Bibliometric Analysis on ChatGPT Research with CiteSpace
Abstract
:1. Introduction
- RQ1: Who/what are the most productive researchers, institutions, and countries/territories in the ChatGPT field?
- RQ2: What is the status of academic collaborations among researchers or countries/regions in the ChatGPT field?
- RQ3: Which are the most impactable researchers, journals, and articles in the ChatGPT field?
- RQ4: What are the main themes in the ChatGPT field?
2. What Is Bibliometric Analysis?
3. Methodologies
4. Results
4.1. Major Research Forces
4.1.1. Researchers with High Publication Output and Author-Based Co-Authorship Network Analysis
4.1.2. Productive Institutions
4.1.3. Productive Countries/Regions and Country/Region-Based Co-Authorship Network Analysis
4.2. Co-Citation Analysis
4.2.1. Highly Cited Authors/Researchers
4.2.2. Highly Cited Journals/Sources
4.2.3. Highly Cited References/Literature
4.3. Cluster Analysis
4.4. Additional Analyses
5. Conclusions
5.1. Main Findings
5.2. Future Directions
5.3. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tian, S.; Jin, Q.; Yeganova, L.; Lai, P.-T.; Zhu, Q.; Chen, X.; Yang, Y.; Chen, Q.; Kim, W.; Comeau, D.C.; et al. Opportunities and challenges for ChatGPT and large language models in biomedicine and health. Brief. Bioinform. 2024, 25, bbad493. [Google Scholar] [CrossRef]
- Gill, S.S.; Xu, M.; Patros, P.; Wu, H.; Kaur, R.; Kaur, K.; Fuller, S.; Singh, M.; Arora, P.; Parlikad, A.K.; et al. Transformative effects of ChatGPT on modern education: Emerging Era of AI Chatbots. Internet Things Cyber-Phys. Syst. 2024, 4, 19–23. [Google Scholar] [CrossRef]
- Ouyang, L.; Wu, J.; Jiang, X.; Almeida, D.; Wainwright, C.; Mishkin, P.; Zhang, C.; Agarwal, S.; Slama, K.; Ray, A.; et al. Training language models to follow instructions with human feedback. Adv. Neural Inf. Process. Syst. 2022, 35, 27730–27744. [Google Scholar]
- Jansen, B.J.; Jung, S.G.; Salminen, J. Employing large language models in survey research. Nat. Lang. Process. J. 2023, 4, 100020. [Google Scholar] [CrossRef]
- Van Dis, E.A.; Bollen, J.; Zuidema, W.; van Rooij, R.; Bockting, C.L. ChatGPT: Five priorities for research. Nature 2023, 614, 224–226. [Google Scholar] [CrossRef]
- Haleem, A.; Javaid, M.; Singh, R.P. An era of ChatGPT as a significant futuristic support tool: A study on features, abilities, and challenges. BenchCouncil Trans. Benchmarks Stand. Eval. 2022, 2, 100089. [Google Scholar] [CrossRef]
- Achiam, J.; Adler, S.; Agarwal, S.; Ahmad, L.; Akkaya, I.; Aleman, F.L.; Almeida, D.; Altenschmidt, J.; Altman, S.; Anadkat, S.; et al. Gpt-4 technical report. arXiv 2023, arXiv:2303.08774. [Google Scholar]
- Nan, D.; Sun, S.; Zhang, S.; Zhao, X.; Kim, J.H. Analyzing behavioral intentions toward Generative Artificial Intelligence: The case of ChatGPT. Univers. Access Inf. Soc. 2024, 1–11. [Google Scholar] [CrossRef]
- Argyle, L.P.; Busby, E.C.; Fulda, N.; Gubler, J.R.; Rytting, C.; Wingate, D. Out of one, many: Using language models to simulate human samples. Political Anal. 2023, 31, 337–351. [Google Scholar] [CrossRef]
- Rice, S.; Crouse, S.R.; Winter, S.R.; Rice, C. The advantages and limitations of using ChatGPT to enhance technological research. Technol. Soc. 2024, 76, 102426. [Google Scholar] [CrossRef]
