Application of Multi-Source Remote Sensing Data and Machine Learning for Surface Soil Moisture Mapping in Temperate Forests of Central Japan
Abstract
:1. Introduction
- To evaluate the accuracy of SSM classification by RF and SVM models;
- To compare the model performance for each synergy;
- To derive the SSM maps of the study site based on five synergies.
2. Materials and Methods
2.1. Study Area
2.2. Field Data Collection
2.3. Remote Sensing Data
2.3.1. Sentinel-1
2.3.2. Sentinel-2
2.3.3. Selection of Spectral Indices
2.3.4. Terrain Factors
2.4. Method
2.4.1. Synergies of Multi-Source Remote Sensing Image Combinations
2.4.2. Random Forest (RF)
2.4.3. Support Vector Machine (SVM)
2.4.4. Model Training and Testing
2.4.5. Statistical Analyses
2.5. Surface Soil Moisture Classification Workflow
3. Results
3.1. Accuracy Evaluation of the Surface Soil Moisture Classification by RF Model
3.2. Accuracy Evaluation of the Surface Soil Moisture Classification by SVM Model
3.3. Comparison of Model Performance for Each Synergy
3.4. Spatial Distribution of Surface Soil Moisture by RF and SVM
3.5. Assessing the Correlation between Ground-Truth Data and Predicted Values
4. Discussion
4.1. Significance of Multi-Source Remote Sensing Data Synergies
4.2. Significance of Terrain Factors in Synergy Selection for Surface Soil Moisture Estimation
4.3. Application of Machine Learning and Deep Learning in Surface Soil Moisture Estimation
4.4. Recommendation for Suitable Approach to Surface Soil Moisture Classification
4.5. Implications for Sustainable Forest Management
4.6. Limitations and Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Specifications of FieldScout Time Domain Reflectometry (TDR 350) Meter
Measurement unit | Percent volumetric water content (VWC) | |
Accuracy and range | 0.1% increment ± 3.0%, 0% to saturation | |
GNSS | Supported systems: Galileo, GLONASS, GPS, QZSS, EGNOS, MSAS, SBAS, and WAAS enabled | |
Log capacity | 50,000 measurements | |
Available rod dimensions | Turf | 1.5″ (3.8 cm) |
Short | 3.0″ (7.6 cm) | |
Medium | 4.8″ (12.2 cm) | |
Long | 8.0″ (20.32 cm) |
References
- Peng, J.; Albergel, C.; Balenzano, A.; Brocca, L.; Cartus, O.; Cosh, M.H.; Crow, W.T.; Dabrowska-Zielinska, K.; Dadson, S.; Davidson, M.W.J.; et al. A roadmap for high-resolution satellite soil moisture applications—Confronting product characteristics with user requirements. Remote Sens. Environ. 2021, 252, 112162. [Google Scholar] [CrossRef]
- Sabaghy, S.; Walker, J.P.; Renzullo, L.J.; Jackson, T.J. Spatially enhanced passive microwave derived soil moisture: Capabilities and opportunities. Remote Sens. Environ. 2018, 209, 551–580. [Google Scholar] [CrossRef]
- Adab, H.; Morbidelli, R.; Saltalippi, C.; Moradian, M.; Ghalhari, G.A.F. Machine learning to estimate surface soil moisture from remote sensing data. Water 2020, 12, 3223. [Google Scholar] [CrossRef]
- Mohseni, F.; Ahrari, A.; Haunert, J.H.; Montzka, C. The synergies of SMAP enhanced and MODIS products in a random forest regression for estimating 1 km soil moisture over Africa using Google Earth Engine. Big Earth Data 2023, 8, 33–57. [Google Scholar] [CrossRef]
- Khazaei, M.; Hamzeh, S.; Samani, N.N.; Muhuri, A.; Goïta, K.; Weng, Q. A web-based system for satellite-based high-resolution global soil moisture maps. Comput. Geosci. 2023, 170, 105250. [Google Scholar] [CrossRef]
