Determinants of ChatGPT Adoption Intention in Higher Education: Expanding on TAM with the Mediating Roles of Trust and Risk
Abstract
:1. Introduction
2. Literature Review
2.1. AI and ChatGPT Adoption in Education
2.2. Technology Adoption Models in Higher Education
2.2.1. ChatGPT Adoption and Awareness: The Case of the TAM Model
2.2.2. Expanding on the TAM: The Mediating Roles of Risk and Trust
3. Research Methodology
3.1. Conceptual Model and Rationale
3.2. Data Collection and Sampling
3.3. Measurement Scales
3.4. Sample Profile
4. Data Analysis and Results
4.1. Common Method Bias
4.2. Measurement Model
4.3. Structural Model
4.3.1. Mediation Analysis
4.3.2. Multi-Group Analysis (MGA)
5. Discussion
6. Practical Implications
7. Conclusions, Limitations and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Perceived Ease of Use (PE) | ||
PE1 | ChatGPT is user-friendly and easy to adapt to. | Muhammad Farrukh Shahzad et al. [7] |
PE2 | For my studies, accessing ChatGPT is straightforward. | |
PE3 | ChatGPT is easy to use and understand. | |
PE4 | Acquiring study-related information via ChatGPT is simple. | |
PE5 | Using ChatGPT simplifies completing tasks and finding answers to questions. | |
PE6 | I feel that the skills required to use ChatGPT are basic. (deleted) | |
Perceived Usefulness (PUSE) | ||
PU1 | I believe that using ChatGPT improves my learning experience. | Muhammad Farrukh Shahzad et al. [7] |
PU2 | ChatGPT meets my questions and expectations with effective answers. | |
PU3 | ChatGPT helps me increase the quality and effectiveness of my learning. | |
PU4 | ChatGPT supports me in all of my academic work. (deleted) | |
Perceived Intelligence (PI) | ||
PI1 | ChatGPT can teach and provide sensible answers. | Muhammad Farrukh Shahzad et al. [7] |
PI2 | I believe ChatGPT is intelligent, similar to a teacher in a classroom. | |
PI3 | ChatGPT is knowledgeable enough to answer my questions accurately. | |
Perceived Trust (PT) | ||
PT1 | I trust that all activities I perform on ChatGPT will be confidential and secure. | Muhammad Farrukh Shahzad et al. [7] |
PT2 | I feel that ChatGPT would maintain the privacy of my personal data. | |
PT3 | I believe that ChatGPT will prevent unauthorized access to my personal information. | |
PT4 | I believe using ChatGPT for interaction is sufficiently secure. (deleted) | |
Perceived Risk (PR) | ||
PR1 | I could receive a grade penalty for plagiarism if I use ChatGPT to complete assessments. | Chung Yee Lai et al. [46] |
PR2 | If I use ChatGPT to complete assessments, I would likely be caught. | |
PR3 | I consider the negative consequences when I use ChatGPT. | |
ChatGPT Adoption Intention (CGPTAI) | ||
CGPTAI1 | If permitted by my university, I intend to use ChatGPT for my studies and exams in the future. | Chung Yee Lai et al. [46] and Muhammad Farrukh Shahzad et al. [7] |
CGPTAI2 | I plan to continue using ChatGPT to get answers to my study-related questions. | |
CGPTAI3 | I feel that I will continue to use ChatGPT for academic purposes moving forward. |
References
- Zhang, X.; Zhang, P.; Shen, Y.; Liu, M.; Wang, Q.; Gašević, D.; Fan, Y. A Systematic Literature Review of Empirical Research on Applying Generative Artificial Intelligence in Education. Front. Digit. Educ. 2024, 1, 223–245. [Google Scholar] [CrossRef]
- García-López, I.M.; González González, C.S.; Ramírez-Montoya, M.-S.; Molina-Espinosa, J.-M. Challenges of implementing ChatGPT on education: Systematic literature review. Int. J. Educ. Res. Open 2025, 8, 100401. [Google Scholar] [CrossRef]
- Al-kfairy, M. Factors Impacting the Adoption and Acceptance of ChatGPT in Educational Settings: A Narrative Review of Empirical Studies. ASI 2024, 7, 110. [Google Scholar] [CrossRef]
- Fui-Hoon Nah, F.; Zheng, R.; Cai, J.; Siau, K.; Chen, L. Generative AI and ChatGPT: Applications, challenges, and AI-human collaboration. J. Inf. Technol. Case Appl. Res. 2023, 25, 277–304. [Google Scholar] [CrossRef]
- Lo, C.K.; Hew, K.F.; Jong, M.S. The influence of ChatGPT on student engagement: A systematic review and future research agenda. Comput. Educ. 2024, 219, 105100. [Google Scholar] [CrossRef]
