Real-Time Analysis of Industrial Data Using the Unsupervised Hierarchical Density-Based Spatial Clustering of Applications with Noise Method in Monitoring the Welding Process in a Robotic Cell
Abstract
:1. Introduction
2. Industrial Data Collection and Methods of Analysis
2.1. Collecting Data
2.2. Preliminary Data Clustering
2.3. Methods of Data Analysis
2.3.1. K-Means Algorithm
2.3.2. DBSCAN Algorithm
2.3.3. HDBSCAN Algorithm
3. Analysis of Results
3.1. DBSCAN Results
3.2. HDBSCAN Results
HDBSCAN Data Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shalev-Shwartz, S.; Ben-David, S. Understanding Machine Learning: From Theory to Algorithms; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Aggarwal, C.C.; Reddy, C.K. (Eds.) Data Clustering: Algorithms and Applications; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Azzalini, A.; Torelli, N. Clustering via nonparametric density estimation. Stat. Comput. 2007, 17, 71–80. [Google Scholar] [CrossRef]
- Kriegel, H.P.; Kröger, P.; Sander, J.; Zimek, A. Density-based clustering. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2009, 1, 231–240. [Google Scholar] [CrossRef]
- Campello, R.J.G.B.; Hruschka, E.R.; Sander, J. Clustering based on density measures and automated cluster extraction. Data Min. Knowl. Discov. 2015, 29, 802–830. [Google Scholar]
- Campello, R.J.; Moulavi, D.; Zimek, A.; Sander, J. Density-Based Clustering Based on Hierarchical Density Estimates. In Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining, Gold Coast, Australia, 14–17 April 2013; Springer: Berlin/Heidelberg, Germany, 2013; pp. 160–172. [Google Scholar]
- Sumit; Gupta, D.; Juneja, S.; Nauman, A.; Hamid, Y.; Ullah, I.; Kim, T.; Tag eldin, E.M.; Ghamry, N.A. Energy Saving Implementation in Hydraulic Press Using Industrial Internet of Things (IIoT). Electronics 2022, 11, 4061. [Google Scholar] [CrossRef]
- Ullah, I.; Adhikari, D.; Khan, H.; Anwar, M.S.; Ahmad, S.; Bai, X. Mobile robot localization: Current challenges and future prospective. Comput. Sci. Rev. 2024, 53, 100651. [Google Scholar] [CrossRef]
- Liu, C.; Peng, G.; Kong, Y.; Li, S.; Chen, S. Data Quality Affecting Big Data Analytics in Smart Factories: Research Themes, Issues and Methods. Symmetry 2021, 13, 1440. [Google Scholar] [CrossRef]
- Silva, N.; Barros, J.; Santos, M.Y.; Costa, C.; Cortez, P.; Carvalho, M.S.; Gonçalves, J.N.C. Advancing Logistics 4.0 with the Implementation of a Big Data Warehouse: A Demonstration Case for the Automotive Industry. Electronics 2021, 10, 2221. [Google Scholar] [CrossRef]
- Ding, H.; Tian, J.; Yu, W.; Wilson, D.I.; Young, B.R.; Cui, X.; Xin, X.; Wang, Z.; Li, W. The Application of Artificial Intelligence and Big Data in the Food Industry. Foods 2023, 12, 4511. [Google Scholar] [CrossRef]
- Meng, Q.; Peng, Q.; Li, Z.; Hu, X. Big Data Technology in Construction Safety Management: Application Status, Trend and Challenge. Buildings 2022, 12, 533. [Google Scholar] [CrossRef]
- Theodorakopoulos, L.; Theodoropoulou, A.; Halkiopoulos, C. Enhancing Decentralized Decision-Making with Big Data and Blockchain Technology: A Comprehensive Review. Appl. Sci. 2024, 14, 7007. [Google Scholar] [CrossRef]
- Iglesias, C.A.; Favenza, A.; Carrera, Á. A Big Data Reference Architecture for Emergency Management. Information 2020, 11, 569. [Google Scholar] [CrossRef]
- Riad, M.; Naimi, M.; Okar, C. Enhancing Supply Chain Resilience Through Artificial Intelligence: Developing a Comprehensive Conceptual Framework for AI Implementation and Supply Chain Optimization. Logistics 2024, 8, 111. [Google Scholar] [CrossRef]