- Piou, C.; Gay, P.E.; Benahi, A.S.; Babah Ebbe, M.A.O.; Chihrane, J.; Ghaout, S.; Cisse, S.; Diakite, F.; Lazar, M.; Cressman, K.; et al. Soil moisture from remote sensing to Forecast Desert Locust Presence. J. Appl. Ecol. 2019, 56, 966–975. [Google Scholar] [CrossRef]
- Entekhabi, D.; Njoku, E.G.; O’Neill, P.E.; Kellogg, K.H.; Crow, W.T.; Edelstein, W.N.; Entin, J.K.; Goodman, S.D.; Jackson, T.J.; Johnson, J.; et al. The soil moisture active passive (SMAP) mission. Proc. IEEE 2010, 98, 704–716. [Google Scholar] [CrossRef]
- Wang, L.; Qu, J.J. Satellite remote sensing applications for surface soil moisture monitoring: A review. Front. Earth Sci. China 2009, 3, 237–247. [Google Scholar] [CrossRef]
- Koster, R.D.; Suarez, M.J.; Higgins, R.W.; Van den Dool, H.M. Observational evidence that soil moisture variations affect precipitation. Geophys. Res. Lett. 2003, 30, 1241. [Google Scholar] [CrossRef]
- Patel, P.; Ankur, K.; Jamshidi, S.; Tiwari, A.; Nadimpalli, R.; Busireddy, N.K.R.; Safaee, S.; Osuri, K.K.; Karmakar, S.; Ghosh, S.; et al. Impact of urban representation on simulation of Hurricane rainfall. Geophys. Res. Lett. 2023, 50, e2023GL104078. [Google Scholar] [CrossRef]
- Gu, X.; Jamshidi, S.; Sun, H.; Niyogi, D. Identifying multivariate controls of soil moisture variations using multiple wavelet coherence in the U.S. Midwest. J. Hydrol. 2021, 602, 126755. [Google Scholar] [CrossRef]
- Kashyap, B.; Kumar, R. Sensing methodologies in agriculture for soil moisture and nutrient monitoring. IEEE Access 2021, 9, 14095–14121. [Google Scholar] [CrossRef]
- Ait Hssaine, B.; Merlin, O.; Ezzahar, J.; Ojha, N.; Er-Raki, S.; Khabba, S. An evapotranspiration model self-calibrated from remotely sensed surface soil moisture, land surface temperature and vegetation cover fraction: Application to disaggregated SMOS and MODIS data. Hydrol. Earth Syst. Sci. 2020, 24, 1781–1803. [Google Scholar] [CrossRef]
- Alemayehu, T.; van Griensven, A.; Senay, G.B.; Bauwens, W. Evapotranspiration mapping in a heterogeneous landscape using remote sensing and global weather datasets: Application to the Mara Basin, East Africa. Remote Sens. 2017, 9, 390. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, Z.; Yao, F.; Yang, L.; Hao, C. Validating the modified perpendicular drought index in the North China region using in situ soil moisture measurement. IEEE Geosci. Remote Sens. Lett. 2015, 12, 542–546. [Google Scholar] [CrossRef]
- Acharya, U.; Daigh, A.L.M.; Oduor, P.G. Soil moisture mapping with moisture-related indices, OPTRAM, and an integrated random forest-OPTRAM algorithm from Landsat 8 images. Remote Sens. 2022, 14, 3801. [Google Scholar] [CrossRef]
- Lennard, A.T.; Macdonald, N.; Clark, S.; Hooke, J.M. The application of a drought reconstruction in water resource management. Hydrol. Res. 2016, 47, 646–659. [Google Scholar] [CrossRef]
- Smith, K.A.; Barker, L.J.; Tanguy, M.; Parry, S.; Harrigan, S.; Legg, T.P.; Prudhomme, C.; Hannaford, J. A multi-objective ensemble approach to hydrological modelling in the UK: An application to historic drought reconstruction. Hydrol. Earth Syst. Sci. 2019, 23, 3247–3268. [Google Scholar] [CrossRef]
