A Deploying Method for Predicting the Size and Optimizing the Location of an Electric Vehicle Charging Stations
Abstract
:1. Introduction
2. Related Works
3. Model
3.1. Predicting the Amount of Electric Vehicle Charging Stations Based on BASS
3.1.1. Predicting the Amount of Electric Vehicles
3.1.2. The Demand Calculation for Electric Vehicle Charging Stations
3.2. The Optimal Location of Electric Vehicle Charging Stations
3.2.1. The Model of the Location of Charging Stations
3.2.2. Solution for an Optimal Model
- For the primary scheme, in this paper, we first checked the municipal traffic restrictions and the grid constraint separately. If a constraint condition is not satisfied, there is no need to check the following constraints.
- If a feasible solution is found through the search, a filter condition is added immediately. If the object function value is less than that of the feasible solution, there is no need to compare the following constraints, and the search is continued directly.
4. Case Study
4.1. General Situation of the Case
4.1.1. Electric Vehicle Penetration and the Primary Location of Charging Stations
4.1.2. General Situation of the Distribution Network
4.2. Predicting the Amount of Electric Vehicle Charging Stations
4.2.1. Estimation of the Innovation Coefficient p (or the External Influence Coefficient)
4.2.2. Estimation of the Imitation Coefficient q (or the Internal Influence Coefficient)
4.2.3. Prediction Results
4.2.4. The Results Compared with Actual Data
4.3. The Optimal Location of Charging Stations
4.3.1. The Results of the Optimal Location of Charging Stations
4.3.2. The Results Compared with the Plan of the Government
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yagcitekin, B.; Uzunoglu, M.; Karakas, A. A new deployment method for electric vehicle charging infrastructure. Turk. J. Electr. Eng. Comput. Sci. 2015, 24, 1292–1305. [Google Scholar] [CrossRef]
- Hatton, C.E.; Beella, S.K.; Brezet, J.C.; Wijnia, Y. Charging Stations for Urban Settings the design of a product platform for electric vehicle infrastructure in Dutch cities. World Electr. Veh. J. 2009, 3, 1–13. [Google Scholar] [CrossRef]
- Sweda, T.; Klabjan, D. An agent-based decision support system for electric vehicle charging infrastructure deployment. In Proceedings of the 2011 IEEE Vehicle Power and Propulsion Conference, Chicago, IL, USA, 6–9 September 2011. [Google Scholar]
- Li, Z.; Ouyang, M. The pricing of charging for electric vehicles in China—Dilemma and solution. Energy 2011, 36, 5765–5778. [Google Scholar] [CrossRef]
- Wang, H.; Huang, Q.; Zhang, C.; Xia, A. A novel approach for the layout of electric vehicle charging station. In Proceedings of the 2010 IEEE International Conference on Apperceiving Computing and Intelligence Analysis Proceeding, Chengdu, China, 17–19 December 2010. [Google Scholar]
- Nansai, K.; Tohno, S.; Kono, M.; Kasahara, M.; Moriguchi, Y. Life-cycle analysis of charging infrastructure for electric vehicles. Appl. Energy 2001, 70, 251–265. [Google Scholar] [CrossRef]
- Schroeder, A.; Traber, T. The economics of fast charging infrastructure for electric vehicles. Energy Policy 2012, 43, 136–144. [Google Scholar] [CrossRef]
- Anegawa, T. Desirable Characteristics of Public Quick Charger; Tokyo Electric Power Company: Tokyo, Japan, 2011. [Google Scholar]