- Hämäläinen, P.; Tavast, M.; Kunnari, A. Evaluating Large Language Models in Generating Synthetic Hci Research Data: A Case Study. In Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, Hamburg Germany, 23–28 April 2023; pp. 1–19. [Google Scholar]
- Zhao, X.; Nan, D.; Chen, C.; Zhang, S.; Che, S.; Kim, J.H. Bibliometric study for environmental, social, and governance research using CiteSpace. Front. Environ. Sci. 2023, 10, 2534. [Google Scholar] [CrossRef]
- Lim, W.M.; Kumar, S.; Ali, F. Advancing knowledge through literature reviews: ‘what’, ‘why’, and ‘how to contribute’. Serv. Ind. J. 2022, 42, 481–513. [Google Scholar] [CrossRef]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to conduct a bibliometric analysis: An overview and guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Zhang, S.; Che, S.; Nan, D.; Kim, J.H. MOOCs as a research agenda: Changes over time. Int. Rev. Res. Open Distrib. Learn. 2022, 23, 193–210. [Google Scholar] [CrossRef]
- Azam, A.; Ahmed, A.; Kamran, M.S.; Hai, L.; Zhang, Z.; Ali, A. Knowledge structuring for enhancing mechanical energy harvesting (MEH): An in-depth review from 2000 to 2020 using CiteSpace. Renew. Sustain. Energy Rev. 2021, 150, 111460. [Google Scholar] [CrossRef]
- Chen, C. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 2006, 57, 359–377. [Google Scholar] [CrossRef]
- Sabah, N.U.; Khan, M.M.; Talib, R.; Anwar, M.; Arshad Malik, M.S.; Ellyza Nohuddin, P.N. Google Scholar University Ranking Algorithm to Evaluate the Quality of Institutional Research. Computers. Mater. Contin. 2023, 75, 4955–4972. [Google Scholar] [CrossRef]
- Naseer, I.; Masood, T.; Akram, S.; Jaffar, A.; Rashid, M.; Iqbal, M.A. Lung Cancer Detection Using Modified AlexNet Architecture and Support Vector Machine. Computers. Mater. Contin. 2023, 74, 032927. [Google Scholar] [CrossRef]
- Kim, J.H.; Nan, D. Machine learning and deep learning for social science: A bibliometric approach. In Research Handbook on Artificial Intelligence and Communication; Edward Elgar Publishing: Cheltenham, UK, 2023; p. 214. [Google Scholar]
- Sun, S.; Nan, D.; Che, S.; Kim, J.H. Investigating the knowledge structure of research on massively multiplayer online role-playing games: A bibliometric analysis. Data Inf. Manag. 2022, 8, 100024. [Google Scholar] [CrossRef]
- Seth, I.; Cox, A.; Xie, Y.; Bulloch, G.; Hunter-Smith, D.J.; Rozen, W.M.; Ross, R.J. Evaluating chatbot efficacy for answering frequently asked questions in plastic surgery: A ChatGPT case study focused on breast augmentation. Aesthetic Surg. J. 2023, 43, 1126–1135. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Seth, I.; Hunter-Smith, D.J.; Rozen, W.M.; Ross, R.; Lee, M. Aesthetic surgery advice and counseling from artificial intelligence: A rhinoplasty consultation with ChatGPT. Aesthetic Plast. Surg. 2023, 47, 1985–1993. [Google Scholar] [CrossRef]
- Mondal, H.; Mondal, S.; Podder, I. Using ChatGPT for writing articles for patients’ education for dermatological diseases: A pilot study. Indian Dermatol. Online J. 2023, 14, 482–486. [Google Scholar] [CrossRef] [PubMed]