- Piles, M.; Camps, A.; Vall-Llossera, M.; Corbella, I.; Panciera, R.; Rudiger, C.; Kerr, Y.H.; Walker, J. Downscaling SMOS-derived soil moisture using MODIS visible/infrared data. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3156–3166. [Google Scholar] [CrossRef]
- Zhao, Z.; Jin, R.; Kang, J.; Ma, C.; Wang, W. Using of remote sensing-based auxiliary variables for soil moisture scaling and mapping. Remote Sens. 2022, 14, 3373. [Google Scholar] [CrossRef]
- Du, J.; Kimball, J.S.; Bindlish, R.; Walker, J.P.; Watts, J.D. Local scale (3-m) soil moisture mapping using SMAP and Planet SuperDove. Remote Sens. 2022, 14, 3812. [Google Scholar] [CrossRef]
- Hamze, M.; Baghdadi, N.; El Hajj, M.M.; Zribi, M.; Bazzi, H.; Cheviron, B.; Faour, G. Integration of L-Band derived soil roughness into a bare soil moisture retrieval approach from C-Band SAR data. Remote Sens. 2021, 13, 2102. [Google Scholar] [CrossRef]
- Yang, Z.; He, Q.; Miao, S.; Wei, F.; Yu, M. Surface soil moisture retrieval of China using multi-source data and ensemble learning. Remote Sens. 2023, 15, 2786. [Google Scholar] [CrossRef]
- Crow, W.T.; Berg, A.A.; Cosh, M.H.; Loew, A.; Mohanty, B.P.; Panciera, R.; De Rosnay, P.; Ryu, D.; Walker, J.P. Upscaling sparse ground-based soil moisture observations for the validation of coarse-resolution satellite soil moisture products. Rev. Geophys. 2012, 50, RG2002. [Google Scholar] [CrossRef]
- Ma, Y.; Hou, P.; Zhang, L.; Cao, G.; Sun, L.; Pang, S.; Bai, J. High-resolution quantitative retrieval of soil moisture based on multisource data fusion with random forests: A case study in the Zoige region of the Tibetan Plateau. Remote Sens. 2023, 15, 1531. [Google Scholar] [CrossRef]
- Attarzadeh, R.; Amini, J.; Notarnicola, C.; Greifeneder, F. Synergetic use of Sentinel-1 and Sentinel-2 data for soil moisture mapping at plot scale. Remote Sens. 2018, 10, 1285. [Google Scholar] [CrossRef]
- Schmugge, T.J.; Jackson, T.J.; McKim, H.L. Survey of methods for soil moisture determination. Water Resour. Res. 1980, 16, 961–979. [Google Scholar] [CrossRef]
- Brocca, L.; Zhao, W.; Lu, H. High-resolution observations from space to address new applications in hydrology. Innovation 2023, 4, 100437. [Google Scholar] [CrossRef]
- Mohanty, B.P.; Cosh, M.H.; Lakshmi, V.; Montzka, C. Soil moisture remote sensing: State-of-the-science. Vadose Zone J. 2017, 16, 1–9. [Google Scholar] [CrossRef]
- Cashion, J.; Lakshmi, V.; Bosch, D.; Jackson, T.J. Microwave remote sensing of soil moisture: Evaluation of the TRMM microwave imager (TMI) satellite for the little river Watershed Tifton, Georgia. J. Hydrol. 2005, 307, 242–253. [Google Scholar] [CrossRef]
- Das, K.; Paul, P.K. Present status of soil moisture estimation by microwave remote sensing. Cogent Geosci. 2015, 1, 1084669. [Google Scholar] [CrossRef]
- Abowarda, A.S.; Bai, L.; Zhang, C.; Long, D.; Li, X.; Huang, Q.; Sun, Z. Generating surface soil moisture at 30 m spatial resolution using both data fusion and machine learning toward better water resources management at the field scale. Remote Sens. Environ. 2021, 255, 112301. [Google Scholar] [CrossRef]
- Liao, T.H.; Kim, S.B.; Handwerger, A.; Fielding, E.; Cosh, M.; Schulz, W. High-resolution soil-moisture maps over landslide regions in Northern California Grassland derived from SAR backscattering coefficients. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 4547–4560. [Google Scholar] [CrossRef]
