The Implementation of “Smart” Technologies in the Agricultural Sector: A Review
Abstract
:1. Introduction
2. Data and Methods
3. Challenges and Concerns
3.1. Precision Agriculture Adoption Models and Related Variables
3.2. Agricultural Green Production Technologies and Factors Affecting Their Adoption
4. Evolution of Technology
5. IoT Technology in Precision Agriculture
5.1. IoT-Supported Application Categories in Agriculture
5.2. IoT as an Enabler for Precision Agriculture
5.3. Architectural Patterns for IoT-Based Systems
6. Applications of Precision Agriculture
6.1. Field Monitoring
- Sensor nodes: These are small devices equipped with various sensors that measure environmental parameters, such as temperature, humidity, soil moisture, light intensity, CO2 levels, etc. These sensor nodes are distributed strategically throughout the farm or greenhouse. Sensor nodes may be hosted on larger assemblies, such as agrometeorological stations, while they can also be mounted on farm vehicles, such as tractors.
- Communication protocols: WSNs and IoT systems use wireless communication protocols, such as Zigbee, LoRaWAN, Wi-Fi, or Bluetooth, to enable seamless data transmission between the sensor nodes and the central gateway.
- Central gateway: The central gateway acts as a data aggregator and communication hub. It receives data from all the sensor nodes within its range and transmits these data to the cloud or a local server for further processing.
- Connectivity: The central gateway is typically connected to the internet, enabling remote access to the data collected by the sensor nodes. Farmers can access these data through computers, smartphones, or other devices.
- Satellite or unmanned aerial vehicle analysis: The analysis of data obtained from satellite or drone imagery in conjunction with node data also provides useful information for farming and guidance for autonomous machinery.
- Cloud or server: Data collected by the central gateway are sent to a cloud-based platform or a local server for storage, analysis, and visualization.
- Environmental parameters: Data related to temperature, humidity, soil moisture, light intensity, CO2 levels, and other environmental conditions. These data help farmers to optimize irrigation, ventilation, and other climate control systems.
- Crop and plant health: Data on the growth and health of crops, including information about nutrient levels, disease presence, and pest infestations. These data allow farmers to take timely action to protect and enhance crop health.
- Water and resource management: Data on water consumption, water quality, and resource usage to optimize water and resource management practices.
- Weather data: Some remote monitoring systems may also integrate weather data from external sources to make more informed decisions based on weather forecasts.
- Alerts and notifications: In case of any abnormal conditions or critical events, the system may send alerts and notifications to the farmers, allowing them to respond promptly.
6.2. Greenhouse Monitoring
- Network infrastructure: WSNs may utilize mesh network topologies, where each sensor node can communicate with neighboring nodes, creating a self-organizing and resilient network.
- Data routing: Data are routed through the network from the sensor nodes to the central gateway using multi-hop communication. This allows the data to be relayed through intermediate nodes to reach the gateway even if direct communication is not possible.
- Environmental parameters: Data on temperature, humidity, light intensity, CO2 levels, and soil moisture are continuously collected from the sensor nodes. These data provide valuable insights into the greenhouse’s climate conditions.
- Plant health: Some sensor nodes may be equipped with sensors to monitor specific plant health parameters, like leaf temperature, chlorophyll content, or nutrient levels. These data help assess the health and growth status of the plants.
- Irrigation management: Soil moisture data assist in optimizing irrigation practices. The sensor nodes transmit soil moisture levels, allowing farmers to regulate watering and prevent under- or overwatering.
- Climate control: Data from temperature and humidity sensors aid in managing climate control systems like heating, ventilation, and cooling to create an optimal growth environment for plants.
- Lighting management: Light intensity data help in adjusting artificial lighting systems within the greenhouse to supplement natural light and optimize photosynthesis.
- Data analytics: The collected data are sent to a central system or cloud platform for storage, analysis, and visualization. Advanced data analytics can provide insights into trends, patterns, and anomalies, aiding in better decision-making.
6.3. Livestock Monitoring
- IoT devices: Livestock monitoring systems involve the use of IoT devices such as smart collars, ear tags, or implants that are attached to individual animals. These devices are equipped with various sensors to collect data about the animals’ health, behavior, and location.
- Communication protocols: IoT devices in livestock monitoring systems typically use wireless communication protocols like LoRaWAN, NB-IoT, or cellular networks to transmit data to the central data management system.
- Central data management system: A central data management system serves as the data aggregator and processing hub. It receives data from all the IoT devices attached to the livestock and stores the data for further analysis.
- Data storage and analysis: Data collected from the IoT devices are stored in databases or cloud-based platforms. Advanced data analytics tools are used to process the data and derive valuable insights about the livestock’s health and behavior.
- Connectivity: The central data management system is connected to the internet, enabling farmers or livestock managers to remotely access and monitor the data collected from the IoT devices. Data management and analysis systems are connected to the internet through a gateway, while a field gateway typically arranges for the transferring of the sensed data to data management and analysis systems.
- Vital signs: Data related to the animals’ vital signs, including body temperature, heart rate, respiratory rate, and activity levels.
- Behavioral data: Information about the animals’ behavior, such as eating patterns, rest times, and movement, which helps in assessing their well-being and detecting any signs of distress or abnormal behavior.
- Location tracking: IoT devices with GPS capabilities provide real-time location data of the livestock, enabling farmers to monitor their movement and grazing patterns.
- Health parameters: Some IoT devices may collect specific health parameters like rumination activity, which can indicate the overall health and well-being of the animals.
- Reproductive data: For breeding purposes, IoT devices can track the estrus cycles and fertility levels of individual animals, helping farmers optimize breeding programs.
- Alerts and notifications: The system can send alerts and notifications to farmers or livestock managers in real time if any abnormal conditions or critical events are detected, allowing for prompt action.
