D.; Fazel, S. How accurate are suicide risk prediction models? Asking the right questions for clinical practice. BMJ Ment Health 2019, 22, 125–128. [Google Scholar] [CrossRef]
- Gárate-Escamila, A.K.; Hajjam El Hassani, A.; Andrès, E. Classification models for heart disease prediction using feature selection and PCA. Inform. Med. Unlocked 2020, 19, 100330. [Google Scholar] [CrossRef]
- Nancy, A.A.; Ravindran, D.; Raj Vincent, P.M.D.; Srinivasan, K.; Gutierrez Reina, D. IoT-Cloud-Based Smart Healthcare Monitoring System for Heart Disease Prediction via Deep Learning. Electronics 2022, 11, 2292. [Google Scholar] [CrossRef]
- Shah, D.; Patel, S.; Bharti, S.K. Heart Disease Prediction using Machine Learning Techniques. SN Comput. Sci. 2020, 1, 345. [Google Scholar] [CrossRef]
- Katarya, R.; Meena, S.K. Machine Learning Techniques for Heart Disease Prediction: A Comparative Study and Analysis. Health Technol. 2020, 11, 87–97. [Google Scholar] [CrossRef]
- Singh, A.; Kumar, R. Heart Disease Prediction Using Machine Learning Algorithms. In Proceedings of the 2020 International Conference on Electrical and Electronics Engineering (ICE3), Gorakhpur, India, 14–15 February 2020; pp. 452–457. [Google Scholar] [CrossRef]
- Rani, P.; Kumar, R.; Ahmed, N.M.O.S.; Jain, A. A decision support system for heart disease prediction based upon machine learning. J. Reliab. Intell. Environ. 2021, 7, 263–275. [Google Scholar] [CrossRef]
- Kavitha, M.; Gnaneswar, G.; Dinesh, R.; Sai, Y.R.; Suraj, R.S. Heart Disease Prediction using Hybrid machine Learning Model. In Proceedings of the 2021 6th International Conference on Inventive Computation Technologies (ICICT), Coimbatore, India, 20–22 January 2021; pp. 1329–1333. [Google Scholar]
- Ayon, S.I.; Islam, M.M.; Hossain, M.R. Coronary Artery Heart Disease Prediction: A Comparative Study of Computational Intelligence Techniques. IETE J. Res. 2020, 68, 2488–2507. [Google Scholar] [CrossRef]
- Fitriyani, N.L.; Syafrudin, M.; Alfian, G.; Rhee, J. HDPM: An Effective Heart Disease Prediction Model for a Clinical Decision Support System. IEEE Access 2020, 8, 133034–133050. [Google Scholar] [CrossRef]
- Dutta, A.; Batabyal, T.; Basu, M.; Acton, S.T. An efficient convolutional neural network for coronary heart disease prediction. Expert Syst. Appl. 2020, 159, 113408. [Google Scholar] [CrossRef]
- Yadav, A.L.; Soni, K.; Khare, S. Heart Diseases Prediction using Machine Learning. In Proceedings of the 2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT), Delhi, India, 6–8 July 2023; pp. 1–7. [Google Scholar] [CrossRef]
- Bizimana, P.C.; Zhang, Z.; Hounye, A.H.; Asim, M.; Hammad, M.; El-Latif, A.A.A. Automated heart disease prediction using improved explainable learning-based technique. Neural Comput. Appl. 2024. [Google Scholar] [CrossRef]
- Guleria, P.; Naga Srinivasu, P.; Ahmed, S.; Almusallam, N.; Alarfaj, F.K. XAI Framework for Cardiovascular Disease Prediction Using Classification Techniques. Electronics 2022, 11, 4086. [Google Scholar] [CrossRef]
- Ali, F.; El-Sappagh, S.; Islam, S.R.; Kwak, D.; Ali, A.; Imran, M.; Kwak, K.S. A smart healthcare monitoring system for heart disease prediction based on ensemble deep learning and feature fusion. Inf. Fusion 2020, 63, 208–222. [Google Scholar] [CrossRef]