- Chittam, S.; Gokaraju, B.; Xu, Z.; Sankar, J.; Roy, K. Big Data Mining and Classification of Intelligent Material Science Data Using Machine Learning. Appl. Sci. 2021, 11, 8596. [Google Scholar] [CrossRef]
- Elouataoui, W.; El Mendili, S.; Gahi, Y. An Automated Big Data Quality Anomaly Correction Framework Using Predictive Analysis. Data 2023, 8, 182. [Google Scholar] [CrossRef]
- Oprea, S.-V.; Bâra, A.; Puican, F.C.; Radu, I.C. Anomaly Detection with Machine Learning Algorithms and Big Data in Electricity Consumption. Sustainability 2021, 13, 10963. [Google Scholar] [CrossRef]
- Liu, W.; Lei, P.; Xu, D.; Zhu, X. Anomaly Recognition, Diagnosis and Prediction of Massive Data Flow Based on Time-GAN and DBSCAN for Power Dispatching Automation System. Processes 2023, 11, 2782. [Google Scholar] [CrossRef]
- Vladov, S.; Vysotska, V.; Sokurenko, V.; Muzychuk, O.; Nazarkevych, M.; Lytvyn, V. Neural Network System for Predicting Anomalous Data in Applied Sensor Systems. Appl. Syst. Innov. 2024, 7, 88. [Google Scholar] [CrossRef]
- Grunova, D.; Bakratsi, V.; Vrochidou, E.; Papakostas, G.A. Machine Learning for Anomaly Detection in Industrial Environments. Eng. Proc. 2024, 70, 25. [Google Scholar] [CrossRef]
- McInnes, L.; Healy, J.; Astels, S. HDBSCAN: Hierarchical density-based clustering. J. Open Source Softw. 2017, 2, 205. [Google Scholar] [CrossRef]
- Hartigan, J.A.; Wong, M.A. A K-means clustering algorithm. Appl. Stat. 1979, 28, 100–108. [Google Scholar] [CrossRef]
- Jain, A.K. Data clustering: 50 years beyond K-means. Patt. Recogn. Lett. 2010, 31, 651–666. [Google Scholar] [CrossRef]
- Schubert, E.; Sander, J.; Ester, M.; Kriegel, H.P.; Xu, X. DBSCAN revisited, revisited: Why and how you should (still) use DBSCAN. ACM Trans. Database Syst. 2017, 42, 19. [Google Scholar] [CrossRef]
- Retiti Diop Emane, C.; Song, S.; Lee, H.; Choi, D.; Lim, J.; Bok, K.; Yoo, J. Anomaly Detection Based on GCNs and DBSCAN in a Large-Scale Graph. Electronics 2024, 13, 2625. [Google Scholar] [CrossRef]
- Emmons, S.; Kobourov, S.; Gallant, M.; Börner, K. Analysis of network clustering algorithms and cluster quality metrics at scale. PLoS ONE 2016, 11, e0159161. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Wunsch, D. Survey of clustering algorithms. IEEE Trans. Neural Netw. 2005, 16, 645–678. [Google Scholar] [CrossRef]
- Sun, W.; Zhou, Z.; Ma, F.; Wang, J.; Ji, C. Industrial Application of Data-Driven Process Monitoring with an Automatic Selection Strategy for Modeling Data. Processes 2023, 11, 402. [Google Scholar] [CrossRef]
- Ackermann, M.R.; Blömer, J.; Sohler, C. Clustering for metric and non-metric distance measures. ACM Trans. Algorithms 2010, 6, 1–26. [Google Scholar] [CrossRef]
- Hasan, M.M.U.; Hasan, T.; Shahidi, R.; James, L.; Peters, D.; Gosine, R. Lithofacies Identification from Wire-Line Logs Using an Unsupervised Data Clustering Algorithm. Energies 2023, 16, 8116. [Google Scholar] [CrossRef]
- Han, X.; Armenakis, C.; Jadidi, M. Modeling Vessel Behaviours by Clustering AIS Data Using Optimized DBSCAN. Sustainability 2021, 13, 8162. [Google Scholar] [CrossRef]
- Munguía Mondragón, J.C.; Rendón Lara, E.; Alejo Eleuterio, R.; Granda Gutirrez, E.E.; Del Razo López, F. Density-Based Clustering to Deal with Highly Imbalanced Data in Multi-Class Problems. Mathematics 2023, 11, 4008. [Google Scholar] [CrossRef]