- Du, J.; Kimball, J.S.; Sheffield, J.; Pan, M.; Fisher, C.K.; Beck, H.E.; Wood, E.F. Satellite flood inundation assessment and forecast using SMAP and Landsat. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 6707–6715. [Google Scholar] [CrossRef] [PubMed]
- Yeh, I.C.; Lien, C.H. The comparisons of data mining techniques for the predictive accuracy of probability of default of credit card clients. Expert Syst. Appl. 2009, 36, 2473–2480. [Google Scholar] [CrossRef]
- Ahmad, S.; Kalra, A.; Stephen, H. Estimating soil moisture using remote sensing data: A machine learning approach. Adv. Water Resour. 2010, 33, 69–80. [Google Scholar] [CrossRef]
- Hassan-Esfahani, L.; Torres-Rua, A.; Jensen, A.; McKee, M. Assessment of surface soil moisture using high-resolution multi-spectral imagery and artificial neural networks. Remote Sens. 2015, 7, 2627–2646. [Google Scholar] [CrossRef]
- Ettalbi, M.; Baghdadi, N.; Garambois, P.A.; Bazzi, H.; Ferreira, E.; Zribi, M. Soil moisture retrieval in bare agricultural areas using Sentinel-1 images. Remote Sens. 2023, 15, 3502. [Google Scholar] [CrossRef]
- Nativel, S.; Ayari, E.; Rodriguez-Fernandez, N.; Baghdadi, N.; Madelon, R.; Albergel, C.; Zribi, M. Hybrid methodology using Sentinel-1/Sentinel-2 for soil moisture estimation. Remote Sens. 2022, 14, 2434. [Google Scholar] [CrossRef]
- Chung, J.; Lee, Y.; Kim, J.; Jung, C.; Kim, S. Soil moisture content estimation based on Sentinel-1 SAR imagery using an artificial neural network and hydrological components. Remote Sens. 2022, 14, 465. [Google Scholar] [CrossRef]
- Zhao, L.; Yang, Z.L. Multi-sensor land data assimilation: Toward a robust global soil moisture and snow estimation. Remote Sens. Environ. 2018, 216, 13–27. [Google Scholar] [CrossRef]
- Yao, P.; Lu, H.; Shi, J.; Zhao, T.; Yang, K.; Cosh, M.H.; Gianotti, D.J.S.; Entekhabi, D. A long term global daily soil moisture dataset derived from AMSR-E and AMSR2 (2002–2019). Sci. Data 2021, 8, 143. [Google Scholar] [CrossRef] [PubMed]
- The University of Tokyo Forests Education and Research Plan (2021–2030) of the University of Tokyo Forests: Part 3 Regional Forest Plans: The University of Tokyo Chiba Forest (the 14th Period). Misc. Inf. Univ. Tokyo For. 2022, 64, 53–102.
- Benninga, H.J.F.; Carranza, C.D.U.; Pezij, M.; Van Santen, P.; Van Der Ploeg, M.J.; Augustijn, D.C.M.; Van Der Velde, R. The Raam regional soil moisture monitoring network in the Netherlands. Earth Syst. Sci. Data 2018, 10, 61–79. [Google Scholar] [CrossRef]
- Walker, J.P.; Willgoose, G.R.; Kalma, J.D. In situ measurement of soil moisture: A comparison of techniques. J. Hydrol. 2004, 293, 85–99. [Google Scholar] [CrossRef]
- Li, L.; Wu, D.; Wang, T.; Wang, Y. Effect of topography on spatiotemporal patterns of soil moisture in a mountainous region of Northwest China. Geoderma Reg. 2022, 28, e00456. [Google Scholar] [CrossRef]
- Nakaegawa, T.; Tokuhiro, T.; Itoh, A.; Hosaka, M. Evaluation of seasonal cycles of hydrological processes in Japan Meteorological Agency land data analysis. Pap. Meteorol. Geophys. 2007, 58, 73–83. [Google Scholar] [CrossRef]
- Kaleita, A.L.; Tian, L.F.; Hirschi, M.C. Relationship between soil moisture content and soil surface reflectance. Trans. ASAE 2005, 48, 1979–1986. [Google Scholar] [CrossRef]