- Shahzad, M.F.; Xu, S.; Zahid, H. Exploring the impact of generative AI-based technologies on learning performance through self-efficacy, fairness & ethics, creativity, and trust in higher education. Educ. Inf. Technol. 2024, 1–26. [Google Scholar] [CrossRef]
- Shahzad, M.F.; Xu, S.; Javed, I. ChatGPT awareness, acceptance, and adoption in higher education: The role of trust as a cornerstone. Int. J. Educ. Technol. High. Educ. 2024, 21, 46. [Google Scholar] [CrossRef]
- Ivanov, S.; Soliman, M.; Tuomi, A.; Alkathiri, N.A.; Al-Alawi, A.N. Drivers of generative AI adoption in higher education through the lens of the Theory of Planned Behaviour. Technol. Soc. 2024, 77, 102521. [Google Scholar] [CrossRef]
- Luo (Jess), J. A critical review of GenAI policies in higher education assessment: A call to reconsider the “originality” of students’ work. Assess. Eval. High. Educ. 2024, 49, 651–664. [Google Scholar] [CrossRef]
- Law, L. Application of generative artificial intelligence (GenAI) in language teaching and learning: A scoping literature review. Comput. Educ. Open 2024, 6, 100174. [Google Scholar] [CrossRef]
- Ching, Y.-H.; Hsu, Y.-C.; Hung, A. Introduction to the Special Section on Integrating Generative AI in Education. TechTrends 2024, 68, 771–772. [Google Scholar] [CrossRef]
- Karpouzis, K.; Pantazatos, D.; Taouki, J.; Meli, K. Tailoring Education with GenAI: A New Horizon in Lesson Planning 2024. arXiv 2024. [Google Scholar] [CrossRef]
- Chiu, T.K.F. The impact of Generative AI (GenAI) on practices, policies and research direction in education: A case of ChatGPT and Midjourney. Interact. Learn. Environ. 2023, 32, 6187–6203. [Google Scholar] [CrossRef]
- Baig, M.I.; Yadegaridehkordi, E. ChatGPT in the higher education: A systematic literature review and research challenges. Int. J. Educ. Res. 2024, 127, 102411. [Google Scholar] [CrossRef]
- Ayinde, L.; Wibowo, M.P.; Ravuri, B.; Emdad, F.B. ChatGPT as an important tool in organizational management: A review of the literature. Bus. Inf. Rev. 2023, 40, 137–149. [Google Scholar] [CrossRef]
- Lee, Y.-F.; Hwang, G.-J.; Chen, P.-Y. Impacts of an AI-based chabot on college students’ after-class review, academic performance, self-efficacy, learning attitude, and motivation. Educ. Tech. Res. Dev. 2022, 70, 1843–1865. [Google Scholar] [CrossRef]
- Oviedo-Trespalacios, O.; Peden, A.E.; Cole-Hunter, T.; Costantini, A.; Haghani, M.; Rod, J.E.; Kelly, S.; Torkamaan, H.; Tariq, A.; David Albert Newton, J.; et al. The risks of using ChatGPT to obtain common safety-related information and advice. Saf. Sci. 2023, 167, 106244. [Google Scholar] [CrossRef]
- Tiwari, C.K.; Bhat, M.A.; Khan, S.T.; Subramaniam, R.; Khan, M.A.I. What drives students toward ChatGPT? An investigation of the factors influencing adoption and usage of ChatGPT. ITSE 2024, 21, 333–355. [Google Scholar] [CrossRef]
- Bin-Nashwan, S.A.; Sadallah, M.; Bouteraa, M. Use of ChatGPT in academia: Academic integrity hangs in the balance. Technol. Soc. 2023, 75, 102370. [Google Scholar] [CrossRef]
- Shal, T.; Ghamrawi, N.; Naccache, H. Leadership styles and AI acceptance in academic libraries in higher education. J. Acad. Librariansh. 2024, 50, 102849. [Google Scholar] [CrossRef]
- Dahri, N.A.; Yahaya, N.; Al-Rahmi, W.M.; Aldraiweesh, A.; Alturki, U.; Almutairy, S.; Shutaleva, A.; Soomro, R.B. Extended TAM based acceptance of AI-Powered ChatGPT for supporting metacognitive self-regulated learning in education: A mixed-methods study. Heliyon 2024, 10, e29317. [Google Scholar] [CrossRef] [PubMed]
- Al Darayseh, A. Acceptance of artificial intelligence in teaching science: Science teachers’ perspective. Comput. Educ. Artif. Intell. 2023, 4, 100132. [Google Scholar] [CrossRef]
- Zhang, C.; Schießl, J.; Plößl, L.; Hofmann, F.; Gläser-Zikuda, M. Acceptance of artificial intelligence among pre-service teachers: A multigroup analysis. Int. J. Educ. Technol. High. Educ. 2023, 20, 49. [Google Scholar] [CrossRef]
- Marangunić, N.; Granić, A. Technology acceptance model: A literature review from 1986 to 2013. Univ. Access Inf. Soc. 2015, 14, 81–95. [Google Scholar] [CrossRef]
- The Technology Acceptance Model: 30 Years of TAM | SpringerLink. Available online: https://link.springer.com/book/10.1007/978-3-030-45274-2 (accessed on 7 December 2024).