7. Implementation Projects and Success Stories
7.1. Precision Farming
7.2. Greenhouses
7.3. Animal Husbandry
7.4. Food Traceability
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hunter, M.C.; Smith, R.G.; Schipanski, M.E.; Atwood, L.W.; Mortensen, D.A. Agriculture in 2050: Recalibrating Targets for Sustainable Intensification. BioScience 2017, 67, 386–391. [Google Scholar] [CrossRef]
- Ladha, J.K.; Jat, M.L.; Stirling, C.M.; Chakraborty, D.; Pradhan, P.; Krupnik, T.J.; Sapkota, T.B.; Pathak, H.; Rana, D.S.; Tesfaye, K.; et al. Achieving the Sustainable Development Goals in Agriculture: The Crucial Role of Nitrogen in Cereal-Based Systems. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2020; Volume 163, pp. 39–116. ISBN 978-0-12-820769-7. [Google Scholar]
- Erisman, J.W. Setting Ambitious Goals for Agriculture to Meet Environmental Targets. One Earth 2021, 4, 15–18. [Google Scholar] [CrossRef]
- Afzal, A.; Bell, M. Precision Agriculture: Making Agriculture Sustainable. In Precision Agriculture; Elsevier: Amsterdam, The Netherlands, 2023; pp. 187–210. ISBN 978-0-443-18953-1. [Google Scholar]
- Lindblom, J.; Lundström, C.; Ljung, M.; Jonsson, A. Promoting Sustainable Intensification in Precision Agriculture: Review of Decision Support Systems Development and Strategies. Precis. Agric. 2017, 18, 309–331. [Google Scholar] [CrossRef]
- Aubert, B.A.; Schroeder, A.; Grimaudo, J. IT as Enabler of Sustainable Farming: An Empirical Analysis of Farmers’ Adoption Decision of Precision Agriculture Technology. Decis. Supp. Syst. 2012, 54, 510–520. [Google Scholar] [CrossRef]
- Thomas, R.J.; O’Hare, G.; Coyle, D. Understanding Technology Acceptance in Smart Agriculture: A Systematic Review of Empirical Research in Crop Production. Technol. Forecast. Soc. Change 2023, 189, 122374. [Google Scholar] [CrossRef]
- Sott, M.K.; Furstenau, L.B.; Kipper, L.M.; Giraldo, F.D.; Lopez-Robles, J.R.; Cobo, M.J.; Zahid, A.; Abbasi, Q.H.; Imran, M.A. Precision Techniques and Agriculture 4.0 Technologies to Promote Sustainability in the Coffee Sector: State of the Art, Challenges and Future Trends. IEEE Access 2020, 8, 149854–149867. [Google Scholar] [CrossRef]
- Rose, D.C.; Chilvers, J. Agriculture 4.0: Broadening Responsible Innovation in an Era of Smart Farming. Front. Sustain. Food Syst. 2018, 2, 87. [Google Scholar] [CrossRef]
- Kovács, I.; Husti, I. The Role of Digitalization in the Agricultural 4.0—How to Connect the Industry 4.0 to Agriculture? Hung. Agric. Eng. 2018, 33, 38–42. [Google Scholar] [CrossRef]
- Zambon, I.; Cecchini, M.; Egidi, G.; Saporito, M.G.; Colantoni, A. Revolution 4.0: Industry vs. Agriculture in a Future Development for SMEs. Processes 2019, 7, 36. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, X.; Shu, L.; Hancke, G.P.; Abu-Mahfouz, A.M. From Industry 4.0 to Agriculture 4.0: Current Status, Enabling Technologies, and Research Challenges. IEEE Trans. Ind. Inform. 2021, 17, 4322–4334. [Google Scholar] [CrossRef]
- Zhai, Z.; Martínez, J.F.; Beltran, V.; Martínez, N.L. Decision Support Systems for Agriculture 4.0: Survey and Challenges. Comput. Electron. Agric. 2020, 170, 105256. [Google Scholar] [CrossRef]
- Majumdar, P.; Bhattacharya, D.; Mitra, S.; Bhushan, B. Application of Green IoT in Agriculture 4.0 and Beyond: Requirements, Challenges and Research Trends in the Era of 5G, LPWANs and Internet of UAV Things. Wirel. Pers. Commun. 2023, 131, 1767–1816. [Google Scholar] [CrossRef]
- Friedl, M.A. Remote Sensing of Croplands. In Comprehensive Remote Sensing; Elsevier: Amsterdam, The Netherlands, 2018; pp. 78–95. ISBN 978-0-12-803221-3. [Google Scholar]
- Singh, P.; Pandey, P.C.; Petropoulos, G.P.; Pavlides, A.; Srivastava, P.K.; Koutsias, N.; Deng, K.A.K.; Bao, Y. Hyperspectral Remote Sensing in Precision Agriculture: Present Status, Challenges, and Future Trends. In Hyperspectral Remote Sensing; Elsevier: Amsterdam, The Netherlands, 2020; pp. 121–146. ISBN 978-0-08-102894-0. [Google Scholar]
- Siddharth, D.; Saini, D.K.; Kumar, A. Precision Agriculture with Technologies for Smart Farming Towards Agriculture 5.0. In Unmanned Aerial Vehicles for Internet of Things (IoT); Mohindru, V., Singh, Y., Bhatt, R., Gupta, A.K., Eds.; Wiley: Hoboken, NJ, USA, 2021; pp. 247–276. ISBN 978-1-119-76882-1. [Google Scholar]
- Hegde, P. Precision Agriculture: How Is It Different from Smart Farming? Available online: https://www.cropin.com/blogs/smart-farming-vs-precision-farming-systems (accessed on 20 June 2024).
- Agrocares. What Is the Difference between Precision, Digital and Smart Farming? Available online: https://agrocares.com/what-is-the-difference-between-precision-digital-and-smart-farming/ (accessed on 20 June 2024).