- Chen, Z.; Xiong, R.; Wang, K.; Jiao, B. Optimal energy management strategy of a plug-in hybrid electric vehicle based on a particle swarm optimization algorithm. Energies 2015, 8, 3661–3678. [Google Scholar] [CrossRef]
- Åhman, M. Government policy and the development of electric vehicles in japan. Energy Policy 2006, 34, 433–443. [Google Scholar] [CrossRef]
- Skerlos, S.J.; Winebrake, J.J. T argeting plug-in hybrid electric vehicle policies to increase social benefits. Energy Policy 2010, 38, 705–708. [Google Scholar] [CrossRef]
- Schey, S.L.; Smart, J.G.; Scoffield, D.R. A first look at the impact of electric vehicle charging on the electric grid in the EV project. World Electr. Veh. J. 2012, 5, 667–678. [Google Scholar] [CrossRef]
- Shukla, A.; Pekny, J.; Venkatasubramanian, V. An optimization framework for cost effective design of refueling station infrastructure for alternative fuel vehicles. Comput. Chem. Eng. 2011, 35, 1431–1438. [Google Scholar] [CrossRef]
- Wang, Y.W. An optimal location choice model for recreation-oriented scooter recharge stations. Transp. Res. Part D Transp. Environ. 2007, 12, 231–237. [Google Scholar] [CrossRef]
- Mu, Y.; Wu, J.; Jenkins, N.; Jia, H.; Wang, C. A spatial–temporal model for grid impact analysis of plug-in electric vehicles. Appl. Energy 2014, 114, 456–465. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, B.; Xu, Y.; Li, W. Optimization of Series Hybrid Electric Vehicle Operational Parameters by Simulated Annealing Algorithm. In Proceedings of the 2007 IEEE International Conference on Control and Automation, Guangzhou, China, 30 May–1 June 2007; pp. 1536–1541. [Google Scholar]
- Shojaabadi, S.; Abapour, S.; Abapour, M.; Nahavandi, A. Optimal planning of plug-in hybrid electric vehicle charging station in distribution network considering demand response programs and uncertainties. IET Gener. Transm. Distrib. 2016, 10, 3330–3340. [Google Scholar] [CrossRef]
- Mendoza, C.C.; Quintero, A.M.; Santamaria, F.; Alarcon, J.A. Methodology to manage electric vehicles charging in real-time. IEEE Lat. Am. Trans. 2016, 14, 782–791. [Google Scholar] [CrossRef]
- Alhelou, H.S.H.; Golshan, M.E.H.; Fini, M.H. Multi agent electric vehicle control based primary frequency support for future smart micro-grid. In Proceedings of the 2015 Smart Grid Conference (SGC), Tehran, Iran, 22–23 December 2015; pp. 22–27. [Google Scholar]
- Alhelou, H.H.; Golshan, M.E.H. Hierarchical plug-in EV control based on primary frequency response in interconnected smart grid. In Proceedings of the 2016 24th Iranian Conference on Electrical Engineering, Shiraz, Iran, 10–12 May 2016; pp. 561–566. [Google Scholar]
- Alhelou, H.H.; Golshan, M.H.; Askari-Marnani, J. Robust sensor fault detection and isolation scheme for interconnected smart power systems in presence of RER and EVs using unknown input observer. Int. J. Electr. Power Energy Syst. 2018, 99, 682–694. [Google Scholar] [CrossRef]
- Makdisie, C.; Haidar, B.; Alhelou, H.H. An Optimal Photovoltaic Conversion System for Future Smart Grids. In Handbook of Research on Power and Energy System Optimization; IGI Global: Hershey, PA, USA, 2018; pp. 601–657. [Google Scholar]
- Wei, L.; Zhang, Z.; Zhang, D.; Leung, S.C.H. A simulated annealing algorithm for the capacitated vehicle routing problem with two-dimensional loading constraints. Eur. J. Oper. Res. 2018, 265, 843–859. [Google Scholar] [CrossRef]
- Lee, B.J.; Lee, S.; Im, D.Y.; Kim, H.J.; Park, G.L.; Lee, J. Tour and charging scheduler development based on simulated annealing for electric vehicles. Commun. Comput. Inf. Sci. 2012, 353, 189–194. [Google Scholar]