- Abdalla, R.A.M. Examining awareness, social influence, and perceived enjoyment in the TAM framework as determinants of ChatGPT. Personalization as a moderator. J. Open Innov. Technol. Mark. Complex. 2024, 10, 100327. [Google Scholar] [CrossRef]
- Foroughi, B.; Iranmanesh, M.; Ghobakhloo, M.; Senali, M.G.; Annamalai, N.; Naghmeh-Abbaspour, B.; Rejeb, A. Determinants of ChatGPT adoption among students in higher education: The moderating effect of trust. Electron. Libr. 2024, 43, 1–21. [Google Scholar] [CrossRef]
- Cambra-Fierro, J.J.; Blasco, M.F.; López-Pérez, M.-E.E.; Trifu, A. ChatGPT adoption and its influence on faculty well-being: An empirical research in higher education. Educ. Inf. Technol. 2024, 1–22. [Google Scholar] [CrossRef]
- Shahzad, M.F.; Xu, S.; Asif, M. Factors affecting generative artificial intelligence, such as ChatGPT, use in higher education: An application of technology acceptance model. Br. Educ. Res. J. 2024, berj.4084. [Google Scholar] [CrossRef]
- Camilleri, M.A. Factors affecting performance expectancy and intentions to use ChatGPT: Using SmartPLS to advance an information technology acceptance framework. Technol. Forecast. Soc. Chang. 2024, 201, 123247. [Google Scholar] [CrossRef]
- Niloy, A.C.; Hafiz, R.; Hossain, B.M.; Gulmeher, F.; Sultana, N.; Islam, K.F.; Bushra, F.; Islam, S.; Hoque, S.I.; Rahman, M.; et al. AI chatbots: A disguised enemy for academic integrity? Int. J. Educ. Res. Open 2024, 7, 100396. [Google Scholar] [CrossRef]
- Budhathoki, T.; Zirar, A.; Njoya, E.T.; Timsina, A. ChatGPT adoption and anxiety: A cross-country analysis utilising the unified theory of acceptance and use of technology (UTAUT). Stud. High. Educ. 2024, 49, 831–846. [Google Scholar] [CrossRef]
- Sobaih, A.E.E.; Elshaer, I.A.; Hasanein, A.M. Examining Students’ Acceptance and Use of ChatGPT in Saudi Arabian Higher Education. Eur. J. Investig. Health Psychol. Educ. 2024, 14, 709–721. [Google Scholar] [CrossRef]
- Guillén-Gámez, F.D.; Sánchez-Vega, E.; Colomo-Magaña, E.; Sánchez-Rivas, E. Incident factors in the use of ChatGPT and dishonest practices as a system of academic plagiarism: The creation of a PLS-SEM model. Res. Pract. Technol. Enhanc. Learn. 2024, 20, 028. [Google Scholar] [CrossRef]
- Habibi, A.; Muhaimin, M.; Danibao, B.K.; Wibowo, Y.G.; Wahyuni, S.; Octavia, A. ChatGPT in higher education learning: Acceptance and use. Comput. Educ. Artif. Intell. 2023, 5, 100190. [Google Scholar] [CrossRef]
- Acquah, B.Y.S.; Arthur, F.; Salifu, I.; Quayson, E.; Nortey, S.A. Preservice teachers’ behavioural intention to use artificial intelligence in lesson planning: A dual-staged PLS-SEM-ANN approach. Comput. Educ. Artif. Intell. 2024, 7, 100307. [Google Scholar] [CrossRef]
- Hsu, W.-L.; Silalahi, A.D.K. Exploring the paradoxical use of ChatGPT in education: Analyzing benefits, risks, and coping strategies through integrated UTAUT and PMT theories using a hybrid approach of SEM and fsQCA. Comput. Educ. Artif. Intell. 2024, 7, 100329. [Google Scholar] [CrossRef]
- Acosta-Enriquez, B.G.; Arbulú Pérez Vargas, C.G.; Huamaní Jordan, O.; Arbulú Ballesteros, M.A.; Paredes Morales, A.E. Exploring attitudes toward ChatGPT among college students: An empirical analysis of cognitive, affective, and behavioral components using path analysis. Comput. Educ. Artif. Intell. 2024, 7, 100320. [Google Scholar] [CrossRef]
- Strzelecki, A. Students’ Acceptance of ChatGPT in Higher Education: An Extended Unified Theory of Acceptance and Use of Technology. Innov. High. Educ. 2024, 49, 223–245. [Google Scholar] [CrossRef]
- Albayati, H. Investigating undergraduate students’ perceptions and awareness of using ChatGPT as a regular assistance tool: A user acceptance perspective study. Comput. Educ. Artif. Intell. 2024, 6, 100203. [Google Scholar] [CrossRef]