- Rodríguez, M.A.; Cuenca, L.; Ortiz, Á. Big Data Transformation in Agriculture: From Precision Agriculture towards Smart Farming. In Collaborative Networks and Digital Transformation; Camarinha-Matos, L.M., Afsarmanesh, H., Antonelli, D., Eds.; IFIP Advances in Information and Communication Technology; Springer International Publishing: Cham, Switzerland, 2019; Volume 568, pp. 467–474. ISBN 978-3-030-28463-3. [Google Scholar]
- Donkor, E.; Onakuse, S.; Bogue, J.; De Los Rios-Carmenado, I. Fertiliser Adoption and Sustainable Rural Livelihood Improvement in Nigeria. Land Use Policy 2019, 88, 104193. [Google Scholar] [CrossRef]
- Eanes, F.R.; Singh, A.S.; Bulla, B.R.; Ranjan, P.; Fales, M.; Wickerham, B.; Doran, P.J.; Prokopy, L.S. Crop Advisers as Conservation Intermediaries: Perceptions and Policy Implications for Relying on Nontraditional Partners to Increase U.S. Farmers’ Adoption of Soil and Water Conservation Practices. Land Use Policy 2019, 81, 360–370. [Google Scholar] [CrossRef]
- Guo, R.; Lv, S.; Liao, T.; Xi, F.; Zhang, J.; Zuo, X.; Cao, X.; Feng, Z.; Zhang, Y. Classifying Green Technologies for Sustainable Innovation and Investment. Resour. Conserv. Recycl. 2020, 153, 104580. [Google Scholar] [CrossRef]
- Bhakta, I.; Phadikar, S.; Majumder, K. State-of-the-art Technologies in Precision Agriculture: A Systematic Review. J. Sci. Food Agric. 2019, 99, 4878–4888. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Shao, X.-F.; Wu, C.-H.; Qiao, P. A Systematic Literature Review on Applications of Information and Communication Technologies and Blockchain Technologies for Precision Agriculture Development. J. Clean. Prod. 2021, 298, 126763. [Google Scholar] [CrossRef]
- Ayoub Shaikh, T.; Rasool, T.; Rasheed Lone, F. Towards Leveraging the Role of Machine Learning and Artificial Intelligence in Precision Agriculture and Smart Farming. Comput. Electron. Agric. 2022, 198, 107119. [Google Scholar] [CrossRef]
- Bhat, S.A.; Huang, N.-F. Big Data and AI Revolution in Precision Agriculture: Survey and Challenges. IEEE Access 2021, 9, 110209–110222. [Google Scholar] [CrossRef]
- Sharma, A.; Jain, A.; Gupta, P.; Chowdary, V. Machine Learning Applications for Precision Agriculture: A Comprehensive Review. IEEE Access 2021, 9, 4843–4873. [Google Scholar] [CrossRef]
- Tsouros, D.C.; Bibi, S.; Sarigiannidis, P.G. A Review on UAV-Based Applications for Precision Agriculture. Information 2019, 10, 349. [Google Scholar] [CrossRef]
- Mukherjee, A.; Misra, S.; Raghuwanshi, N.S. A Survey of Unmanned Aerial Sensing Solutions in Precision Agriculture. J. Netw. Comput. Appl. 2019, 148, 102461. [Google Scholar] [CrossRef]
- Aslan, M.F.; Durdu, A.; Sabanci, K.; Ropelewska, E.; Gültekin, S.S. A Comprehensive Survey of the Recent Studies with UAV for Precision Agriculture in Open Fields and Greenhouses. Appl. Sci. 2022, 12, 1047. [Google Scholar] [CrossRef]
- Singh, R.K.; Berkvens, R.; Weyn, M. AgriFusion: An Architecture for IoT and Emerging Technologies Based on a Precision Agriculture Survey. IEEE Access 2021, 9, 136253–136283. [Google Scholar] [CrossRef]
- Shafi, U.; Mumtaz, R.; García-Nieto, J.; Hassan, S.A.; Zaidi, S.A.R.; Iqbal, N. Precision Agriculture Techniques and Practices: From Considerations to Applications. Sensors 2019, 19, 3796. [Google Scholar] [CrossRef]
- Akhter, R.; Sofi, S.A. Precision Agriculture Using IoT Data Analytics and Machine Learning. J. King Saud Univ. Comput. Inf. Sci. 2022, 34, 5602–5618. [Google Scholar] [CrossRef]
- Madhumathi, R.; Arumuganathan, T.; Shruthi, R. Internet of Things in Precision Agriculture: A Survey on Sensing Mechanisms, Potential Applications, and Challenges. In Intelligent Sustainable Systems; Raj, J.S., Palanisamy, R., Perikos, I., Shi, Y., Eds.; Lecture Notes in Networks and Systems; Springer: Singapore, 2022; Volume 213, pp. 539–553. [Google Scholar] [CrossRef]
- Kour, V.P.; Arora, S. Recent Developments of the Internet of Things in Agriculture: A Survey. IEEE Access 2020, 8, 129924–129957. [Google Scholar] [CrossRef]
- Saranya, T.; Deisy, C.; Sridevi, S.; Anbananthen, K.S.M. A Comparative Study of Deep Learning and Internet of Things for Precision Agriculture. Eng. Appl. Artif. Intell. 2023, 122, 106034. [Google Scholar] [CrossRef]
- Barnes, A.P.; Soto, I.; Eory, V.; Beck, B.; Balafoutis, A.; Sánchez, B.; Vangeyte, J.; Fountas, S.; Van Der Wal, T.; Gómez-Barbero, M. Exploring the Adoption of Precision Agricultural Technologies: A Cross Regional Study of EU Farmers. Land Use Policy 2019, 80, 163–174. [Google Scholar] [CrossRef]
- Pathak, H.S.; Brown, P.; Best, T. A Systematic Literature Review of the Factors Affecting the Precision Agriculture Adoption Process. Precis. Agric. 2019, 20, 1292–1316. [Google Scholar] [CrossRef]
- Mohr, S.; Kühl, R. Acceptance of Artificial Intelligence in German Agriculture: An Application of the Technology Acceptance Model and the Theory of Planned Behavior. Precis. Agric. 2021, 22, 1816–1844. [Google Scholar] [CrossRef]
- Asian Development Bank. Internet Plus Agriculture: A New Engine for Rural Economic Growth in the People’s Republic of China; Asian Development Bank: Manila, Philippines, 2018. [Google Scholar] [CrossRef]
- Muangprathub, J.; Boonnam, N.; Kajornkasirat, S.; Lekbangpong, N.; Wanichsombat, A.; Nillaor, P. IoT and Agriculture Data Analysis for Smart Farm. Comput. Electron. Agric. 2019, 156, 467–474. [Google Scholar] [CrossRef]
- Nóbrega, L.; Tavares, A.; Cardoso, A.; Gonçalves, P. Animal Monitoring Based on IoT Technologies. In Proceedings of the 2018 IoT Vertical and Topical Summit on Agriculture—Tuscany (IOT Tuscany), Tuscany, Italy, 8–9 May 2018; pp. 1–5. [Google Scholar]
- Wasson, T.; Choudhury, T.; Sharma, S.; Kumar, P. Integration of RFID and Sensor in Agriculture Using IOT. In Proceedings of the 2017 International Conference on Smart Technologies for Smart Nation (SmartTechCon), Bengaluru, India, 17–19 August 2017; pp. 217–222. [Google Scholar]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Martín-Martín, A.; Thelwall, M.; Orduna-Malea, E.; Delgado López-Cózar, E. Google Scholar, Microsoft Academic, Scopus, Dimensions, Web of Science, and OpenCitations’ COCI: A Multidisciplinary Comparison of Coverage via Citations. Scientometrics 2021, 126, 871–906. [Google Scholar] [CrossRef]
- Birkle, C.; Pendlebury, D.A.; Schnell, J.; Adams, J. Web of Science as a Data Source for Research on Scientific and Scholarly Activity. Quant. Sci. Stud. 2020, 1, 363–376. [Google Scholar] [CrossRef]
- Baas, J.; Schotten, M.; Plume, A.; Côté, G.; Karimi, R. Scopus as a Curated, High-Quality Bibliometric Data Source for Academic Research in Quantitative Science Studies. Quant. Sci. Stud. 2020, 1, 377–386. [Google Scholar] [CrossRef]
- Delgado López-Cózar, E.; Orduña-Malea, E.; Martín-Martín, A. Google Scholar as a Data Source for Research Assessment. In Springer Handbook of Science and Technology Indicators; Glänzel, W., Moed, H.F., Schmoch, U., Thelwall, M., Eds.; Springer Handbooks; Springer International Publishing: Cham, Switzerland, 2019; pp. 95–127. ISBN 978-3-030-02510-6. [Google Scholar]
- Gusenbauer, M. Google Scholar to Overshadow Them All? Comparing the Sizes of 12 Academic Search Engines and Bibliographic Databases. Scientometrics 2019, 118, 177–214. [Google Scholar] [CrossRef]
- Halevi, G.; Moed, H.; Bar-Ilan, J. Suitability of Google Scholar as a Source of Scientific Information and as a Source of Data for Scientific Evaluation—Review of the Literature. J. Informetr. 2017, 11, 823–834. [Google Scholar] [CrossRef]
- Harzing, A.-W. Microsoft Academic (Search): A Phoenix Arisen from the Ashes? Scientometrics 2016, 108, 1637–1647. [Google Scholar] [CrossRef]
- Harzing, A.-W.; Alakangas, S. Google Scholar, Scopus and the Web of Science: A Longitudinal and Cross-Disciplinary Comparison. Scientometrics 2016, 106, 787–804. [Google Scholar] [CrossRef]
- Martín-Martín, A. Code to Extract Bibliographic Data from Google Scholar. Available online: https://github.com/alberto-martin/googlescholar (accessed on 28 July 2024).
