Controlled Remote State Preparation via General Pure Three-Qubit State
Abstract
:1. Introduction
2. CRSP for an Arbitrary Qubit
3. CRSP for a Two-Qubit State
- (i)
- , i.e., . In this case, using similar methods as in the real cases above, Bob can recover the desired two-qubit state both from states in Equations (37) and (38). And the probabilities are both . Similar scheme applies to the case that Charlie’s measurement result is 1. Thus the total successful probability for Alice remotely to prepare the two-qubit state at Bob’s position under the control of Charlie is
- (ii)
- . For this case, as Bob does not know the classical information of , only when Alice’s measurement result is 0, Bob can reconstruct the two-qubit state . Thus the successful probability reduces to half of (i) as .
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Bennett, C.H.; Brassard, G.; Crépeau, C.; Jozsa, R.; Peres, A.; Wootters, W.K. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosenchannels. Phys. Rev. Lett. 1993, 70, 1895–1899. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.W.; Kim, J. Quantum teleportation and Bell’s inequality using single-particle entanglement. Phys. Rev. A 2001, 63, 012305. [Google Scholar] [CrossRef]
- Kim, Y.H.; Kulik, S.P.; Shih, Y. Quantum teleportation of a polarization state with a complete Bell state measurement. Phys. Rev. Lett. 2001, 86, 1370–1373. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.D.; Hou, G.; Zhang, Y.D. Teleportation scheme of S-level quantum pure states by two-level Einstein-Podolsky-Rosen states. Phys. Rev. A 2001, 64, 012301. [Google Scholar] [CrossRef]
- Wang, X.G. Quantum teleportation of entangled coherent states. Phys. Rev. A 2001, 64, 022302. [Google Scholar] [CrossRef]
- Van Enk, S.J.; Hirota, O. Entangled coherent states: Teleportation and decoherence. Phys. Rev. A 2001, 64, 022313. [Google Scholar] [CrossRef]
- Bouwmeester, D.; Pan, J.W.; Mattle, K.; Eibl, M.; Weinfurter, H.; Weinfurter, A. Experimental quantum teleportation. Nature 1997, 390, 575–579. [Google Scholar] [CrossRef]
- Braunstein, S.L.; Kimble, H. Teleportation of continuous quantum variables. Phys. Rev. Lett. 1998, 80, 869–872. [Google Scholar] [CrossRef]
- Furusawa, A.; Srensen, J.L.; Braunstein, S.L.; Fuchs, C.A.; Kimble, H.J.; Polzik, E.S. Unconditional quantum teleportation. Science 1998, 282, 706–709. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.M.; Ren, J.G.; Yang, B.; Yi, Z.H.; Zhou, F.; Xu, X.F.; Wang, S.K.; Yang, D.; Hu, Y.F.; Jiang, S.; et al. Experimental free-space quantum teleportation. Nat. Photon. 2010, 4, 376–381. [Google Scholar] [CrossRef]
- Huang, Y.F.; Ren, X.F.; Zhang, Y.S.; Duan, L.M.; Guo, G.C. Experimental teleportation of a quantum controlled-NOT gate. Phys. Rev. Lett. 2004, 93, 240501. [Google Scholar] [CrossRef] [PubMed]
- Christian, N.; Andreas, N.; Andreas, R.; Carolin, H.; Gerhard, R.; Stephan, R. Efficient teleportation between remote single-atom quantum memories. Phys. Rev. Lett. 2013, 110, 140403. [Google Scholar] [CrossRef]
- Nilsson, J.; Stevenson, R.M.; Chan, K.H.A.; Skiba-Szymanska, J.; Lucamarini, M.; Ward, M.B.; Bennett, A.J.; Salter, C.L.; Farrer, I.; Ritchie, D.A.; et al. Quantum teleportation using a light-emitting diode. Nat. Photon. 2013, 7, 311–315. [Google Scholar] [CrossRef]
- Friis, N.; Lee, A.R.; Truong, K.; Sabin, C.; Solano, E.; Johansson, G.; Fuentes, I. Relativistic quantum teleportation with superconducting circuits. Phys. Rev. Lett. 2013, 110, 113602. [Google Scholar] [CrossRef] [PubMed]
- Lo, H.K. Classical-communication cost in distributed quantum-information processing: A generalization of quantum-communication complexity. Phys. Rev. A 2000, 62, 012313. [Google Scholar] [CrossRef]
- Bennett, C.H.; Divincenzo, D.P.; Shor, P.W.; Smolin, J.A.; Terhal, B.M.; Wootters, W.K. Remote state preparation. Phys. Rev. Lett. 2001, 87, 077902. [Google Scholar] [CrossRef] [PubMed]
- Devetak, I.; Berger, T. Low-entanglement remote state preparation. Phys. Rev. Lett. 2001, 87, 197901. [Google Scholar] [CrossRef]
- Zheng, Y.Z.; Gu, Y.J.; Guo, G.C. Remote state preparation via a non-maximally entangled channel. Chin. Phys. Lett. 2002, 19, 14–16. [Google Scholar] [CrossRef]