- Sabraz Nawaz, S.; Fathima Sanjeetha, M.B.; Al Murshidi, G.; Mohamed Riyath, M.I.; Mat Yamin, F.B.; Mohamed, R. Acceptance of ChatGPT by undergraduates in Sri Lanka: A hybrid approach of SEM-ANN. Interact. Technol. Smart Educ. 2024, 21, 546–570. [Google Scholar] [CrossRef]
- Surya Bahadur, G.C.; Bhandari, P.; Gurung, S.K.; Srivastava, E.; Ojha, D.; Dhungana, B.R. Examining the role of social influence, learning value and habit on students’ intention to use ChatGPT: The moderating effect of information accuracy in the UTAUT2 model. Cogent Educ. 2024, 11, 2403287. [Google Scholar] [CrossRef]
- Ofem, U.J.; Owan, V.J.; Iyam, M.A.; Udeh, M.I.; Anake, P.M.; Ovat, S.V. Students’ perceptions, attitudes and utilisation of ChatGPT for academic dishonesty: Multigroup analyses via PLS-SEM. Educ. Inf. Technol. 2024, 159–187. [Google Scholar] [CrossRef]
- Eppler, M.; Ganjavi, C.; Ramacciotti, L.S.; Piazza, P.; Rodler, S.; Checcucci, E.; Gomez Rivas, J.; Kowalewski, K.F.; Belenchón, I.R.; Puliatti, S.; et al. Awareness and Use of ChatGPT and Large Language Models: A Prospective Cross-sectional Global Survey in Urology. Eur. Urol. 2024, 85, 146–153. [Google Scholar] [CrossRef]
- Fu, C.-J.; Silalahi, A.D.K.; Huang, S.-C.; Phuong, D.T.T.; Eunike, I.J.; Yu, Z.-H. The (Un)Knowledgeable, the (Un)Skilled? Undertaking Chat-GPT Users’ Benefit-Risk-Coping Paradox in Higher Education Focusing on an Integrated, UTAUT and PMT. Int. J. Hum.–Comput. Interact. 2024, 1–31. [Google Scholar] [CrossRef]
- Lai, C.Y.; Cheung, K.Y.; Chan, C.S.; Law, K.K. Integrating the adapted UTAUT model with moral obligation, trust and perceived risk to predict ChatGPT adoption for assessment support: A survey with students. Comput. Educ. Artif. Intell. 2024, 6, 100246. [Google Scholar] [CrossRef]
- Al Murshidi, G.; Shulgina, G.; Kapuza, A.; Costley, J. How understanding the limitations and risks of using ChatGPT can contribute to willingness to use. Smart Learn. Environ. 2024, 11, 36. [Google Scholar] [CrossRef]
- Choi, S.; Jang, Y.; Kim, H. Influence of Pedagogical Beliefs and Perceived Trust on Teachers’ Acceptance of Educational Artificial Intelligence Tools. Int. J. Hum.–Comput. Interact. 2023, 39, 910–922. [Google Scholar] [CrossRef]
- Maheshwari, G. Factors influencing students’ intention to adopt and use ChatGPT in higher education: A study in the Vietnamese context. Educ. Inf. Technol. 2024, 29, 12167–12195. [Google Scholar] [CrossRef]
- Almogren, A.S.; Al-Rahmi, W.M.; Dahri, N.A. Exploring factors influencing the acceptance of ChatGPT in higher education: A smart education perspective. Heliyon 2024, 10, e31887. [Google Scholar] [CrossRef]
- Bhaskar, P.; Misra, P.; Chopra, G. Shall I use ChatGPT? A study on perceived trust and perceived risk towards ChatGPT usage by teachers at higher education institutions. Int. J. Inf. Learn. Technol. 2024, 41, 428–447. [Google Scholar] [CrossRef]
- Amin, M.A.; Kim, Y.S.; Noh, M. Unveiling the drivers of ChatGPT utilization in higher education sectors: The direct role of perceived knowledge and the mediating role of trust in ChatGPT. Educ. Inf. Technol. 2024, 9–37. [Google Scholar] [CrossRef]
- Gefen, D.; Karahanna, E.; Straub, D.W. Trust and TAM in Online Shopping: An Integrated Model. MIS Q. 2003, 27, 51–90. [Google Scholar] [CrossRef]
- Venkatesh, V.; Bala, H. Technology Acceptance Model 3 and a Research Agenda on Interventions. Decis. Sci. 2008, 39, 273–315. [Google Scholar] [CrossRef]
- Chuttur, M. Overview of the Technology Acceptance Model: Origins, Developments and Future Directions. All Sprouts Content 2009, 9, 290. [Google Scholar]
- Venkatesh, V.; Morris, M.G.; Davis, G.B.; Davis, F.D. User acceptance of information technology: Toward a unified view. MIS Q. 2003, 27, 425–478. [Google Scholar] [CrossRef]