- Gao, Q.; Zribi, M.; Escorihuela, M.J.; Baghdadi, N. Synergetic use of Sentinel-1 and Sentinel-2 data for soil moisture mapping at 100 m resolution. Sensors 2017, 17, 1966. [Google Scholar] [CrossRef]
- Ju, Z.; Leong Tan, M.; Samat, N.; Kiat Chang, C. Comparison of Landsat 8, Sentinel-2 and spectral indices combinations for Google Earth Engine-based land use mapping in the Johor River Basin, Malaysia. Malays. J. Soc. Space 2021, 17, 30–46. [Google Scholar] [CrossRef]
- Jiang, Z.; Huete, A.R.; Didan, K.; Miura, T. Development of a two-band enhanced vegetation index without a blue band. Remote Sens. Environ. 2008, 112, 3833–3845. [Google Scholar] [CrossRef]
- Sripada, R.P.; Heiniger, R.W.; White, J.G.; Weisz, R. Aerial color infrared photography for determining late-season nitrogen requirements in Corn. Agron. J. 2005, 97, 1443–1451. [Google Scholar] [CrossRef]
- Valdivieso-Ros, C.; Alonso-Sarria, F.; Gomariz-Castillo, F. Effect of different atmospheric correction algorithms on Sentinel-2 imagery classification accuracy in a semiarid Mediterranean area. Remote Sens. 2021, 13, 1770. [Google Scholar] [CrossRef]
- Crist, E.P.; Cicone, R.C. A physically-based transformation of thematic mapper data-the TM Tasseled Cap. IEEE Trans. Geosci. Remote Sens. 1984, GE-22, 256–263. [Google Scholar] [CrossRef]
- Lastovicka, J.; Svec, P.; Paluba, D.; Kobliuk, N.; Svoboda, J.; Hladky, R.; Stych, P. Sentinel-2 data in an evaluation of the impact of the disturbances on forest vegetation. Remote Sens. 2020, 12, 1914. [Google Scholar] [CrossRef]
- Clevers, J.G.P.W. Application of a weighted infrared-red vegetation index for estimating leaf area index by correcting for soil moisture. Remote Sens. Environ. 1989, 29, 25–37. [Google Scholar] [CrossRef]
- Saad El Imanni, H.; El Harti, A.; El Iysaouy, L. Wheat yield estimation using remote sensing indices derived from Sentinel-2 time series and Google Earth Engine in a highly fragmented and heterogeneous agricultural region. Agronomy 2022, 12, 2853. [Google Scholar] [CrossRef]
- Yang, L.; Meng, X.; Zhang, X. SRTM DEM and its application advances. Int. J. Remote Sens. 2011, 32, 3875–3896. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45, RG2004. [Google Scholar] [CrossRef]
- Forkuor, G.; Maathuis, B. Comparison of SRTM and ASTER derived digital elevation models over two regions in Ghana—Implications for hydrological and environmental modeling. In Studies on Environmental and Applied Geomorphology; InTech: London, UK, 2012; pp. 219–240. [Google Scholar]
- Bircher, P.; Liniger, H.P.; Prasuhn, V. Comparing different multiple flow algorithms to calculate RUSLE factors of slope length (L) and slope steepness (S) in Switzerland. Geomorphology 2019, 346, 106850. [Google Scholar] [CrossRef]
- Prodromou, M.; Theocharidis, C.; Gitas, I.Z.; Eliades, F.; Themistocleous, K.; Papasavvas, K.; Dimitrakopoulos, C.; Danezis, C.; Hadjimitsis, D. Forest habitat mapping in Natura2000 regions in Cyprus using Sentinel-1, Sentinel-2 and topographical features. Remote Sens. 2024, 16, 1373. [Google Scholar] [CrossRef]
- Bartold, M.; Kluczek, M. A machine learning approach for mapping chlorophyll fluorescence at Inland Wetlands. Remote Sens. 2023, 15, 2392. [Google Scholar] [CrossRef]
- Zhao, Q.; Yu, L.; Li, X.; Peng, D.; Zhang, Y.; Gong, P. Progress and trends in the application of Google Earth and Google Earth Engine. Remote Sens. 2021, 13, 3778. [Google Scholar] [CrossRef]