- Mehmood, A.; Iqbal, M.; Mehmood, Z.; Irtaza, A.; Nawaz, M.; Nazir, T.; Masood, M. Prediction of Heart Disease Using Deep Convolutional Neural Networks. Arab. J. Sci. Eng. 2021, 46, 3409–3422. [Google Scholar] [CrossRef]
- Bharti, R.; Khamparia, A.; Shabaz, M.; Dhiman, G.; Pande, S.; Singh, P. Prediction of Heart Disease Using a Combination of Machine Learning and Deep Learning. Comput. Intell. Neurosci. 2021, 2021, 8387680. [Google Scholar] [CrossRef] [PubMed]
- Ashri, S.E.A.; El-Gayar, M.M.; El-Daydamony, E.M. HDPF: Heart Disease Prediction Framework Based on Hybrid Classifiers and Genetic Algorithm. IEEE Access 2021, 9, 146797–146809. [Google Scholar] [CrossRef]
- Mienye, I.D.; Sun, Y. Effective Feature Selection for Improved Prediction of Heart Disease. In Pan-African Artificial Intelligence and Smart Systems; Ngatched, T.M.N., Woungang, I., Eds.; Springer: Cham, Switzerland, 2022; pp. 94–107. [Google Scholar]
- Hossain, M.M.; Ali, M.S.; Ahmed, M.M.; Rakib, M.R.H.; Kona, M.A.; Afrin, S.; Islam, M.K.; Ahsan, M.M.; Raj, S.M.R.H.; Rahman, M.H. Cardiovascular disease identification using a hybrid CNN-LSTM model with explainable AI. Inform. Med. Unlocked 2023, 42, 101370. [Google Scholar] [CrossRef]
S/N | Feature | Data Type | Description |
---|---|---|---|
1 | age | Numeric | Age in years |
2 | sex | Categorical | Sex (1 = male; 0 = female) |
3 | cp | Categorical | Chest pain type |
4 | trestbps | Numeric | Resting blood pressure (in mm Hg) |
5 | chol | Numeric | Serum cholesterol in mg/dL |
6 | fbs | Categorical | Fasting blood sugar > 120 mg/dL (1 = true; 0 = false) |
7 | restecg | Categorical | Resting electrocardiographic results |
8 | thalach | Numeric | Maximum heart rate achieved |
9 | exang | Categorical | Exercise-induced angina (1 = yes; 0 = no) |
10 | oldpeak | Numeric | ST depression induced by exercise relative to rest |
11 | slope | Categorical | The slope of the peak exercise ST segment |
12 | ca | Numeric | Number of major vessels (0–3) colored by fluoroscopy |
13 | thal | Categorical | Thalassemia |
14 | target | Categorical | Diagnosis of heart disease |
S/N | Feature | Data Type | Description |
---|---|---|---|
1 | age | Numeric | Age of the participant |
2 | sex | Categorical | Sex of the participant |
3 | BMI | Numeric | Body Mass Index |
4 | currentSmoker | Categorical | Current smoker (1 = yes; 0 = no) |
5 | cigsPerDay | Numeric | Average number of cigarettes smoked per day |
6 | BPmeds | Categorical | Blood pressure medication (1 = yes; 0 = no) |
7 | prevalentStroke | Categorical | Previous stroke (1 = yes; 0 = no) |
8 | prevalentHyp | Categorical | Hypertensive (1 = yes; 0 = no) |
9 | diabetes | Categorical | Diabetes (1 = yes; 0 = no) |
10 | totChol | Numeric | Total cholesterol level in mg/dL |
11 | sysBP | Numeric | Systolic blood pressure in mmHg |
12 | diaBP | Numeric | Diastolic blood pressure in mmHg |
13 | BMI | Numeric | Body mass index |
14 | heartRate | Numeric | Heart rate in beats per minute (bpm) |
15 | glucose | Numeric | Glucose level in mg/dL |
16 | TenYearCHD | Categorical | 10-year risk of developing CHD |
Classifier | Hyperparameter | Search Space | Optimal Value |
---|---|---|---|