- Polyportis, A. A longitudinal study on artificial intelligence adoption: Understanding the drivers of ChatGPT usage behavior change in higher education. Front. Artif. Intell. 2024, 6, 1324398. [Google Scholar] [CrossRef] [PubMed]
- Jo, H. From concerns to benefits: A comprehensive study of ChatGPT usage in education. Int. J. Educ. Technol. High. Educ. 2024, 21, 35. [Google Scholar] [CrossRef]
- Kesmodel, U.S. Cross-sectional studies—What are they good for? Acta Obstet. Gynecol. Scand. 2018, 97, 388–393. [Google Scholar] [CrossRef]
- Olsen, C.; St George, D.M.M. Cross-sectional study design and data analysis. Coll. Entr. Exam. Board 2004, 26, 2006. [Google Scholar]
- Rahman, M.M. Sample size determination for survey research and non-probability sampling techniques: A review and set of recommendations. J. Entrep. Bus. Econ. 2023, 11, 42–62. [Google Scholar]
- Rahman, M.M.; Tabash, M.I.; Salamzadeh, A.; Abduli, S.; Rahaman, M.S. Sampling techniques (probability) for quantitative social science researchers: A conceptual guidelines with examples. Seeu Rev. 2022, 17, 42–51. [Google Scholar] [CrossRef]
- Sandelowski, M. Combining qualitative and quantitative sampling, data collection, and analysis techniques in mixed-method studies. Res. Nurs. Health 2000, 23, 246–255. [Google Scholar] [CrossRef]
- Spector, P.E. Do not cross me: Optimizing the use of cross-sectional designs. J. Bus. Psychol. 2019, 34, 125–137. [Google Scholar] [CrossRef]
- Koyuncu, N.; Kadilar, C. Ratio and product estimators in stratified random sampling. J. Stat. Plan. Inference 2009, 139, 2552–2558. [Google Scholar] [CrossRef]
- Lynn, P. The Advantage and Disadvantage of Implicitly Stratified Sampling. Methods Data Anal. A J. Quant. Methods Surv. Methodol. (Mda) 2019, 13, 253–266. [Google Scholar] [CrossRef]
- Noy, C. Sampling knowledge: The hermeneutics of snowball sampling in qualitative research. Int. J. Soc. Res. Methodol. 2008, 11, 327–344. [Google Scholar] [CrossRef]
- Naderifar, M.; Goli, H.; Ghaljaie, F. Snowball sampling: A purposeful method of sampling in qualitative research. Strides Dev. Med. Educ. 2017, 14, 1–6. [Google Scholar] [CrossRef]
- Goodman, L.A. Snowball sampling. Ann. Math. Stat. 1961, 32, 148–170. [Google Scholar] [CrossRef]
- Van Zyl, L.E.; Ten Klooster, P.M. Exploratory Structural Equation Modeling: Practical Guidelines and Tutorial With a Convenient Online Tool for Mplus. Front. Psychiatry 2022, 12, 795672. [Google Scholar] [CrossRef] [PubMed]
- Wagner, R.; Grimm, M.S. Empirical Validation of the 10-Times Rule for SEM. In State of the Art in Partial Least Squares Structural Equation Modeling (PLS-SEM); Radomir, L., Ciornea, R., Wang, H., Liu, Y., Ringle, C.M., Sarstedt, M., Eds.; Springer Proceedings in Business and Economics; Springer International Publishing: Cham, Switzerland, 2023; pp. 3–7. ISBN 978-3-031-34588-3. [Google Scholar] [CrossRef]
- Applied Psychometrics: Sample Size and Sample Power Considerations in Factor Analysis (EFA, CFA) and SEM in General. Available online: https://www.scirp.org/journal/paperinformation?paperid=86856 (accessed on 8 December 2024).
- Memon, M.A.; Ting, H.; Cheah, J.-H.; Thurasamy, R.; Chuah, F.; Cham, T.H. Sample Size for Survey Research: Review and Recommendations. JASEM 2020, 4, i–xx. [Google Scholar] [CrossRef] [PubMed]
- Kock, N.; Hadaya, P. Minimum sample size estimation in PLS-SEM: The inverse square root and gamma-exponential methods. Inf. Syst. J. 2018, 28, 227–261. [Google Scholar] [CrossRef]
- Nitzl, C.; Roldan, J.L.; Cepeda, G. Mediation analysis in partial least squares path modeling: Helping researchers discuss more sophisticated models. Ind. Manag. Data Syst. 2016, 116, 1849–1864. [Google Scholar] [CrossRef]
- Chin, W.W. The partial least squares approach to structural equation modeling. Mod. Methods Bus. Res. 1998, 295, 295–336. [Google Scholar]