- Moed, H.F.; Bar-Ilan, J.; Halevi, G. A New Methodology for Comparing Google Scholar and Scopus. J. Informetr. 2016, 10, 533–551. [Google Scholar] [CrossRef]
- Scopus—Document Search. Available online: https://www.scopus.com/search/form.uri?display=basic#basic (accessed on 29 July 2023).
- Tzounis, A.; Katsoulas, N.; Bartzanas, T.; Kittas, C. Internet of Things in Agriculture, Recent Advances and Future Challenges. Biosyst. Eng. 2017, 164, 31–48. [Google Scholar] [CrossRef]
- Ruan, J.; Wang, Y.; Chan, F.T.S.; Hu, X.; Zhao, M.; Zhu, F.; Shi, B.; Shi, Y.; Lin, F. A Life Cycle Framework of Green IoT-Based Agriculture and Its Finance, Operation, and Management Issues. IEEE Commun. Mag. 2019, 57, 90–96. [Google Scholar] [CrossRef]
- Jackson, C.M.; Chow, S.; Leitch, R.A. Toward an Understanding of the Behavioral Intention to Use an Information System. Decis. Sci. 1997, 28, 357–389. [Google Scholar] [CrossRef]
- Agarwal, R.; Prasad, J. Are Individual Differences Germane to the Acceptance of New Information Technologies? Decis. Sci. 1999, 30, 361–391. [Google Scholar] [CrossRef]
- Dishaw, M.T.; Strong, D.M. Extending the Technology Acceptance Model with Task–Technology Fit Constructs. Inf. Manag. 1999, 36, 9–21. [Google Scholar] [CrossRef]
- Teo, T. Examining the Influence of Subjective Norm and Facilitating Conditions on the Intention to Use Technology among Pre-Service Teachers: A Structural Equation Modeling of an Extended Technology Acceptance Model. Asia Pac. Educ. Rev. 2010, 11, 253–262. [Google Scholar] [CrossRef]
- Davis, F.D. Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Q. 1989, 13, 319. [Google Scholar] [CrossRef]
- Venkatesh, V.; Morris, M.G.; Davis, G.B.; Davis, F.D. User Acceptance of Information Technology: Toward a Unified View. MIS Q. 2003, 27, 425. [Google Scholar] [CrossRef]
- Assaker, G. Age and Gender Differences in Online Travel Reviews and User-Generated-Content (UGC) Adoption: Extending the Technology Acceptance Model (TAM) with Credibility Theory. J. Hosp. Mark. Manag. 2020, 29, 428–449. [Google Scholar] [CrossRef]
- Vahdat, A.; Alizadeh, A.; Quach, S.; Hamelin, N. Would You like to Shop via Mobile App Technology? The Technology Acceptance Model, Social Factors and Purchase Intention. Australas. Mark. J. 2021, 29, 187–197. [Google Scholar] [CrossRef]
- Talantis, S.; Shin, Y.H.; Severt, K. Conference Mobile Application: Participant Acceptance and the Correlation with Overall Event Satisfaction Utilizing the Technology Acceptance Model (TAM). J. Conv. Event Tour. 2020, 21, 100–122. [Google Scholar] [CrossRef]
- Adnan, N.; Nordin, S.M.; Bahruddin, M.A.; Tareq, A.H. A State-of-the-Art Review on Facilitating Sustainable Agriculture through Green Fertilizer Technology Adoption: Assessing Farmers Behavior. Trends Food Sci. Technol. 2019, 86, 439–452. [Google Scholar] [CrossRef]
- Bukchin, S.; Kerret, D. Food for Hope: The Role of Personal Resources in Farmers’ Adoption of Green Technology. Sustainability 2018, 10, 1615. [Google Scholar] [CrossRef]
- Mao, H.; Zhou, L.; Ying, R.; Pan, D. Time Preferences and Green Agricultural Technology Adoption: Field Evidence from Rice Farmers in China. Land Use Policy 2021, 109, 105627. [Google Scholar] [CrossRef]
- Monteiro, A.; Santos, S.; Gonçalves, P. Precision Agriculture for Crop and Livestock Farming—Brief Review. Animals 2021, 11, 2345. [Google Scholar] [CrossRef]
- Nowak, B. Precision Agriculture: Where Do We Stand? A Review of the Adoption of Precision Agriculture Technologies on Field Crops Farms in Developed Countries. Agric. Res. 2021, 10, 515–522. [Google Scholar] [CrossRef]
- Memon, K.; Umrani, F.A.; Baqai, A.; Syed, Z.S. A Review Based on Comparative Analysis of Techniques Used in Precision Agriculture. In Proceedings of the 2023 4th International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), Sukkur, Pakistan, 17 March 2023; pp. 1–7. [Google Scholar]
- Ramil Brick, E.S.; Holland, J.; Anagnostou, D.E.; Brown, K.; Desmulliez, M.P.Y. A Review of Agroforestry, Precision Agriculture, and Precision Livestock Farming—The Case for a Data-Driven Agroforestry Strategy. Front. Sens. 2022, 3, 998928. [Google Scholar] [CrossRef]
- Gürsoy, S. A Review of the Factors Affecting Adoption of Precision Agriculture Applications in Cotton Production. In Agricultural Sciences; Gürsoy, S., Akın, S., Eds.; IntechOpen: London, UK, 2024; Volume 9, ISBN 978-0-85014-009-5. [Google Scholar]
- Maurya, D.K.; Maurya, S.K.; Kumar, M.; Chaubey, C.; Gupta, D.; Patel, K.K.; Mehta, A.K.; Yadav, R. A Review on Precision Agriculture: An Evolution and Prospect for the Future. Int. J. Plant Soil Sci. 2024, 36, 363–374. [Google Scholar] [CrossRef]
- Soussi, A.; Zero, E.; Sacile, R.; Trinchero, D.; Fossa, M. Smart Sensors and Smart Data for Precision Agriculture: A Review. Sensors 2024, 24, 2647. [Google Scholar] [CrossRef]
- Köksal, Ö.; Tekinerdogan, B. Architecture Design Approach for IoT-Based Farm Management Information Systems. Precis. Agric. 2019, 20, 926–958. [Google Scholar] [CrossRef]