- Mehar, S.; Senouci, S.M. An optimization location scheme for electric charging stations. In Proceedings of the 2013 International Conference on Smart Communications in Network Technologies (SaCoNeT), Paris, France, 17–19 June 2013; Volume 01, pp. 1–5. [Google Scholar]
- Lam, A.Y.S.; Leung, Y.W.; Chu, X. Electric vehicle charging station placement: Formulation, complexity, and solutions. IEEE Trans. Smart Grid 2017, 5, 2846–2856. [Google Scholar] [CrossRef]
- Jia, H.P.; Liu, S.G.; Xie, S.L.; Huang, S.L.; Pei, S.T. The location model of the electric vehicle charging station based on simulated annealing algorithm. Adv. Mater. Res. 2013, 805–806, 1895–1899. [Google Scholar] [CrossRef]
- Yan, T.; Qiu, X.; Liu, Y.; Tang, K.; Wan, C. Optimal planning of electric vehicle charging station based on psosa algorithm. Electr. Meas. Instrum. 2017, 133, 70–78. [Google Scholar]
- Dong, J.; Liu, C.; Lin, Z. Charging infrastructure planning for promoting battery electric vehicles: An activity-based approach using multiday travel data. Transp. Res. Part C 2014, 38, 44–55. [Google Scholar] [CrossRef]
- Gonzalez, J.; Alvaro, R.; Gamallo, C.; Fuentes, M.; Fraile-Ardanuy, J.; Knapen, L.; Janssens, D. Determining electric vehicle charging point locations considering drivers’ daily activities. Procedia Comput. Sci. 2014, 32, 647–654. [Google Scholar] [CrossRef]
- Liu, Z.; Wen, F.; Ledwich, G. Optimal planning of electric-vehicle charging stations in distribution systems. IEEE Trans. Power Deliv. 2013, 28, 102–110. [Google Scholar] [CrossRef]
- Datta, A.; Ledbetter, B.K.; Rahman, M.A. Optimal Deployment of Charging Stations for Electric Vehicles: A Formal Approach. In Proceedings of the 2017 IEEE 37th International Conference on Distributed Computing Systems Workshops (ICDCSW), Atlanta, GA, USA, 5–8 June 2017; pp. 83–90. [Google Scholar]
- Sadeghi-Barzani, P.; Rajabi-Ghahnavieh, A.; Kazemi-Karegar, H. Optimal fast charging station placing and sizing. Appl. Energy 2014, 125, 289–299. [Google Scholar] [CrossRef]
- Chen, S.; Shi, Y.; Chen, X.; Qi, F. Optimal location of electric vehicle charging stations using genetic algorithm. In Proceedings of the 2015 IEEE 17th Asia-Pacific Network Operations and Management Symposium (APNOMS), Busan, South Korea, 19–21 August 2015; pp. 372–375. [Google Scholar]
- Ge, S.; Feng, L.; Liu, H. The planning of electric vehicle charging station based on grid partition method. In Proceedings of the 2011 IEEE International Conference on Electrical and Control Engineering, Yichang, China, 16–18 September 2011; pp. 2726–2730. [Google Scholar]
- Suganya, S.; Charles Raja, S.; Venkatesh, P. Smart management of distinct plug-in hybrid electric vehicle charging stations considering mobility pattern and site characteristics. Int. J. Energy Res. 2017, 41, 2268–2281. [Google Scholar] [CrossRef]
- Dodds, W. An application of the Bass model in long-term new product forecasting. J. Mark. Res. 1973, 10, 308–311. [Google Scholar] [CrossRef]
- Chunyang, W.U.; Canbing, L.I.; Li, D.U.; Cao, Y. A method for electric vehicle charging infrastructure planning. Autom. Electr. Power Syst. 2010, 34, 36–39. [Google Scholar]
- Tian, L.; Shi, S.; Zhuo, J. A statistical model for charging power demand of electric vehicles. Power Syst. Technol. 2010, 34, 126–130. [Google Scholar]