- Fornell, C.; Larcker, D.F. Evaluating structural equation models with unobservable variables and measurement error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Sarstedt, M.; Henseler, J.; Ringle, C.M. Multigroup analysis in partial least squares (PLS) path modeling: Alternative methods and empirical results. In Measurement and Research Methods in International Marketing; Emerald Group Publishing Limited: Bradford, UK, 2011; pp. 195–218. ISBN 1474-7979. [Google Scholar]
- Matthews, L. Applying multigroup analysis in PLS-SEM: A step-by-step process. In Partial Least Squares Path Modeling: Basic Concepts, Methodological Issues and Applications; Springer: Cham, Switzerland, 2017; pp. 219–243. [Google Scholar]
- Cheah, J.-H.; Amaro, S.; Roldán, J.L. Multigroup analysis of more than two groups in PLS-SEM: A review, illustration, and recommendations. J. Bus. Res. 2023, 156, 113539. [Google Scholar] [CrossRef]
- Wong, K.K.-K. Partial least squares structural equation modeling (PLS-SEM) techniques using SmartPLS. Mark. Bull. 2013, 24, 1–32. [Google Scholar]
- Podsakoff, P.M.; MacKenzie, S.B.; Lee, J.-Y.; Podsakoff, N.P. Common method biases in behavioral research: A critical review of the literature and recommended remedies. J. Appl. Psychol. 2003, 88, 879. [Google Scholar] [CrossRef] [PubMed]
- Podsakoff, P.M.; MacKenzie, S.B.; Podsakoff, N.P. Sources of method bias in social science research and recommendations on how to control it. Annu. Rev. Psychol. 2012, 63, 539–569. [Google Scholar] [CrossRef] [PubMed]
- Hair, J.F.; Ringle, C.M.; Sarstedt, M. PLS-SEM: Indeed a silver bullet. J. Mark. Theory Pract. 2011, 19, 139–152. [Google Scholar] [CrossRef]
- Vinzi, V.E.; Chin, W.W.; Henseler, J.; Wang, H. Handbook of Partial Least Squares; Springer: Berlin/Heidelberg, Germany, 2010; Volume 201. [Google Scholar]
- Hair, J.F.; Hult, G.T.M.; Ringle, C.M.; Sarstedt, M.; Danks, N.P.; Ray, S. An Introduction to Structural Equation Modeling. In Partial Least Squares Structural Equation Modeling (PLS-SEM) Using R; Classroom Companion: Business; Springer International Publishing: Cham, Switzerland, 2021; pp. 1–29. ISBN 978-3-030-80518-0. [Google Scholar] [CrossRef]
- Gefen, D.; Straub, D. A practical guide to factorial validity using PLS-Graph: Tutorial and annotated example. Commun. Assoc. Inf. Syst. 2005, 16, 5. [Google Scholar] [CrossRef]
- Wasko, M.M.; Faraj, S. Why should I share? Examining social capital and knowledge contribution in electronic networks of practice. MIS Q. 2005, 29, 35–57. [Google Scholar] [CrossRef]
- Hair, J.; Alamer, A. Partial Least Squares Structural Equation Modeling (PLS-SEM) in second language and education research: Guidelines using an applied example. Res. Methods Appl. Linguist. 2022, 1, 100027. [Google Scholar] [CrossRef]
- Joseph, F.; Hult, G.T.M.; Ringle, C.M.; Sarstedt, M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM); SAGE Publications, Incorporated: New York, NY, USA, 2022; ISBN 1-5443-9640-6. [Google Scholar]
- Reichenheim, M.E.; Hökerberg, Y.H.M.; Moraes, C.L. Assessing construct structural validity of epidemiological measurement tools: A seven-step roadmap. Cad. De Saúde Pública 2014, 30, 927–939. [Google Scholar] [CrossRef] [PubMed]
- Stevens, J. Applied Multivariate Statistics for the Social Sciences; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 2002; Volume 4. [Google Scholar]
- Henseler, J.; Hubona, G.; Ray, P.A. Using PLS path modeling in new technology research: Updated guidelines. Ind. Manag. Data Syst. 2016, 116, 2–20. [Google Scholar] [CrossRef]
- Henseler, J.; Ringle, C.M.; Sarstedt, M. A new criterion for assessing discriminant validity in variance-based structural equation modeling. J. Acad. Mark. Sci. 2015, 43, 115–135. [Google Scholar] [CrossRef]
- Hair, J.F., Jr.; Sarstedt, M.; Hopkins, L.; Kuppelwieser, V.G. Partial least squares structural equation modeling (PLS-SEM): An emerging tool in business research. Eur. Bus. Rev. 2014, 26, 106–121. [Google Scholar] [CrossRef]