- Nawandar, N.K.; Satpute, V.R. IoT Based Low Cost and Intelligent Module for Smart Irrigation System. Comput. Electron. Agric. 2019, 162, 979–990. [Google Scholar] [CrossRef]
- Boursianis, A.D.; Papadopoulou, M.S.; Diamantoulakis, P.; Liopa-Tsakalidi, A.; Barouchas, P.; Salahas, G.; Karagiannidis, G.; Wan, S.; Goudos, S.K. Internet of Things (IoT) and Agricultural Unmanned Aerial Vehicles (UAVs) in Smart Farming: A Comprehensive Review. Internet Things 2022, 18, 100187. [Google Scholar] [CrossRef]
- Kim, W.-S.; Lee, W.-S.; Kim, Y.-J. A Review of the Applications of the Internet of Things (IoT) for Agricultural Automation. J. Biosyst. Eng. 2020, 45, 385–400. [Google Scholar] [CrossRef]
- Farooq, M.S.; Riaz, S.; Abid, A.; Abid, K.; Naeem, M.A. A Survey on the Role of IoT in Agriculture for the Implementation of Smart Farming. IEEE Access 2019, 7, 156237–156271. [Google Scholar] [CrossRef]
- Holtorf, L.; Titov, I.; Daschner, F.; Gerken, M. UAV-Based Wireless Data Collection from Underground Sensor Nodes for Precision Agriculture. AgriEngineering 2023, 5, 338–354. [Google Scholar] [CrossRef]
- Manlio, B.; Paolo, B.; Alberto, G.; Massimiliano, R. Unmanned Aerial Vehicles for Agriculture: An Overview of IoT-Based Scenarios. In Autonomous Airborne Wireless Networks; Imran, M.A., Abbasi, Q., Onireti, O., Ansari, S., Eds.; Wiley: Hoboken, NJ, USA, 2021; pp. 217–235. ISBN 978-1-119-75171-7. [Google Scholar]
- Rana, B.; Singh, Y. Internet of Things and UAV: An Interoperability Perspective. In Unmanned Aerial Vehicles for Internet of Things (IoT); Mohindru, V., Singh, Y., Bhatt, R., Gupta, A.K., Eds.; Wiley: Hoboken, NJ, USA, 2021; pp. 105–127. ISBN 978-1-119-76882-1. [Google Scholar]
- Phade, G.; Kishore, A.T.; Omkar, S.; Suresh Kumar, M. IoT-Enabled Unmanned Aerial Vehicle: An Emerging Trend in Precision Farming. In Drone Technology; Mohanty, S.N., Ravindra, J.V.R., Surya Narayana, G., Pattnaik, C.R., Mohamed Sirajudeen, Y., Eds.; Wiley: Hoboken, NJ, USA, 2023; pp. 301–324. ISBN 978-1-394-16653-4. [Google Scholar]
- Vasisht, D.; Kapetanovic, Z.; Won, J.; Jin, X.; Chandra, R.; Kapoor, A.; Sinha, S.N.; Sudarshan, M.; Stratman, S. FarmBeats: An IoT Platform for Data-Driven Agriculture. In Proceedings of the 14th USENIX Symposium on Networked Systems Design and Implementation, NSDI 2017, Boston, MA, USA, 27–29 March 2017; pp. 15–29. [Google Scholar]
- Glaroudis, D.; Iossifides, A.; Chatzimisios, P. Survey, Comparison and Research Challenges of IoT Application Protocols for Smart Farming. Comput. Netw. 2020, 168, 107037. [Google Scholar] [CrossRef]
- Antony, A.P.; Leith, K.; Jolley, C.; Lu, J.; Sweeney, D.J. A Review of Practice and Implementation of the Internet of Things (IoT) for Smallholder Agriculture. Sustainability 2020, 12, 3750. [Google Scholar] [CrossRef]
- Talavera, J.M.; Tobón, L.E.; Gómez, J.A.; Culman, M.A.; Aranda, J.M.; Parra, D.T.; Quiroz, L.A.; Hoyos, A.; Garreta, L.E. Review of IoT Applications in Agro-Industrial and Environmental Fields. Comput. Electron. Agric. 2017, 142, 283–297. [Google Scholar] [CrossRef]
- Elijah, O.; Rahman, T.A.; Orikumhi, I.; Leow, C.Y.; Hindia, M.H.D.N. An Overview of Internet of Things (IoT) and Data Analytics in Agriculture: Benefits and Challenges. IEEE Internet Things J. 2018, 5, 3758–3773. [Google Scholar] [CrossRef]
- Anand, A.; Trivedi, N.K.; Gautam, V.; Tiwari, R.G.; Witarsyah, D.; Misra, A. Applications of Internet of Things (IoT) in Agriculture: The Need and Implementation. In Proceedings of the 2022 International Conference Advancement in Data Science, E-Learning and Information Systems (ICADEIS), Bandung, Indonesia, 23–24 November 2022; pp. 1–5. [Google Scholar]
- Lee, I.; Lee, K. The Internet of Things (IoT): Applications, Investments, and Challenges for Enterprises. Bus. Horiz. 2015, 58, 431–440. [Google Scholar] [CrossRef]
- Chen, S.; Xu, H.; Liu, D.; Hu, B.; Wang, H. A Vision of IoT: Applications, Challenges, and Opportunities with China Perspective. IEEE Internet Things J. 2014, 1, 349–359. [Google Scholar] [CrossRef]
- Bhatnagar, V.; Singh, G.; Kumar, G.; Gupta, R. Internet of things in smart agriculture: Applications and open challenges. Int. J. Stud. Res. Technol. Manag. 2020, 8, 11–17. [Google Scholar] [CrossRef]
- Malik, P.K.; Sharma, R.; Singh, R.; Gehlot, A.; Satapathy, S.C.; Alnumay, W.S.; Pelusi, D.; Ghosh, U.; Nayak, J. Industrial Internet of Things and Its Applications in Industry 4.0: State of The Art. Comput. Commun. 2021, 166, 125–139. [Google Scholar] [CrossRef]
- Stočes, M.; Vaněk, J.; Masner, J.; Pavlík, J. Internet of Things (IoT) in Agriculture—Selected Aspects. AGRIS -Line Pap. Econ. Inform. 2016, 8, 83–88. [Google Scholar] [CrossRef]
- Ray, P.P. Internet of Things for Smart Agriculture: Technologies, Practices and Future Direction. J. Ambient Intell. Smart Environ. 2017, 9, 395–420. [Google Scholar] [CrossRef]
- Kamienski, C.; Soininen, J.-P.; Taumberger, M.; Dantas, R.; Toscano, A.; Salmon Cinotti, T.; Filev Maia, R.; Torre Neto, A. Smart Water Management Platform: IoT-Based Precision Irrigation for Agriculture. Sensors 2019, 19, 276. [Google Scholar] [CrossRef]