- Yun, K.; Yun, H.; Lee, S.; Oh, J.; Kim, M.; Lim, M.; Lee, J.; Kim, C.; Seo, J.; Choi, J. A Study on Machine Learning-Enhanced Roadside Unit-Based Detection of Abnormal Driving in Autonomous Vehicles. Electronics 2024, 13, 288. [Google Scholar] [CrossRef]
- DeMedeiros, K.; Koh, C.Y.; Hendawi, A. Clustering on the Chicago Array of Things: Spotting Anomalies in the Internet of Things Records. Future Internet 2024, 16, 28. [Google Scholar] [CrossRef]
- Bano, F.; Alomar, M.A.; Alotaibi, F.M.; Serbaya, S.H.; Rizwan, A.; Hasan, F. Leveraging Virtual Reality in Engineering Education to Optimize Manufacturing Sustainability in Industry 4.0. Sustainability 2024, 16, 7927. [Google Scholar] [CrossRef]
- Zhang, H.; Lee, S.; Lu, Y.; Yu, X.; Lu, H. A Survey on Big Data Technologies and Their Applications to the Metaverse: Past, Current and Future. Mathematics 2023, 11, 96. [Google Scholar] [CrossRef]
- Tarng, W.; Wu, Y.-J.; Ye, L.-Y.; Tang, C.-W.; Lu, Y.-C.; Wang, T.-L.; Li, C.-L. Application of Virtual Reality in Developing the Digital Twin for an Integrated Robot Learning System. Electronics 2024, 13, 2848. [Google Scholar] [CrossRef]
- Martins, N.C.; Marques, B.; Dias, P.; Sousa Santos, B. Expanding the Horizons of Situated Visualization: The Extended SV Model. Big Data Cogn. Comput. 2023, 7, 112. [Google Scholar] [CrossRef]
- Burghardt, A.; Szybicki, D.; Gierlak, P.; Kurc, K.; Pietruś, P.; Cygan, R. Programming of Industrial Robots Using Virtual Reality and Digital Twins. Appl. Sci. 2020, 10, 486. [Google Scholar] [CrossRef]
- Lewczuk, K.; Żuchowicz, P. Virtual Reality Application for the Safety Improvement of Intralogistics Systems. Sustainability 2024, 16, 6024. [Google Scholar] [CrossRef]
- Žemla, F.; Cigánek, J.; Rosinová, D.; Kučera, E.; Haffner, O. Smart Platform for Monitoring and Control of Discrete Event System in Industry 4.0 Concept. Appl. Sci. 2023, 13, 10697. [Google Scholar] [CrossRef]
- Caiza, G.; Sanz, R. Digital Twin to Control and Monitor an Industrial Cyber-Physical Environment Supported by Augmented Reality. Appl. Sci. 2023, 13, 7503. [Google Scholar] [CrossRef]
- Yang, Y.; Zhong, L.; Li, S.; Yu, A. Research on the Perceived Quality of Virtual Reality Headsets in Human–Computer Interaction. Sensors 2023, 23, 6824. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Saavedra, L.; Miró-Amarante, L.; Domínguez-Morales, M. Augmented and Virtual Reality Evolution and Future Tendency. Appl. Sci. 2020, 10, 322. [Google Scholar] [CrossRef]
- Alpala, L.O.; Quiroga-Parra, D.J.; Torres, J.C.; Peluffo-Ordóñez, D.H. Smart Factory Using Virtual Reality and Online Multi-User: Towards a Metaverse for Experimental Frameworks. Appl. Sci. 2022, 12, 6258. [Google Scholar] [CrossRef]
- Florescu, A. Digital Twin for Flexible Manufacturing Systems and Optimization Through Simulation: A Case Study. Machines 2024, 12, 785. [Google Scholar] [CrossRef]
- Krupas, M.; Kajati, E.; Liu, C.; Zolotova, I. Towards a Human-Centric Digital Twin for Human–Machine Collaboration: A Review on Enabling Technologies and Methods. Sensors 2024, 24, 2232. [Google Scholar] [CrossRef]
- Mourtzis, D.; Angelopoulos, J.; Panopoulos, N. The Future of the Human–Machine Interface (HMI) in Society 5.0. Future Internet 2023, 15, 162. [Google Scholar] [CrossRef]
- Hetmanczyk, M.P. A Method to Evaluate the Maturity Level of Robotization of Production Processes in the Context of Digital Transformation—Polish Case Study. Appl. Sci. 2024, 14, 5401. [Google Scholar] [CrossRef]