- Preacher, K.J.; Hayes, A.F. Assessing Mediation in Communication Research. In The Sage Sourcebook of Advanced Data Analysis Methods for Communication; Sage: Thousand Oaks, CA, USA, 2008. [Google Scholar]
- Streukens, S.; Leroi-Werelds, S. Bootstrapping and PLS-SEM: A step-by-step guide to get more out of your bootstrap results. Eur. Manag. J. 2016, 34, 618–632. [Google Scholar] [CrossRef]
- Sova, R.; Tudor, C.; Tartavulea, C.V.; Dieaconescu, R.I. Artificial Intelligence Tool Adoption in Higher Education: A Structural Equation Modeling Approach to Understanding Impact Factors among Economics Students. Electronics 2024, 13, 3632. [Google Scholar] [CrossRef]
- Niloy, A.C.; Bari, M.A.; Sultana, J.; Chowdhury, R.; Raisa, F.M.; Islam, A.; Mahmud, S.; Jahan, I.; Sarkar, M.; Akter, S.; et al. Why do students use ChatGPT? Answering through a triangulation approach. Comput. Educ. Artif. Intell. 2024, 6, 100208. [Google Scholar] [CrossRef]
- Valle, N.N.; Kilat, R.V.; Lim, J.; General, E.; Dela Cruz, J.; Colina, S.J.; Batican, I.; Valle, L. Modeling learners’ behavioral intention toward using artificial intelligence in education. Social Sci. Humanit. Open 2024, 10, 101167. [Google Scholar] [CrossRef]
- Ali, F.; Yasar, B.; Ali, L.; Dogan, S. Antecedents and consequences of travelers’ trust towards personalized travel recommendations offered by ChatGPT. Int. J. Hosp. Manag. 2023, 114, 103588. [Google Scholar] [CrossRef]
Frequency (N) | Percentage | ||
---|---|---|---|
Gender | Female | 212 | 48.7% |
Male | 223 | 51.3% | |
Age | 18–25 | 215 | 49.4% |
26–30 | 131 | 30.1% | |
31–40 | 89 | 20.5% | |
Education | Bachelor’s degree | 157 | 36.1% |
Master’s degree | 230 | 52.9% | |
PhD candidate | 23 | 5.3% | |
Doctoral | 25 | 5.7% | |
Prior Experience with AI tools (e.g., ChatGPT, Google Assistant,andSiri) | No experience | 68 | 15.6% |
Minimal experience | 122 | 28.0% | |
Moderate experience | 149 | 34.3% | |
Extensive experience | 96 | 22.1% | |
Familiarity with ChatGPT | Not at all familiar | 108 | 24.8% |
Not very familiar | 142 | 32.6% | |
Somewhat familiar | 97 | 22.3% | |
Very familiar | 88 | 20.2% | |
Frequency of ChatGPT Use for Academic Purposes | Daily | 145 | 33.3% |
Weekly | 27 | 6.2% | |
Monthly | 97 | 22.3% | |
Rarely | 88 | 20.2% | |
Never | 78 | 17.9% | |
Primary Purpose for Using ChatGPT in Academia | Research assistance | 145 | 33.3% |
Writing and editing support | 27 | 6.2% | |
Learning new concepts or skills | 97 | 22.3% | |
Problem-solving and study aid | 88 | 20.2% | |
Other | 78 | 17.9% |
Construct | Items | Factor Loadings | Cronbach’s Alpha | rho_A | CR | AVE |
---|---|---|---|---|---|---|
ChatGPT Adoption Intention | CGPTAI1 | 0.784 | 0.779 | 0.799 | 0.871 | 0.694 |
CGPTAI2 | 0.901 | |||||
CGPTAI3 | 0.809 | |||||
Perceived Ease of Use | PE1 | 0.820 | 0.846 | 0.853 | 0.890 | 0.619 |
PE2 | 0.781 | |||||
PE3 | 0.806 | |||||
PE4 | 0.746 | |||||
PE5 | 0.778 | |||||
Perceived Intelligence | PI1 | 0.924 | 0.871 | 0.873 | 0.921 | 0.796 |
PI2 | 0.907 | |||||
PI3 | 0.844 | |||||
Perceived Risk | PR1 | 0.897 | 0.893 | 0.899 | 0.933 | 0.824 |
PR2 | 0.921 | |||||
PR3 | 0.904 | |||||
Perceived Trust | PT1 | 0.908 | 0.924 | 0.924 | 0.952 | 0.868 |
PT2 | 0.941 | |||||
PT3 | 0.946 | |||||
Perceived Usefulness | PUSE1 | 0.623 | 0.518 | 0.532 | 0.755 | 0.509 |
PUSE2 | 0.742 | |||||
PUSE3 | 0.766 |
CGPTAI | PE | PI | PR | PT | PUSE | |
---|---|---|---|---|---|---|
CGPTAI | ||||||
PE | 0.693 | |||||
PI | 0.631 | 0.685 | ||||
PR | 0.570 | 0.390 | 0.340 | |||
PT | 0.598 | 0.508 | 0.354 | 0.587 | ||
PUSE | 0.557 | 0.684 | 0.553 | 0.475 | 0.539 |
CGPTAI | PE | PI | PR | PT | PUSE | |
---|---|---|---|---|---|---|
CGPTAI | 0.833 | |||||
PE | 0.578 | 0.787 | ||||