- Ojha, T.; Misra, S.; Raghuwanshi, N.S. Wireless Sensor Networks for Agriculture: The State-of-the-Art in Practice and Future Challenges. Comput. Electron. Agric. 2015, 118, 66–84. [Google Scholar] [CrossRef]
- Agrawal, H.; Dhall, R.; Iyer, K.S.S.; Chetlapalli, V. An Improved Energy Efficient System for IoT Enabled Precision Agriculture. J. Ambient Intell. Humaniz. Comput. 2020, 11, 2337–2348. [Google Scholar] [CrossRef]
- Balaji, S.; Nathani, K.; Santhakumar, R. IoT Technology, Applications and Challenges: A Contemporary Survey. Wirel. Pers. Commun. 2019, 108, 363–388. [Google Scholar] [CrossRef]
- Fukatsu, T.; Hirafuji, M. National Agricultural Research Center, 3-1-1 Kannondai, Tsukuba, Ibaraki 305-8666, Japan Field Monitoring Using Sensor-Nodes with a Web Server. J. Robot. Mechatron. 2005, 17, 164–172. [Google Scholar] [CrossRef]
- Benyezza, H.; Bouhedda, M.; Kara, R.; Rebouh, S. Smart Platform Based on IoT and WSN for Monitoring and Control of a Greenhouse in the Context of Precision Agriculture. Internet Things 2023, 23, 100830. [Google Scholar] [CrossRef]
- Pallavi, S.; Mallapur, J.D.; Bendigeri, K.Y. Remote Sensing and Controlling of Greenhouse Agriculture Parameters Based on IoT. In Proceedings of the 2017 International Conference on Big Data, IoT and Data Science (BID), Pune, India, 20–22 December 2017; pp. 44–48. [Google Scholar]
- Ibrahim, H.; Mostafa, N.; Halawa, H.; Elsalamouny, M.; Daoud, R.; Amer, H.; Adel, Y.; Shaarawi, A.; Khattab, A.; ElSayed, H. A Layered IoT Architecture for Greenhouse Monitoring and Remote Control. SN Appl. Sci. 2019, 1, 223. [Google Scholar] [CrossRef]
- Abu, N.S.; Bukhari, W.M.; Ong, C.H.; Kassim, A.M.; Izzuddin, T.A.; Sukhaimie, M.N.; Norasikin, M.A.; Rasid, A.F.A. Internet of Things Applications in Precision Agriculture: A Review. J. Robot. Control 2022, 3, 338–347. [Google Scholar] [CrossRef]
- Dan, L.; Xin, C.; Chongwei, H.; Liangliang, J. Intelligent Agriculture Greenhouse Environment Monitoring System Based on IOT Technology. In Proceedings of the 2015 International Conference on Intelligent Transportation, Big Data and Smart City, Halong Bay, Vietnam, 19–20 December 2015; pp. 487–490. [Google Scholar]
- Liao, M.-S.; Chen, S.-F.; Chou, C.-Y.; Chen, H.-Y.; Yeh, S.-H.; Chang, Y.-C.; Jiang, J.-A. On Precisely Relating the Growth of Phalaenopsis Leaves to Greenhouse Environmental Factors by Using an IoT-Based Monitoring System. Comput. Electron. Agric. 2017, 136, 125–139. [Google Scholar] [CrossRef]
- Panchasara, H.; Samrat, N.H.; Islam, N. Greenhouse Gas Emissions Trends and Mitigation Measures in Australian Agriculture Sector—A Review. Agriculture 2021, 11, 85. [Google Scholar] [CrossRef]
- Anastasiou, E.; Balafoutis, A.T.; Fountas, S. Applications of Extended Reality (XR) in Agriculture, Livestock Farming, and Aquaculture: A Review. Smart Agric. Technol. 2023, 3, 100105. [Google Scholar] [CrossRef]
- Kungu, J.M.; Ejobi, F.; Okuyo, B.A.; Namayanja, J.; Namyalo, E.; Meeme, R. Animal Source Foods Quality and Safety Standards Implementation in Uganda. A Review. Preprint 2023. [Google Scholar] [CrossRef]
- Aquilani, C.; Confessore, A.; Bozzi, R.; Sirtori, F.; Pugliese, C. Review: Precision Livestock Farming Technologies in Pasture-Based Livestock Systems. Animal 2022, 16, 100429. [Google Scholar] [CrossRef]
- Chamara, N.; Islam, M.D.; Bai, G. (Frank); Shi, Y.; Ge, Y. Ag-IoT for Crop and Environment Monitoring: Past, Present, and Future. Agric. Syst. 2022, 203, 103497. [Google Scholar] [CrossRef]
- Nielsen, L. Classifications of Countries Based on Their Level of Development: How It Is Done and How It Could Be Done; International Monetary Fund: Bretton Woods, NH, USA, 2011; ISBN 978-1-4552-1678-9. [Google Scholar]
- Chen, W.-L.; Lin, Y.-B.; Lin, Y.-W.; Chen, R.; Liao, J.-K.; Ng, F.-L.; Chan, Y.-Y.; Liu, Y.-C.; Wang, C.-C.; Chiu, C.-H.; et al. AgriTalk: IoT for Precision Soil Farming of Turmeric Cultivation. IEEE Internet Things J. 2019, 6, 5209–5223. [Google Scholar] [CrossRef]
- Ncube, B.; Mupangwa, W.; French, A. Precision Agriculture and Food Security in Africa. In Systems Analysis Approach for Complex Global Challenges; Mensah, P., Katerere, D., Hachigonta, S., Roodt, A., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 159–178. ISBN 978-3-319-71486-8. [Google Scholar]
- Rusch, P.C. Precision Farming in South Africa. Ph.D. Thesis, University of Pretoria, Pretoria, South Africa, 2005. [Google Scholar]
- Munghemezulu, C.; Mashaba-Munghemezulu, Z.; Ratshiedana, P.E.; Economon, E.; Chirima, G.; Sibanda, S. Unmanned Aerial Vehicle (UAV) and Spectral Datasets in South Africa for Precision Agriculture. Data 2023, 8, 98. [Google Scholar] [CrossRef]
- Ahmed, F.; Houessenou, P.; Nikiema, A.; Zougmore, R. Transforming Agriculture in Africa’s Small Island Developing States: Lessons Learnt and Options for Climate-Smart Agriculture Investments in Cabo Verde, Guinea-Bissau and Seychelles; Food and Agriculture Organization: Rome, Italy, 2021; ISBN 978-92-5-135298-4. [Google Scholar]