- Mondal, H.; Mondal, S. ChatGPT in academic writing: Maximizing its benefits and minimizing the risks. Indian J. Ophthalmol. 2023, 71, 3600–3606. [Google Scholar] [CrossRef]
- Newman, M.E. A measure of betweenness centrality based on random walks. Soc. Netw. 2005, 27, 39–54. [Google Scholar] [CrossRef]
- Sabé, M.; Sulstarova, A.; Chen, C.; Hyde, J.; Poulet, E.; Aleman, A.; Downar, J.; Brandt, V.; Mallet, L.; Sentissi, O.; et al. A century of research on neuromodulation interventions: A scientometric analysis of trends and knowledge maps. Neurosci. Biobehav. Rev. 2023, 152, 105300. [Google Scholar] [CrossRef] [PubMed]
- Kung, T.H.; Cheatham, M.; Medenilla, A.; Sillos, C.; De Leon, L.; Elepaño, C.; Madriaga, M.; Aggabao, R.; Diaz-Candido, G.; Maningo, J.; et al. Performance of ChatGPT on USMLE: Potential for AI-assisted medical education using large language models. PLoS Digit. Health 2023, 2, e0000198. [Google Scholar] [CrossRef] [PubMed]
- Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.D.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al. Language models are few-shot learners. Adv. Neural Inf. Process. Syst. 2020, 33, 1877–1901. [Google Scholar]
- Sallam, M. ChatGPT Utility in Healthcare Education, Research, and Practice: Systematic Review on the Promising Perspectives and Valid Concerns. Healthcare 2023, 11, 887. [Google Scholar] [CrossRef] [PubMed]
- Gilson, A.; Safranek, C.W.; Huang, T.; Socrates, V.; Chi, L.; Taylor, R.A.; Chartash, D. How does ChatGPT perform on the United States medical licensing examination? The implications of large language models for medical education and knowledge assessment. JMIR Med. Educ. 2023, 9, e45312. [Google Scholar] [CrossRef]
- Dwivedi, Y.K.; Kshetri, N.; Hughes, L.; Slade, E.L.; Jeyaraj, A.; Kar, A.K.; Baabdullah, A.M.; Koohang, A.; Raghavan, V.; Ahuja, M.; et al. “So what if ChatGPT wrote it?” Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research, practice and policy. Int. J. Inf. Manag. 2023, 71, 102642. [Google Scholar] [CrossRef]
- Kasneci, E.; Seßler, K.; Küchemann, S.; Bannert, M.; Dementieva, D.; Fischer, F.; Gasser, U.; Groh, G.; Günnemann, S.; Hüllermeier, E.; et al. ChatGPT for good? On opportunities and challenges of large language models for education. Learn. Individ. Differ. 2023, 103, 102274. [Google Scholar] [CrossRef]
- Rudolph, J.; Tan, S.; Tan, S. ChatGPT: Bullshit spewer or the end of traditional assessments in higher education? J. Appl. Learn. Teach. 2023, 6, 342–363. [Google Scholar]
- Pestana, M.H.; Wang, W.C.; Parreira, A. Senior tourism–A scientometric review (1998–2017). Tour. Rev. 2020, 75, 699–715. [Google Scholar] [CrossRef]
- Chopra, M.; Saini, N.; Kumar, S.; Varma, A.; Mangla, S.K.; Lim, W.M. Past, present, and future of knowledge management for business sustainability. J. Clean. Prod. 2021, 328, 129592. [Google Scholar] [CrossRef]
- Aiumtrakul, N.; Thongprayoon, C.; Arayangkool, C.; Vo, K.B.; Wannaphut, C.; Suppadungsuk, S.; Krisanapan, P.; Garcia Valencia, O.A.; Qureshi, F.; Miao, J.; et al. Personalized Medicine in Urolithiasis: AI Chatbot-Assisted Dietary Management of Oxalate for Kidney Stone Prevention. J. Pers. Med. 2024, 14, 107. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Huo, Y. Are users willing to embrace ChatGPT? Exploring the factors on the acceptance of chatbots from the perspective of AIDUA framework. Technol. Soc. 2023, 75, 102362. [Google Scholar] [CrossRef]