PI | 0.527 | 0.583 | 0.892 | |||
PR | 0.482 | 0.343 | 0.303 | 0.908 | ||
PT | 0.515 | 0.454 | 0.317 | 0.532 | 0.932 | |
PUSE | 0.356 | 0.433 | 0.361 | 0.329 | 0.377 | 0.713 |
Hypothesis | Path | Coefficient (β) | SD | t-Value | p-Values | Results |
---|---|---|---|---|---|---|
H1 | PE → CGPTAI | 0.272 | 0.049 | 5.505 | 0.000 | Supported |
H2 | PI → CGPTAI | 0.239 | 0.045 | 5.278 | 0.000 | Supported |
H3 | PUSE → CGPTAI | 0.008 | 0.042 | 0.181 | 0.428 | Not Supp. |
H4a | PR → CGPTAI | 0.206 | 0.045 | 4.532 | 0.000 | Supported |
H4b | PT → CGPTAI | 0.204 | 0.044 | 4.674 | 0.000 | Supported |
Hypothesis | Direct Effects | Coeff. (β) | SD | t-Value | p-Values | Results | Mediation Type |
---|---|---|---|---|---|---|---|
PE → CGPTAI | 0.272 | 0.049 | 5.505 | 0.000 | |||
PI → CGPTAI | 0.239 | 0.045 | 5.278 | 0.000 | |||
PUSE → CGPTAI | 0.008 | 0.042 | 0.181 | 0.428 | |||
Total Effects | Coeff. (β) | SD | t-Value | p-Values | |||
PE → CGPTAI | 0.106 | 0.024 | 4.359 | 0.000 | |||
PI → CGPTAI | 0.034 | 0.020 | 1.682 | 0.046 | |||
PUSE → CGPTAI | 0.087 | 0.018 | 4.718 | 0.000 | |||
Specific Indirect Effects | Coeff. (β) | SD | t-Value | p-Values | |||
H5a | PUSE → PT → CGPTAI | 0.044 | 0.013 | 3.342 | 0.000 | Supported | Full Mediation |
H5b | PUSE → PR → CGPTAI | 0.042 | 0.013 | 3.141 | 0.001 | Supported | Full Mediation |
H6a | PE → PT → CGPTAI | 0.068 | 0.019 | 3.671 | 0.000 | Supported | Partial Mediation |
H6b | PE → PR → CGPTAI | 0.038 | 0.014 | 2.684 | 0.004 | Supported | Partial Mediation |
H7a | PI → PT → CGPTAI | 0.009 | 0.011 | 0.795 | 0.213 | Not Supp. | No Mediation |
H7b | PI → PR → CGPTAI | 0.025 | 0.015 | 1.728 | 0.042 | Supported | Partial Mediation |
Path | Group Comparison | Difference (Δβ) | p-Value |
---|---|---|---|
Significant Results | |||
PT → CGPTAI | Gender (Female vs. Male) | −0.150 | 0.048 |
PE → PR | Familiarity with ChatGPT (High vs. Low) | 0.229 | 0.010 |
PE → PR | Prior Exp. with AI Tools (High vs. Low) | 0.262 | 0.006 |
PR → CGPTAI | Prior Exp. with AI Tools (High vs. Low) | −0.175 | 0.031 |
PE → PT | Age (18–25 vs. 26–30) | 0.269 | 0.012 |
PE → PT | Age (26–30 vs. 31–40) | −0.227 | 0.042 |
PU → CGPTAI | Age (18–25 vs. 26–30) | 0.208 | 0.021 |
PU → CGPTAI | Age (26–30 vs. 31–40) | −0.247 | 0.028 |
PI → PR | Age (18–25 vs. 31–40) | 0.325 | 0.024 |
PI → PR | Age (26–30 vs. 31–40) | 0.313 | 0.034 |
PI → PT | Age (18–25 vs. 31–40) | 0.306 | 0.020 |
PI → PT | Age (26–30 vs. 31–40) | 0.386 | 0.007 |
Marginal Results | |||
PR → CGPTAI | Gender (Female vs. Male) | 0.127 | 0.080 |
PR → CGPTAI | Frequency of ChatGPT Use (High vs. Low) | −0.128 | 0.098 |
PE → CGPTAI | Prior Exp. with AI Tools (High vs. Low) | 0.131 | 0.094 |
PI → PT | Prior Exp. with AI Tools (High vs. Low) | 0.141 | 0.097 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balaskas, S.; Tsiantos, V.; Chatzifotiou, S.; Rigou, M. Determinants of ChatGPT Adoption Intention in Higher Education: Expanding on TAM with the Mediating Roles of Trust and Risk. Information 2025, 16, 82. https://doi.org/10.3390/info16020082
Balaskas S, Tsiantos V, Chatzifotiou S, Rigou M. Determinants of ChatGPT Adoption Intention in Higher Education: Expanding on TAM with the Mediating Roles of Trust and Risk. Information. 2025; 16(2):82. https://doi.org/10.3390/info16020082
Chicago/Turabian StyleBalaskas, Stefanos, Vassilios Tsiantos, Sevaste Chatzifotiou, and Maria Rigou. 2025. "Determinants of ChatGPT Adoption Intention in Higher Education: Expanding on TAM with the Mediating Roles of Trust and Risk" Information 16, no. 2: 82. https://doi.org/10.3390/info16020082
APA StyleBalaskas, S., Tsiantos, V., Chatzifotiou, S., & Rigou, M. (2025). Determinants of ChatGPT Adoption Intention in Higher Education: Expanding on TAM with the Mediating Roles of Trust and Risk. Information, 16(2), 82. https://doi.org/10.3390/info16020082