- Etongo, D.; Serret, L.; Epule, T.E.; Bristol, U.; Nancy, K.; Sinon, S. Farm Households’ Adoption of Climate-Smart Agricultural Practices: Empirical Evidence from Seychelles. GeoJournal 2023, 88, 5847–5862. [Google Scholar] [CrossRef]
- Etongo, D. A Situational Analysis of Agricultural Development, Food, and Livelihood Security in Seychelles: Where to from Here? PLOS Clim. 2023, 2, e0000192. [Google Scholar] [CrossRef]
- Bueger, C.; Wivel, A. How Do Small Island States Maximize Influence? Creole Diplomacy and the Smart State Foreign Policy of the Seychelles. J. Indian Ocean Reg. 2018, 14, 170–188. [Google Scholar] [CrossRef]
- Henriques, I.; Husted, B.W.; Montiel, I. Spillover Effects of Voluntary Environmental Programs on Greenhouse Gas Emissions: Lessons from Mexico. J. Policy Anal. Manag. 2013, 32, 296–322. [Google Scholar] [CrossRef]
- Muñiz, I.; Sánchez, V. Urban Spatial Form and Structure and Greenhouse-Gas Emissions from Commuting in the Metropolitan Zone of Mexico Valley. Ecol. Econ. 2018, 147, 353–364. [Google Scholar] [CrossRef]
- Molina, L.T.; de Foy, B.; Vázquez Martínez, O.; Páramo Figueroa, V.H. Air Quality, Weather and Climate in Mexico City. WMO Bull. 2009, 58. [Google Scholar]
- Delworth, T.L.; Zeng, F. Regional Rainfall Decline in Australia Attributed to Anthropogenic Greenhouse Gases and Ozone Levels. Nat. Geosci. 2014, 7, 583–587. [Google Scholar] [CrossRef]
- Lenzen, M. Total Requirements of Energy and Greenhouse Gases for Australian Transport. Transp. Res. Part Transp. Environ. 1999, 4, 265–290. [Google Scholar] [CrossRef]
- Ivanovski, K.; Awaworyi Churchill, S. Convergence and Determinants of Greenhouse Gas Emissions in Australia: A Regional Analysis. Energy Econ. 2020, 92, 104971. [Google Scholar] [CrossRef]
- Dostain, D.A.; Mengal, D.I.A.; Alizai, D.S.H. Production trends in livestock and animal husbandry sector: A case study of Balochistan Province. Pak. J. Int. Aff. 2021, 4. [Google Scholar]
- Farooq, U.; Ahmad, M.; Saeed, I. Enhancing Livestock Productivity in the Desert Ecologies of Pakistan: Setting the Development Priorities. Pak. Dev. Rev. 2009, 48, 795–820. [Google Scholar]
- Manzoor, A.; Farah, N.; Khan, I.A.; Jabeen, N.; Afzal, S.; Maan, A.A.; Afzal, A.; Qureshi, A.H. Sustainable rural development through women’s engagement in livestock sector in Punjab, Pakistan. Pak. J. Life Soc. Sci. 2018, 16, 124–128. [Google Scholar]
- Tiwary, S. A Review of Internet of Things Application in Malaysia. Boneo J. Sci. Technol. 2022, 4, 70–79. [Google Scholar]
- Charlebois, S.; Sterling, B.; Haratifar, S.; Naing, S.K. Comparison of Global Food Traceability Regulations and Requirements. Compr. Rev. Food Sci. Food Saf. 2014, 13, 1104–1123. [Google Scholar] [CrossRef]
- Olsson, A.; Skjoldebrand, C. Risk Management and Quality Assurance Through the Food Supply Chain—Case Studies in the Swedish Food Industry. Open Food Sci. J. 2008, 2, 49–56. [Google Scholar] [CrossRef]
- Karlsen, K.M.; Dreyer, B.; Olsen, P.; Elvevoll, E.O. Literature Review: Does a Common Theoretical Framework to Implement Food Traceability Exist? Food Control 2013, 32, 409–417. [Google Scholar] [CrossRef]
- Bosona, T.; Gebresenbet, G. Food Traceability as an Integral Part of Logistics Management in Food and Agricultural Supply Chain. Food Control 2013, 33, 32–48. [Google Scholar] [CrossRef]
- McKelvey, M.; Ljungberg, D. How Public Policy Can Stimulate the Capabilities of Firms to Innovate in a Traditional Industry through Academic Engagement: The Case of the Swedish Food Industry. RD Manag. 2017, 47, 534–544. [Google Scholar] [CrossRef]
- Ariga, J.; Mabaya, E.; Waithaka, M.; Wanzala-Mlobela, M. Can improved agricultural technologies spur a green revolution in Africa? A multicountry analysis of seed and fertilizer delivery systems. Agric. Econ. 2019, 50, 63–74. [Google Scholar] [CrossRef]
- Barriga, A.; Fiala, N. The Supply Chain for Seed in Uganda: Where Does It Go Wrong? World Dev. 2020, 130, 104928. [Google Scholar] [CrossRef]
- Rajić, A.; Waddell, L.A.; Sargeant, J.M.; Read, S.; Farber, J.; Firth, M.J.; Chambers, A. An Overview of Microbial Food Safety Programs in Beef, Pork, and Poultry from Farm to Processing in Canada. J. Food Prot. 2007, 70, 1286–1294. [Google Scholar] [CrossRef] [PubMed]
- Hobbs, J.E.; Bailey, D.; Dickinson, D.L.; Haghiri, M. Traceability in the Canadian Red Meat Sector: Do Consumers Care? Can. J. Agric. Econ. Can. Agroecon. 2005, 53, 47–65. [Google Scholar] [CrossRef]
- Charlebois, S.; Juhasz, M.; Music, J.; Vézeau, J. A Review of Canadian and International Food Safety Systems: Issues and Recommendations for the Future. Compr. Rev. Food Sci. Food Saf. 2021, 20, 5043–5066. [Google Scholar] [CrossRef]
- Zanabria, R.; Racicot, M.; Cormier, M.; Arsenault, J.; Ferrouillet, C.; Letellier, A.; Tiwari, A.; Mackay, A.; Griffiths, M.; Holley, R.; et al. Selection of Risk Factors to Be Included in the Canadian Food Inspection Agency Risk Assessment Inspection Model for Food Establishments. Food Microbiol. 2018, 75, 72–81. [Google Scholar] [CrossRef]