- Çiğdem, Ş.; Meidute-Kavaliauskiene, I.; Yıldız, B. Industry 4.0 and Industrial Robots: A Study from the Perspective of Manufacturing Company Employees. Logistics 2023, 7, 17. [Google Scholar] [CrossRef]
- Yao, K.-C.; Lin, C.-L.; Pan, C.-H. Industrial Sustainable Development: The Development Trend of Programmable Logic Controller Technology. Sustainability 2024, 16, 6230. [Google Scholar] [CrossRef]
- Langmann, R.; Stiller, M. The PLC as a Smart Service in Industry 4.0 Production Systems. Appl. Sci. 2019, 9, 3815. [Google Scholar] [CrossRef]
- Pedersen, K.; Jensen, R.R.; Hall, L.K.; Cutler, M.C.; Transtrum, M.K.; Gee, K.L.; Lympany, S.V. K-Means Clustering of 51 Geospatial Layers Identified for Use in Continental-Scale Modeling of Outdoor Acoustic Environments. Appl. Sci. 2023, 13, 8123. [Google Scholar] [CrossRef]
- Cesario, E.; Lindia, P.; Vinci, A. Detecting Multi-Density Urban Hotspots in a Smart City: Approaches, Challenges and Applications. Big Data Cogn. Comput. 2023, 7, 29. [Google Scholar] [CrossRef]
- Ragazou, K.; Passas, I.; Garefalakis, A.; Galariotis, E.; Zopounidis, C. Big Data Analytics Applications in Information Management Driving Operational Efficiencies and Decision-Making: Mapping the Field of Knowledge with Bibliometric Analysis Using R. Big Data Cogn. Comput. 2023, 7, 13. [Google Scholar] [CrossRef]
- Kumar, Y.; Marchena, J.; Awlla, A.H.; Li, J.J.; Abdalla, H.B. The AI-Powered Evolution of Big Data. Appl. Sci. 2024, 14, 10176. [Google Scholar] [CrossRef]
- Gadal, S.; Mokhtar, R.; Abdelhaq, M.; Alsaqour, R.; Ali, E.S.; Saeed, R. Machine Learning-Based Anomaly Detection Using K-Mean Array and Sequential Minimal Optimization. Electronics 2022, 11, 2158. [Google Scholar] [CrossRef]
- Guerreiro, M.T.; Guerreiro, E.M.A.; Barchi, T.M.; Biluca, J.; Alves, T.A.; de Souza Tadano, Y.; Trojan, F.; Siqueira, H.V. Anomaly Detection in Automotive Industry Using Clustering Methods—A Case Study. Appl. Sci. 2021, 11, 9868. [Google Scholar] [CrossRef]
- Choi, W.-H.; Kim, J. Unsupervised Learning Approach for Anomaly Detection in Industrial Control Systems. Appl. Syst. Innov. 2024, 7, 18. [Google Scholar] [CrossRef]
- Barrera, J.M.; Reina, A.; Mate, A.; Trujillo, J.C. Fault detection and diagnosis for industrial processes based on clustering and autoencoders: A case of gas turbines. Int. J. Mach. Learn. Cyber. 2022, 13, 3113–3129. [Google Scholar] [CrossRef]
- Nelson, W.; Culp, C. Machine Learning Methods for Automated Fault Detection and Diagnostics in Building Systems—A Review. Energies 2022, 15, 5534. [Google Scholar] [CrossRef]
- Vijayan, D.; Aziz, I. Adaptive Hierarchical Density-Based Spatial Clustering Algorithm for Streaming Applications. Telecom 2023, 4, 1–14. [Google Scholar] [CrossRef]
- Mazzei, D.; Ramjattan, R. Machine Learning for Industry 4.0: A Systematic Review Using Deep Learning-Based Topic Modelling. Sensors 2022, 22, 8641. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Guo, J.; Yuan, F.; Qiu, Y.; Wang, P.; Cheng, F.; Gu, Y. Enhancement Methods of Hydropower Unit Monitoring Data Quality Based on the Hierarchical Density-Based Spatial Clustering of Applications with a Noise–Wasserstein Slim Generative Adversarial Imputation Network with a Gradient Penalty. Sensors 2024, 24, 118. [Google Scholar] [CrossRef] [PubMed]
- Stewart, G.; Al-Khassaweneh, M. An Implementation of the HDBSCAN* Clustering Algorithm. Appl. Sci. 2022, 12, 2405. [Google Scholar] [CrossRef]