RF | n_estimators max_depth min_samples_split | 10, 200 None, 5, 10, 20, 30 2, 5, 10, 20 | 75 10 4 |
XGBoost | n_estimators max_depth learning_rate subsample | 100, 1000 3, 10 0.01, 0.3 0.2, 1 | 100 5 0.15 0.6 |
AdaBoost | n_estimators learning_rate | 10, 1000 0.01, 1 | 50 0.1 |
Classifier | Hyperparameter | Search Space | Optimal Value |
---|---|---|---|
RF | n_estimators max_depth min_samples_split | 10, 200 None, 5, 10, 20, 30 2, 5, 10, 20 | 100 10 10 |
XGBoost | n_estimators max_depth learning_rate subsample | 100, 1000 3, 10 0.01, 0.3 0.2, 1 | 120 6 0.2 0.8 |
AdaBoost | n_estimators learning_rate | 10, 1000 0.01, 1 | 100 0.1 |
Classifier | Accuracy | Specificity | Sensitivity | F-Measure |
---|---|---|---|---|
Random Forest | 0.810 | 0.799 | 0.821 | 0.818 |
AdaBoost | 0.736 | 0.714 | 0.840 | 0.786 |
XGBoost | 0.880 | 0.861 | 0.937 | 0.896 |
Optimized RF | 0.892 | 0.914 | 0.890 | 0.899 |
Optimized AdaBoost | 0.863 | 0.925 | 0.870 | 0.904 |
Optimized XGBoost | 0.984 | 0.971 | 0.989 | 0.985 |
Classifier | Accuracy | Specificity | Sensitivity | F-Measure |
---|---|---|---|---|
Random Forest | 0.835 | 0.845 | 0.850 | 0.840 |
AdaBoost | 0.860 | 0.842 | 0.790 | 0.814 |
XGBoost | 0.917 | 0.899 | 0.920 | 0.900 |
Optimized Random Forest | 0.890 | 0.920 | 0.905 | 0.898 |
Optimized AdaBoost | 0.901 | 0.910 | 0.936 | 0.910 |
Optimized XGBoost | 0.959 | 0.931 | 0.975 | 0.960 |
Reference | Technique | Accuracy | Spe | Sen | Implemented XAI |
---|---|---|---|---|---|
[48] | KNN (K = 7) | 0.908 | - | - | X |
[48] | RF | 0.868 | - | - | X |
[49] | ANN | 0.923 | 0.837 | X | |
[50] | KNN | 0.870 | - | - | X |
[51] | RF + GA + SMOTE | 0.866 | 0.890 | 0.841 | X |
[52] | Hybrid of RF and DT | 0.880 | - | - | X |
[53] | Deep Neural Network | 0.981 | - | 0.967 | X |
[54] | XGBoost and SMOTE-ENN | 0.984 | 0.983 | 0.983 | X |
[55] | CNN + LASSO | 0.857 | - | - | X |
[46] | RF and PCA | 0.987 | - | 0.971 | X |
[56] | RF | 0.970 | - | - | X |
[57] | Optimized SVM | 0.960 | - | 0.972 | ✓ |
[58] | Ensemble classifier | 0.890 | - | - | ✓ |
[59] | Ensemble deep learning | 0.985 | - | 0.964 | X |
[60] | CNN | 0.970 | - | - | X |
[47] | Bi-LSTM | 0.988 | 0.988 | 0.988 | X |
[61] | DL-based Classifier | 0.942 | 0.931 | 0.823 | X |
[62] | Hybrid Classifiers with GA | 0.982 | X | ||
[63] | XGBoost with RFE | 0.956 | - | 0.981 | X |
[64] | Hybrid CNN-LSTM | 0.742 | 0.771 | 0.770 | ✓ |
This paper | Optimized XGBoost | 0.984 | 0.971 | 0.989 | ✓ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mienye, I.D.; Jere, N. Optimized Ensemble Learning Approach with Explainable AI for Improved Heart Disease Prediction. Information 2024, 15, 394. https://doi.org/10.3390/info15070394
Mienye ID, Jere N. Optimized Ensemble Learning Approach with Explainable AI for Improved Heart Disease Prediction. Information. 2024; 15(7):394. https://doi.org/10.3390/info15070394
Chicago/Turabian StyleMienye, Ibomoiye Domor, and Nobert Jere. 2024. "Optimized Ensemble Learning Approach with Explainable AI for Improved Heart Disease Prediction" Information 15, no. 7: 394. https://doi.org/10.3390/info15070394
APA StyleMienye, I. D., & Jere, N. (2024). Optimized Ensemble Learning Approach with Explainable AI for Improved Heart Disease Prediction. Information, 15(7), 394. https://doi.org/10.3390/info15070394