- Zeng, B.; Zhang, P. Remote-state preparation in higher dimension and the parallelizable manifold Sn-1. Phys. Rev. A 2002, 65, 022316. [Google Scholar] [CrossRef]
- Shi, B.S.; Tomita, A. Remote state preparation of an entangled state. J. Phys. B At. Mol. Opt. Phys. 2002, 4, 380–382. [Google Scholar] [CrossRef]
- Berry, D.W.; Sanders, B.C. Optimal remote state preparation. Phys. Rev. Lett. 2003, 90, 057901. [Google Scholar] [CrossRef] [PubMed]
- Leung, D.W.; Shor, P.W. Oblivious remote state preparation. Phys. Rev. Lett. 2003, 90, 127905. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, A.; Hashimoto, T.; Horibe, M. Remote state preparation without oblivious conditions. Phys. Rev. A 2003, 67, 052302. [Google Scholar] [CrossRef]
- Yu, C.; Song, H.; Wang, Y. Remote preparation of a qudit using maximally entangled states of qubits. Phys. Rev. A 2006, 73, 022340. [Google Scholar] [CrossRef]
- Kurucz, Z.; Adam, P.; Kis, Z.; Janszky, J. Continuous variable remote state preparation. Phys. Rev. A 2005, 72, 052315. [Google Scholar] [CrossRef]
- Lee, S. Bound on remote preparation of entanglement from isotropic states. Phys. Rev. A 2012, 85, 052311. [Google Scholar] [CrossRef]
- Peng, X.H.; Zhu, X.W.; Fang, X.M.; Feng, M.; Liu, M.; Gao, K. Experimental implementation of remote state preparation by nuclear magnetic resonance. Phys. Lett. A 2003, 306, 271–276. [Google Scholar] [CrossRef]
- Barreiro, J.T.; Wei, T.C.; Kwiat, P.G. Remote preparation of single-photon “Hybrid” entangled and vector-polarization states. Phys. Rev. Lett. 2010. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Liu, Y.M.; Zuo, X.Q. Controlled remote state preparation. Commun. Theor. Phys. 2009, 52, 235–240. [Google Scholar]
- Hou, K.; Wang, J.; Yuan, H. Multiparty-controlled remote preparation of two-particle state. Commun. Theor. Phys. 2009, 52, 848–852. [Google Scholar]
- Wang, Z.Y. Controlled remote preparation of a two-qubit state via an asymmetric quantum channel. Commun. Theor. Phys. 2011, 55, 244–250. [Google Scholar] [CrossRef]
- Song, J.F.; Wang, Z.Y. Controlled remote preparation of a two-qubit state via positive operator-valued measure and two three-qubit entanglements. Int. J. Theor. Phys. 2011, 50, 2410–2425. [Google Scholar] [CrossRef]
- Li, Z.; Zhou, P. Probabilistic Multiparty-controlled remote preparation of an arbitrary m-qudit state via positive operator-valued measurement. Int. J. Quantum Inf. 2012, 10, 1250062. [Google Scholar] [CrossRef]
- Chen, X.B.; Ma, S.Y.; Su, Y. Controlled remote state preparation of arbitrary two and three qubit states via the Brown state. Quantum Inf. Process. 2012, 11, 1653–1667. [Google Scholar] [CrossRef]
- Acín, A.; Andrianov, A.; Costa, L.; Jané, E.; Latorre, J.I.; Tarrach, R. Generalised Schmidt decomposition and classification of three-quantum-bit states. Phys. Rev. Lett. 2000, 85, 1560. [Google Scholar] [CrossRef] [PubMed]
- Gao, T.; Yan, F.L.; Li, Y.C. Optimal controlled teleportation. A Lett. J. Explor. Front. Phys. 2008, 84, 50001. [Google Scholar] [CrossRef]
- An, N.B.; Cao, T.B. Perfect controlled joint remote state preparation independent of entanglement degree of the quantum channel. Phys. Lett. A 2014, 378, 3582–3585. [Google Scholar] [CrossRef]
- Wang, C.; Zeng, Z.; Li, X.H. Controlled remote state preparation via partially entangled quantum channel. Quantum Inf. Process. 2015, 14, 1077–1089. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zha, Y.; Zhang, Z.; Huang, Y.; Yang, J. Controlled Remote State Preparation via General Pure Three-Qubit State. Information 2015, 6, 375-387. https://doi.org/10.3390/info6030375
Zha Y, Zhang Z, Huang Y, Yang J. Controlled Remote State Preparation via General Pure Three-Qubit State. Information. 2015; 6(3):375-387. https://doi.org/10.3390/info6030375
Chicago/Turabian StyleZha, Yuebo, Zhihua Zhang, Yulin Huang, and Jianyu Yang. 2015. "Controlled Remote State Preparation via General Pure Three-Qubit State" Information 6, no. 3: 375-387. https://doi.org/10.3390/info6030375
APA StyleZha, Y., Zhang, Z., Huang, Y., & Yang, J. (2015). Controlled Remote State Preparation via General Pure Three-Qubit State. Information, 6(3), 375-387. https://doi.org/10.3390/info6030375