- Lui, F.T. An equilibrium queuing model of bribery. J. Political Econ. 1985, 93, 760–781. [Google Scholar] [CrossRef]
- Zhenhua, S. Research on Parameter Estimation of BASS Model. J. Shanxi Inst. Econ. Manag. 2009, 17, 51–53. [Google Scholar]
- Becker, T.A.; Tenderich, B.; Sidhu, I. Electric Vehicles in the United States: A New Model with Forecasts to 2030; Center for Entrepreneurship and Technology, University of California: Berkeley, CA, USA, 2009. [Google Scholar]
- Romero, R.; Monticelli, A. A zero-one implicit enumeration method for optimizing investments in transmission expansion planning. IEEE Trans. Power Syst. 1994, 9, 1385–1391. [Google Scholar] [CrossRef]
Year | GDP (Yuan) | Penetration of Private Vehicles (in Thousands) | Penetration of All Vehicles (in Thousands) |
---|---|---|---|
1995 | 724 | 2.942 | 8.763 |
1996 | 932 | 3.570 | 10.759 |
1997 | 1089 | 4.762 | 13.562 |
1998 | 1176 | 5.987 | 18.363 |
1999 | 1253 | 7.857 | 21.762 |
2000 | 1371 | 10.876 | 29.472 |
2001 | 1512 | 12.384 | 37.762 |
2002 | 1670 | 19.786 | 48.342 |
2003 | 1848 | 26.786 | 56.234 |
2004 | 2232 | 35.834 | 71.492 |
2005 | 2850 | 45.734 | 93.234 |
2006 | 3292 | 56.590 | 109.838 |
2007 | 3823 | 67.987 | 138.662 |
2008 | 4452 | 76.379 | 176.587 |
2009 | 5148 | 89.432 | 232.759 |
2010 | 5743 | 114.258 | 283.789 |
Candidate Location Number | Geodetic Coordinates | Vehicle Flow (Thousand/Day) | Land Price (Yuan/m2) | Ratio of Entering Stations (%) | |
---|---|---|---|---|---|
X (meter) | Y (meter) | ||||
1 | 9520 | 2510 | 18.190 | 6800 | 0.018 |
2 | 7200 | 3040 | 22.780 | 6800 | 0.016 |
3 | 4970 | 2730 | 15.130 | 4700 | 0.019 |
4 | 1630 | 2760 | 10.200 | 3500 | 0.028 |
5 | 12,820 | 6550 | 11.050 | 3200 | 0.023 |
6 | 8890 | 5410 | 18.360 | 6100 | 0.029 |
7 | 6790 | 7280 | 13.090 | 4300 | 0.025 |
8 | 3650 | 6650 | 11.730 | 2800 | 0.031 |
9 | 3235 | 4749 | 11.050 | 3500 | 0.023 |
10 | 6683 | 5527 | 18.360 | 4300 | 0.019 |
11 | 5954 | 8497 | 13.090 | 2800 | 0.025 |
Number of Node | KVA (in MVA) | Geodetic Coordinates | |
---|---|---|---|
X (meter) | Y (meter) | ||
1 | 2*50 | 7747 | 2266 |
2 | 2*31.5 | 9600 | 7252 |
3 | 2*40 | 3734 | 4635 |
Node Number | Active Power (km) | Reactive Power | Node Number | Active Power | Reactive Power |
---|---|---|---|---|---|
4 | 550 | 500 | 22 | 428 | 179 |
5 | 600 | 370 | 23 | 298 | 217 |
6 | 840 | 769 | 24 | 428 | 179 |
7 | 910 | 787 | 25 | 478 | 412 |
8 | 349 | 234 | 26 | 100 | 80 |
9 | 873 | 549 | 27 | 140 | 123 |
10 | 523 | 783 | 28 | 397 | 238 |
11 | 739 | 472 | 29 | 534 | 340 |
12 | 234 | 123 | 30 | 342 | 298 |
13 | 432 | 238 | 31 | 298 | 217 |
14 | 532 | 423 | 32 | 297 | 232 |
15 | 297 | 232 | 33 | 534 | 340 |
15 | 534 | 340 | 34 | 342 | 298 |
17 | 342 | 298 | 35 | 298 | 217 |
18 | 298 | 217 | 36 | 428 | 179 |
19 | 428 | 179 | 37 | 478 | 412 |
20 | 478 | 412 | 38 | 450 | 313 |
21 | 732 | 539 | 39 | 298 | 179 |
Line | Impedance (Ω) | Reactance (Ω) | dBμA (A) | Line | Impedance (Ω) | Reactance (Ω) | dBμA (A) |
---|---|---|---|---|---|---|---|
(1,4) | 0.1357 | 0.0724 | 445 | (21,22) | 0.2377 | 0.1236 | 380 |
(4,5) | 0.1357 | 0.0724 | 445 | (3,23) | 0.0783 | 0.0392 | 445 |
(1,6) | 0.1357 | 0.0724 | 445 | (23,24) | 0.6591 | 0.3164 | 380 |
(6,7) | 0.1357 | 0.0724 | 445 | (24,25) | 0.1999 | 0.1000 | 380 |
(7,8) | 0.0970 | 0.0517 | 380 | (24,26) | 0.7871 | 0.4093 | 380 |
(1,9) | 0.1357 | 0.0724 | 510 | (3,27) | 0.1465 | 0.0762 | 445 |
(9,10) | 0.1357 | 0.0724 | 510 | (27,28) | 0.2377 | 0.1141 | 380 |