- Kopplin, C.S. Chatbots in the workplace: A technology acceptance study applying uses and gratifications in coworking spaces. J. Organ. Comput. Electron. Commer. 2022, 32, 232–257. [Google Scholar] [CrossRef]
- Abdullahi, T.; Singh, R.; Eickhoff, C. Learning to Make Rare and Complex Diagnoses With Generative AI Assistance: Qualitative Study of Popular Large Language Models. JMIR Med. Educ. 2024, 10, e51391. [Google Scholar] [CrossRef] [PubMed]
- Hirosawa, T.; Kawamura, R.; Harada, Y.; Mizuta, K.; Tokumasu, K.; Kaji, Y.; Suzuki, T.; Shimizu, T. ChatGPT-generated differential diagnosis lists for complex case–derived clinical vignettes: Diagnostic accuracy evaluation. JMIR Med. Inform. 2023, 11, e48808. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Dubin, R.; Kim, M.C. Emerging trends and new developments in regenerative medicine: A scientometric update (2000–2014). Expert Opin. Biol. Ther. 2014, 14, 1295–1317. [Google Scholar] [CrossRef]
- Widziewicz-Rzońca, K.; Tytła, M. First systematic review on PM-bound water: Exploring the existing knowledge domain using the CiteSpace software. Scientometrics 2020, 124, 1945–2008. [Google Scholar] [CrossRef]
- Chen, C.; Leydesdorff, L. Patterns of connections and movements in dual-map overlays: A new method of publication portfolio analysis. J. Assoc. Inf. Sci. Technol. 2014, 65, 334–351. [Google Scholar] [CrossRef]
- Abbas, N.N.; Ahmed, T.; Shah, S.H.U.; Omar, M.; Park, H.W. Investigating the applications of artificial intelligence in cyber security. Scientometrics 2019, 121, 1189–1211. [Google Scholar] [CrossRef]
- Borgman, C.L. The conundrum of sharing research data. J. Am. Soc. Inf. Sci. Technol. 2012, 63, 1059–1078. [Google Scholar] [CrossRef]
- Baber, H.; Nair, K.; Gupta, R.; Gurjar, K. The beginning of ChatGPT–a systematic and bibliometric review of the literature. Inf. Learn. Sci. 2024, 125, 587–614. [Google Scholar] [CrossRef]
- Mongeon, P.; Paul-Hus, A. The journal coverage of Web of Science and Scopus: A comparative analysis. Scientometrics 2016, 106, 213–228. [Google Scholar] [CrossRef]
Parameters | |
---|---|
Time slicing | Monthly (y = 0)/Yearly (y = 1) |
Pruning | Pathfinder & Pruning sliced networks |
Node type | author, institution, country, reference, cited author, cited journal, keyword |
Links | Strength (cosine) & Scope (within slices) |
Selection criteria | g-index (k = 25)/g-index (k = 50) |
Visualization | Static cluster view & Merged network |
Number of Papers | Author/Researcher |
---|---|
13 | Seth, Ishith |
13 | Mondal, Himel |
12 | Kacena, Melissa A |
11 | Wang, Fei-Yue |
9 | Fehrenbacher, Jill C |
9 | Rozen, Warren M |
8 | Cheungpasitporn, Wisit |
7 | Klang, Eyal |
7 | Mondal, Shaikat |
7 | Sohail, Shahab Saquib |
7 | Elyoseph, Zohar |
Number of Papers | Institution |
---|---|
43 | Stanford University |
38 | Harvard University |
37 | National University of Singapore |
27 | Monash University |
25 | Indiana University Bloomington |
24 | Chinese Academy of Sciences |
22 | University of Toronto |
20 | University of Hong Kong |
20 | Imperial College London |
20 | University of Pennsylvania |