- Noi Phan, T.; Kuch, V.; Lehnert, L.W. Land cover classification using Google Earth Engine and random forest classifier-the role of image composition. Remote Sens. 2020, 12, 2411. [Google Scholar] [CrossRef]
- Praticò, S.; Solano, F.; Di Fazio, S.; Modica, G. Machine learning classification of Mediterranean forest habitats in Google Earth Engine based on seasonal Sentinel-2 time-series and input image composition optimisation. Remote Sens. 2021, 13, 586. [Google Scholar] [CrossRef]
- Ghorbanian, A.; Zaghian, S.; Asiyabi, R.M.; Amani, M.; Mohammadzadeh, A.; Jamali, S. Mangrove ecosystem mapping using Sentinel-1 and Sentinel-2 satellite images and random forest algorithm in Google Earth Engine. Remote Sens. 2021, 13, 2565. [Google Scholar] [CrossRef]
- Kpienbaareh, D.; Sun, X.; Wang, J.; Luginaah, I.; Kerr, R.B.; Lupafya, E.; Dakishoni, L. Crop type and land cover mapping in Northern Malawi using the integration of Sentinel-1, Sentinel-2, and Planetscope satellite data. Remote Sens. 2021, 13, 700. [Google Scholar] [CrossRef]
- Xia, J.; Yokoya, N.; Pham, T.D. Probabilistic mangrove species mapping with multiple-source remote-sensing datasets using label distribution learning in Xuan Thuy National Park, Vietnam. Remote Sens. 2020, 12, 3834. [Google Scholar] [CrossRef]
- Mahdavi, S.; Salehi, B.; Amani, M.; Granger, J.; Brisco, B.; Huang, W. A dynamic classification scheme for mapping spectrally similar classes: Application to wetland classification. Int. J. Appl. Earth Obs. Geoinf. 2019, 83, 101914. [Google Scholar] [CrossRef]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Nasiri, V.; Beloiu, M.; Asghar Darvishsefat, A.; Griess, V.C.; Maftei, C.; Waser, L.T. Mapping tree species composition in a Caspian temperate mixed forest based on spectral-temporal metrics and machine learning. Int. J. Appl. Earth Obs. Geoinf. 2023, 116, 103154. [Google Scholar] [CrossRef]
- De Luca, G.; Silva, J.M.N.; Di Fazio, S.; Modica, G. Integrated use of Sentinel-1 and Sentinel-2 data and open-source machine learning algorithms for land cover mapping in a Mediterranean region. Eur. J. Remote Sens. 2022, 55, 52–70. [Google Scholar] [CrossRef]
- Cutler, A.; Cutler, D.R.; Stevens, J.R. Random Forests. In Ensemble Machine Learning; Zhang, C., Ma, Y., Eds.; Springer: New York, NY, USA, 2012; pp. 157–175. ISBN 978-1-4419-9325-0. [Google Scholar]
- Breiman, L. Bagging Predictors. Mach. Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef]
- Ho, K. The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20, 832–844. [Google Scholar] [CrossRef]
- Grimm, R.; Behrens, T.; Märker, M.; Elsenbeer, H. Soil organic carbon concentrations and stocks on Barro Colorado Island—Digital soil mapping using random forests analysis. Geoderma 2008, 146, 102–113. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and regression by random forest. R News 2002, 2/3, 18–22. [Google Scholar]
- Cutler, D.R.; Edwards, T.C.; Beard, K.H.; Cutler, A.; Hess, K.T.; Gibson, J.; Lawler, J.J. Random forests for classification in ecology. Ecology 2007, 88, 2783–2792. [Google Scholar] [CrossRef]
- Zeraatpisheh, M.; Ayoubi, S.; Jafari, A.; Tajik, S.; Finke, P. Digital mapping of soil properties using multiple machine learning in a semi-arid region, Central Iran. Geoderma 2019, 338, 445–452. [Google Scholar] [CrossRef]