(10,11) | 0.0970 | 0.0517 | 380 | (3,29) | 0.0783 | 0.0376 | 445 |
(1,12) | 0.1323 | 0.0647 | 510 | (29,30) | 0.6591 | 0.3427 | 380 |
(12,13) | 0.2200 | 0.1080 | 445 | (30,31) | 0.1999 | 0.1000 | 380 |
(13,14) | 0.1630 | 0.3076 | 380 | (2,32) | 0.7871 | 0.3778 | 380 |
(1,15) | 0.1483 | 0.0771 | 510 | (32,33) | 0.1037 | 0.0539 | 380 |
(3,16) | 0.1037 | 0.0539 | 510 | (2,34) | 0.1978 | 0.0950 | 380 |
(16,17) | 0.1978 | 0.0989 | 445 | (34,35) | 0.0862 | 0.0448 | 380 |
(17,18) | 0.0862 | 0.0448 | 380 | (35,36) | 0.1674 | 0.0804 | 380 |
(18,19) | 0.1674 | 0.0804 | 380 | (2,37) | 0.2492 | 0.1296 | 445 |
(3,20) | 0.2492 | 0.1246 | 445 | (37,38) | 0.1999 | 0.1000 | 445 |
(20,21) | 0.1465 | 0.0703 | 380 | (37,39) | 0.7871 | 0.3936 | 445 |
Name | 2020 | 2025 | 2030 | 2035 | 2040 |
---|---|---|---|---|---|
EV penetration based on predicted data (in thousands) | 177.6925302 | 308.2462423 | 473.2200311 | 756.7969461 | 946.1633827 |
Needed charging power () | 1332.694 | 2311.847 | 3549.15 | 5675.977 | 7096.225 |
Name | 2011 | 2012 | 2013 | 2014 | 2015 |
---|---|---|---|---|---|
EV penetration based on actual data (in thousands) | 23.529304 | 37.844535 | 52.14545 | 68.133245 | 84.224534 |
EV penetration based on predicted data (in thousands) | 23.703124 | 38.039423 | 52.698231 | 68.93842 | 85.402853 |
Errors (%) | 0.007387 | 0.00515 | 0.010601 | 0.011818 | 0.01399 |
Rank | Number of Superchargers | Covered Area (m2) |
---|---|---|
1 | >25 | 900 |
2 | 15–25 | 450 |
3 | 8–14 | 280 |
4 | <8 | 160 |
Operating Cost | Depreciation Cost | Human Cost | Total Cost |
---|---|---|---|
15 | 50.5 | 7.5 | 73 |
Time (year) | Candidate Charging Stations | Connected Number of Nodes | Utilization Ratio |
---|---|---|---|
2020 | 1 | 10 | 41.5% |
2020 | 5 | 38 | 30.45% |
2020 | 9 | 3 | 44.47% |
2020 | 7 | 2 | 42.05% |
Time (year) | Candidate Charging Stations | Connected Number of Nodes | Utilization Ratio |
---|---|---|---|
2025 | 2 | 1 | 43.5% |
2025 | 3 | 1 | 30.4% |
2025 | 6 | 39 | 45.8% |
Time (year) | Candidate Charging Stations | Connected Number of Nodes | Utilization Ratio |
---|---|---|---|
2030 | 4 | 32 | 38.3% |
2030 | 8 | 25 | 40.2% |
2020 | 10 | 16 | 36.5% |
Time (year) | Candidate Charging Stations | Connected Number of Nodes | Utilization Ratio |
---|---|---|---|
2020 | 3 | 1 | 37.5% |
2020 | 4 | 32 | 30.4% |
2020 | 5 | 38 | 38.8% |
2020 | 7 | 2 | 32.4% |
2025 | 6 | 39 | 41.5% |
2025 | 8 | 25 | 33.4% |
2025 | 10 | 16 | 40.8% |
2025 | 11 | 5 | 38% |
2030 | 1 | 1 | 38.3% |
2030 | 2 | 10 | 40.2% |
2030 | 9 | 3 | 37.5% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, J.; Zhang, L. A Deploying Method for Predicting the Size and Optimizing the Location of an Electric Vehicle Charging Stations. Information 2018, 9, 170. https://doi.org/10.3390/info9070170
Ma J, Zhang L. A Deploying Method for Predicting the Size and Optimizing the Location of an Electric Vehicle Charging Stations. Information. 2018; 9(7):170. https://doi.org/10.3390/info9070170
Chicago/Turabian StyleMa, Jian, and Liyan Zhang. 2018. "A Deploying Method for Predicting the Size and Optimizing the Location of an Electric Vehicle Charging Stations" Information 9, no. 7: 170. https://doi.org/10.3390/info9070170
APA StyleMa, J., & Zhang, L. (2018). A Deploying Method for Predicting the Size and Optimizing the Location of an Electric Vehicle Charging Stations. Information, 9(7), 170. https://doi.org/10.3390/info9070170