Number of Papers | Country/Territory | Betweenness Centrality |
---|---|---|
847 | United States | 0.02 |
322 | People’s Republic of China | 0.01 |
206 | United Kingdom | 0.15 |
167 | India | 0.14 |
153 | Germany | 0.05 |
141 | Australia | 0.03 |
103 | Italy | 0.07 |
100 | Canada | 0.07 |
89 | Spain | 0.12 |
88 | Turkiye | 0.03 |
Betweenness Centrality | Country/Territory | Number of Papers |
---|---|---|
0.15 | United Kingdom | 206 |
0.14 | India | 167 |
0.12 | Spain | 89 |
0.12 | United Arab Emirates | 66 |
0.10 | France | 51 |
0.10 | Qatar | 24 |
0.09 | Brazil | 45 |
0.09 | Argentina | 3 |
0.09 | Nigeria | 13 |
Number of Citations | Researcher |
---|---|
317 | Kung, Tiffany H |
272 | Brown, Tom |
271 | Sallam, Malik |
251 | Vaswani, Ashish |
229 | Gilson, Aidan |
219 | Bockting, Claudi L |
212 | Devlin, Jacob |
204 | Stokel-Walker, Chris |
203 | Dwivedi, Yogesh K |
181 | Thorp, H Holden |
Number of Citations | Journals/Sources |
---|---|
1207 | ARXIV |
710 | Nature |
394 | Cureus Journal of Medical Science |
375 | Science |
362 | JMIR Medical Education |
346 | PLOS Digital Health |
315 | Radiology |
314 | Healthcare-Basel |
311 | Journal of Medical Internet Research |
294 | MEDRXIV |
Number of Citations | Article | Journal/Conference Proceedings |
---|---|---|
315 | Kung et al. [28] | PLoS digital health |
231 | Sallam [30] | Healthcare |
229 | Gilson et al. [31] | JMIR Medical Education |
218 | Van Dis et al. [5] | Nature |
180 | Dwivedi et al. [32] | International Journal of Information Management |
162 | Kasneci et al. [33] | Learning and Individual Differences |
149 | Rudolph et al. [34] | Journal of Applied Learning and Teaching |
148 | Brown et al. [29] | Advances in neural information processing systems/34th Conference on Neural Information Processing Systems (NeurIPS 2020) |
Cluster ID | Size | Silhouette Value | Label (LLR) |
---|---|---|---|
0 | 152 | 0.874 | processing artificial intelligence |
1 | 129 | 0.851 | behavioral intention |
2 | 112 | 0.863 | differential diagnosis list |
Number of Publications | Research Area |
---|---|
523 | Computer Science |
428 | Education Educational Research |
245 | General Internal Medicine |
193 | Engineering |
127 | Health Care Sciences Services |
121 | Surgery |
94 | Business Economics |
94 | Science Technology Other Topics |
92 | Social Sciences Other Topics |
83 | Medical Informatics |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nan, D.; Zhao, X.; Chen, C.; Sun, S.; Lee, K.R.; Kim, J.H. Bibliometric Analysis on ChatGPT Research with CiteSpace. Information 2025, 16, 38. https://doi.org/10.3390/info16010038
Nan D, Zhao X, Chen C, Sun S, Lee KR, Kim JH. Bibliometric Analysis on ChatGPT Research with CiteSpace. Information. 2025; 16(1):38. https://doi.org/10.3390/info16010038
Chicago/Turabian StyleNan, Dongyan, Xiangying Zhao, Chaomei Chen, Seungjong Sun, Kyeo Re Lee, and Jang Hyun Kim. 2025. "Bibliometric Analysis on ChatGPT Research with CiteSpace" Information 16, no. 1: 38. https://doi.org/10.3390/info16010038
APA StyleNan, D., Zhao, X., Chen, C., Sun, S., Lee, K. R., & Kim, J. H. (2025). Bibliometric Analysis on ChatGPT Research with CiteSpace. Information, 16(1), 38. https://doi.org/10.3390/info16010038