Source Type | Description | Year of Publication | Use |
---|---|---|---|
Scientific publication | A Survey on the Role of IoT in Agriculture for the Implementation of Smart Farming | 2019 | Extracting data and identifying new scientific publications. |
Scientific publication | Understanding technology acceptance in smart agriculture: A systematic review of empirical research in crop production | 2023 | Extracting data and identifying new scientific publications. |
Scientific publication | What Drives the Adoption of Agricultural Green Production Technologies? An Extension of TAM in Agriculture | 2022 | Extracting data and identifying new scientific publications. |
Scientific publication | A Life Cycle Framework of Green IoT-Based Agriculture and Its Finance, Operation, and Management Issues | 2019 | Extracting data and identifying new scientific publications. |
Scientific publication | A Review of the Applications of the Internet of Things (IoT) for Agricultural Automation | 2020 | Extracting data and identifying new scientific publications. |
Database | Scopus | Extracting data using queries. | |
Internet | Searching for programs and directions. |
Description | Query |
---|---|
Query for the number of precision agriculture articles in the period 1981–2023. | TITLE-ABS-KEY (precision AND agriculture) AND PUBYEAR > 1980 AND PUBYEAR < 2024 |
Query for the number of articles related to precision agriculture and to each new technology, along with the year of their first publication. | (TITLE-ABS-KEY (precision AND agriculture) AND TITLE-ABS-KEY (keywords for the specific technology)) AND PUBYEAR > 1980 AND PUBYEAR < 2024 |
Query for the number of articles related to precision agriculture per year. | TITLE-ABS-KEY (precision AND agriculture) AND PUBYEAR = year |
Technology | Year of First Scientific Publication | Number of Scientific Papers Published until Today |
---|---|---|
Precision Agriculture | 1981 | 18,540 |
Field Monitoring | 1993 | 1806 |
Precision Farming | 1995 | 4037 |
Satellite Imagery | 1996 | 589 |
Precision Irrigation | 1997 | 1927 |
Decision Support Systems | 1997 | 875 |
Remote Sensing | 1997 | 3008 |
Geographic Information Systems | 1997 | 499 |
Variable-Rate Technology | 1997 | 488 |
Agricultural Robots | 1998 | 2123 |
Livestock Monitoring | 2000 | 375 |
Smart Irrigation | 2001 | 392 |
Greenhouse Monitoring | 2001 | 201 |
Sensor Nodes | 2001 | 633 |
Autonomous Agricultural Machinery | 2002 | 100 |
Unmanned Aerial Vehicles (UAVs) | 2002 | 1753 |
Artificial Intelligence | 2003 | 1011 |
WSN in Precision Agriculture | 2003 | 492 |
Climate and Weather Prediction Models | 2005 | 33 |
Global Positioning System | 2005 | 767 |
Light Detection and Ranging | 2006 | 73 |
Drones | 2008 | 664 |
IoT in Precision Agriculture | 2011 | 1358 |
Smartphone Apps and Mobile Technology | 2018 | 10 |
Blockchain and Supply Chain Management | 2020 | 12 |
Continent | Level of Development | ||
---|---|---|---|
Higher-Development Countries | Middle-Development Countries | Lower-Development Countries | |
Africa | Seychelles | South Africa | Ethiopia Kenya Uganda |
Asia | Israel Japan | Malaysia Thailand | India China Pakistan |
America | United States Canada | Mexico Colombia | As of the writing of this review, no reports were found of the development of government smart agriculture programs in countries of these categories. |
Europe | Denmark Netherlands Sweden | As of the writing of this review, no reports were found of the development of government smart agriculture programs in countries of these categories. The search included countries such as Moldova, Ukraine, Albania, Bosnia and Herzegovina, North Macedonia, and Kosovo. | |
Oceania | Australia New Zealand | As of the writing of this review, no reports were found of the development of government smart agriculture programs in countries of these categories in Oceania. The search included countries such as Fiji, Samoa, Tonga, Papua New Guinea, Solomon Islands, and Vanuatu. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Assimakopoulos, F.; Vassilakis, C.; Margaris, D.; Kotis, K.; Spiliotopoulos, D. The Implementation of “Smart” Technologies in the Agricultural Sector: A Review. Information 2024, 15, 466. https://doi.org/10.3390/info15080466
Assimakopoulos F, Vassilakis C, Margaris D, Kotis K, Spiliotopoulos D. The Implementation of “Smart” Technologies in the Agricultural Sector: A Review. Information. 2024; 15(8):466. https://doi.org/10.3390/info15080466
Chicago/Turabian StyleAssimakopoulos, Fotis, Costas Vassilakis, Dionisis Margaris, Konstantinos Kotis, and Dimitris Spiliotopoulos. 2024. "The Implementation of “Smart” Technologies in the Agricultural Sector: A Review" Information 15, no. 8: 466. https://doi.org/10.3390/info15080466
APA StyleAssimakopoulos, F., Vassilakis, C., Margaris, D., Kotis, K., & Spiliotopoulos, D. (2024). The Implementation of “Smart” Technologies in the Agricultural Sector: A Review. Information, 15(8), 466. https://doi.org/10.3390/info15080466