- Díaz-Uriarte, R.; Alvarez de Andrés, S. Gene selection and classification of microarray data using random forest. BMC Bioinform. 2006, 7, 3. [Google Scholar] [CrossRef]
- Vapnik, V.N. The Nature of Statistical Learning Theory, 2nd ed.; Jordan, M., Lawless, J.F., Lauritzen, S.L., Nair, V., Eds.; Springer: New York, NY, USA, 1998; Volume 3, ISBN 978-0-387-98780-4. [Google Scholar]
- Huang, Y.; Lan, Y.; Thomson, S.J.; Fang, A.; Hoffmann, W.C.; Lacey, R.E. Development of soft computing and applications in agricultural and biological engineering. Comput. Electron. Agric. 2010, 71, 107–127. [Google Scholar] [CrossRef]
- Tabari, H.; Kisi, O.; Ezani, A.; Hosseinzadeh Talaee, P. SVM, ANFIS, regression and climate based models for reference evapotranspiration modeling using limited climatic data in a semi-arid highland environment. J. Hydrol. 2012, 444–445, 78–89. [Google Scholar] [CrossRef]
- Mohandes, M.A.; Halawani, T.O.; Rehman, S.; Hussain, A.A. Support vector machines for wind speed prediction. Renew. Energy 2004, 29, 939–947. [Google Scholar] [CrossRef]
- Sun, Z.; Guo, H.; Li, X.; Lu, L.; Du, X. Estimating urban impervious surfaces from Landsat-5 TM imagery using multilayer perceptron neural network and support vector machine. J. Appl. Remote Sens. 2011, 5, 053501. [Google Scholar] [CrossRef]
- Foucras, M.; Zribi, M.; Albergel, C.; Baghdadi, N.; Calvet, J.C.; Pellarin, T. Estimating 500-m resolution soil moisture using Sentinel-1 and optical data synergy. Water 2020, 12, 866. [Google Scholar] [CrossRef]
- Charpentier, M.A.; Groffman, P.M. Soil moisture variability within remote sensing pixels. J. Geophys. Res. 1992, 97, 987–1005. [Google Scholar] [CrossRef]
- Mohanty, B.P.; Skaggs, T.H.; Famiglietti, J.S. Analysis and mapping of field-scale soil moisture variability using high-resolution, ground-based data during the Southern Great Plains 1997 (SGP97) hydrology experiment. Water Resour. Res. 2000, 36, 1023–1031. [Google Scholar] [CrossRef]
- Jacobs, J.M.; Mohanty, B.P.; Hsu, E.C.; Miller, D. SMEX02: Field scale variability, time stability and similarity of soil moisture. Remote Sens. Environ. 2004, 92, 436–446. [Google Scholar] [CrossRef]
- de Rosnay, P.; Gruhier, C.; Timouk, F.; Baup, F.; Mougin, E.; Hiernaux, P.; Kergoat, L.; LeDantec, V. Multi-scale soil moisture measurements at the Gourma meso-scale site in Mali. J. Hydrol. 2009, 375, 241–252. [Google Scholar] [CrossRef]
- Western, A.W.; Grayson, R.B.; Blöschl, G.; Willgoose, G.R.; McMahon, T.A. Observed spatial organization of soil moisture and its relation to terrain indices. Water Resour. Res. 1999, 35, 797–810. [Google Scholar] [CrossRef]
- Liu, H.; He, S.; Anenkhonov, O.; Hu, G.; Sandanov, D.; Badmaeva, N. Topography-controlled soil water content and the coexistence of forest and steppe in Northern China. Phys. Geogr. 2012, 33, 561–573. [Google Scholar] [CrossRef]
- Qiu, Y.; Fu, B.; Wang, J.; Chen, L. Soil moisture variation in relation to topography and land use in a hillslope catchment of the Loess Plateau, China. J. Hydrol. 2001, 240, 243–263. [Google Scholar] [CrossRef]
- Liang, W.L.; Li, S.L.; Hung, F.X. Analysis of the contributions of topographic, soil, and vegetation features on the spatial distributions of surface soil moisture in a steep natural forested headwater catchment. Hydrol. Process. 2017, 31, 3796–3809. [Google Scholar] [CrossRef]