- Tabianan, K.; Velu, S.; Ravi, V. K-Means Clustering Approach for Intelligent Customer Segmentation Using Customer Purchase Behavior Data. Sustainability 2022, 14, 7243. [Google Scholar] [CrossRef]
- John, J.M.; Shobayo, O.; Ogunleye, B. An Exploration of Clustering Algorithms for Customer Segmentation in the UK Retail Market. Analytics 2023, 2, 809–823. [Google Scholar] [CrossRef]
- Trassinelli, M.; Ciccodicola, P. Mean Shift Cluster Recognition Method Implementation in the Nested Sampling Algorithm. Entropy 2020, 22, 185. [Google Scholar] [CrossRef]
- Sokhonn, L.; Park, Y.-S.; Lee, M.-K. Hierarchical Clustering via Single and Complete Linkage Using Fully Homomorphic Encryption. Sensors 2024, 24, 4826. [Google Scholar] [CrossRef]
- Doğan, Y.; Dalkılıç, F.; Kut, A.; Kara, K.C.; Takazoğlu, U. A Novel Stream Mining Approach as Stream-Cluster Feature Tree Algorithm: A Case Study in Turkish Job Postings. Appl. Sci. 2022, 12, 7893. [Google Scholar] [CrossRef]
- Li, X.; Zhang, P.; Zhu, G. DBSCAN Clustering Algorithms for Non-Uniform Density Data and Its Application in Urban Rail Passenger Aggregation Distribution. Energies 2019, 12, 3722. [Google Scholar] [CrossRef]
- Available online: https://scikit-learn.org/ (accessed on 7 January 2025).
- Available online: https://matplotlib.org/ (accessed on 7 January 2025).
- Available online: https://www.fronius.com/en/welding-technology/product-list?filter=11409 (accessed on 7 January 2025).
- González-González, C.; Los Santos-Ortega, J.; Fraile-García, E.; Ferreiro-Cabello, J. Environmental and Economic Analyses of TIG, MIG, MAG and SMAW Welding Processes. Metals 2023, 13, 1094. [Google Scholar] [CrossRef]
- Nowak-Brzezińska, A.; Gaibei, I. How the Outliers Influence the Quality of Clustering? Entropy 2022, 24, 917. [Google Scholar] [CrossRef] [PubMed]
- Kossakov, M.; Mukasheva, A.; Balbayev, G.; Seidazimov, S.; Mukammejanova, D.; Sydybayeva, M. Quantitative Comparison of Machine Learning Clustering Methods for Tuberculosis Data Analysis. Eng. Proc. 2024, 60, 20. [Google Scholar] [CrossRef]
- Available online: https://hdbscan.readthedocs.io/en/latest/how_hdbscan_works.html (accessed on 7 January 2025).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blachowicz, T.; Wylezek, J.; Sokol, Z.; Bondel, M. Real-Time Analysis of Industrial Data Using the Unsupervised Hierarchical Density-Based Spatial Clustering of Applications with Noise Method in Monitoring the Welding Process in a Robotic Cell. Information 2025, 16, 79. https://doi.org/10.3390/info16020079
Blachowicz T, Wylezek J, Sokol Z, Bondel M. Real-Time Analysis of Industrial Data Using the Unsupervised Hierarchical Density-Based Spatial Clustering of Applications with Noise Method in Monitoring the Welding Process in a Robotic Cell. Information. 2025; 16(2):79. https://doi.org/10.3390/info16020079
Chicago/Turabian StyleBlachowicz, Tomasz, Jacek Wylezek, Zbigniew Sokol, and Marcin Bondel. 2025. "Real-Time Analysis of Industrial Data Using the Unsupervised Hierarchical Density-Based Spatial Clustering of Applications with Noise Method in Monitoring the Welding Process in a Robotic Cell" Information 16, no. 2: 79. https://doi.org/10.3390/info16020079
APA StyleBlachowicz, T., Wylezek, J., Sokol, Z., & Bondel, M. (2025). Real-Time Analysis of Industrial Data Using the Unsupervised Hierarchical Density-Based Spatial Clustering of Applications with Noise Method in Monitoring the Welding Process in a Robotic Cell. Information, 16(2), 79. https://doi.org/10.3390/info16020079