- Pasolli, L.; Notarnicola, C.; Bruzzone, L. Estimating soil moisture with the support vector regression technique. IEEE Geosci. Remote Sens. Lett. 2011, 8, 1080–1084. [Google Scholar] [CrossRef]
- EI Hajj, M.; Baghdadi, N.; Zribi, M.; Bazzi, H. Synergic use of Sentinel-1 and Sentinel-2 images for operational soil moisture mapping at high spatial resolution over agricultural areas. Remote Sens. 2017, 9, 1292. [Google Scholar] [CrossRef]
Forest Types | Areas (ha) | Number of Ground Truth Points | |
---|---|---|---|
Natural forest of fir and hemlock | 387 | 40 | |
Plantations | 825 | Pine plantations | 5 |
Japanese cedar plantations | 95 | ||
Japanese cypress plantations | 90 | ||
Plantations of other species | 5 | ||
Natural broad-leaved forest | 949 | 120 | |
Exhibition forest | 56 | 20 | |
Nurseries, seed orchards, and other areas | 8 | 0 | |
Total | 2225 | 375 |
Name | Pixel Size (m) | Bandwidth (nm) | Wavelength | Description |
---|---|---|---|---|
B2 | 10 | 65 | 496.6 nm (S2A)/492.1 nm (S2B) | Blue |
B3 | 10 | 35 | 560 nm (S2A)/559 nm (S2B) | Green |
B4 | 10 | 30 | 664.5 nm (S2A)/665 nm (S2B) | Red |
B8 | 10 | 115 | 835.1 nm (S2A)/833 nm (S2B) | NIR |
B11 | 20 | 90 | 1613.7 nm (S2A)/1610.4 nm (S2B) | SWIR1 |
B12 | 20 | 180 | 2202.4 nm (S2A)/2185.7 nm (S2B) | SWIR2 |
QA60 | 60 | Cloud Mask |
Synergies | Image Combinations |
---|---|
Synergy 1 | S-2 + S-1 + SI + Terrain factors |
Synergy 2 | S-2 + SI + Terrain factors |
Synergy 3 | S-2 + SI |
Synergy 4 | S-2 + Terrain factors |
Synergy 5 | S-1 + SI |
Random Forest (RF) | Support Vector Machine (SVM) | |||||
---|---|---|---|---|---|---|
Synergies | R2 | RMSE | MAE | R2 | RMSE | MAE |
Synergy 1 | 0.910 | 0.039 | 0.035 | 0.879 | 0.101 | 0.083 |
Synergy 2 | 0.905 | 0.064 | 0.056 | 0.884 | 0.020 | 0.019 |
Synergy 3 | 0.914 | 0.035 | 0.030 | 0.766 | 0.175 | 0.142 |
Synergy 4 | 0.964 | 0.025 | 0.023 | 0.874 | 0.014 | 0.010 |
Synergy 5 | 0.896 | 0.051 | 0.045 | 0.799 | 0.152 | 0.124 |
Synergy 1 | Synergy 2 | Synergy 3 | Synergy 4 | Synergy 5 | |
---|---|---|---|---|---|
Predicted SSM by RF Model | |||||
Observed SSM | 0.95 | 0.95 | 0.96 | 0.98 | 0.95 |
Predicted SSM by SVM Model | |||||
Observed SSM | 0.94 | 0.94 | 0.88 | 0.94 | 0.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Win, K.; Sato, T.; Tsuyuki, S. Application of Multi-Source Remote Sensing Data and Machine Learning for Surface Soil Moisture Mapping in Temperate Forests of Central Japan. Information 2024, 15, 485. https://doi.org/10.3390/info15080485
Win K, Sato T, Tsuyuki S. Application of Multi-Source Remote Sensing Data and Machine Learning for Surface Soil Moisture Mapping in Temperate Forests of Central Japan. Information. 2024; 15(8):485. https://doi.org/10.3390/info15080485
Chicago/Turabian StyleWin, Kyaw, Tamotsu Sato, and Satoshi Tsuyuki. 2024. "Application of Multi-Source Remote Sensing Data and Machine Learning for Surface Soil Moisture Mapping in Temperate Forests of Central Japan" Information 15, no. 8: 485. https://doi.org/10.3390/info15080485
APA StyleWin, K., Sato, T., & Tsuyuki, S. (2024). Application of Multi-Source Remote Sensing Data and Machine Learning for Surface Soil Moisture Mapping in Temperate Forests of Central Japan. Information, 15(8), 485. https://doi.org/10.3390/info15080485