Statistical Theory of Optimal Functionally Deterministic Signals Processing in Multichannel Aerospace Imaging Radar Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Models of Signals, Noises, and Observation Equation
2.2. Basic Principles of the Theory
3. Results
3.1. Problem Geometry and Received Signal Model
3.2. Problem Statement
3.3. Optimization Problem Solution
3.4. Physical Interpretation of the Optimal Method
3.5. Heuristical Modification of the Optimal Method
3.5.1. Multibeam Inspection with a Fixed Fan of Rays
3.5.2. Fixed Beam Fan with Coherent Processing at the Output of Each Channel and Coherent Inter-channel Addition
- (1)
- The registration of signals at the outputs of the diagram-forming circuit , coherent detection of amplitudes ;
- (2)
- Division of pulses into intervals that correspond to the observation of one area of the surface by different antenna pattern ;
- (3)
- Convolution of individual trajectory signals in different processing channels with the expected reference signal with duration corresponding to the full time of sequential observation of one area of the surface by all antenna pattern;
- (4)
- Adding the results of the agreed processing to form the final output effect .
3.5.3. Fixed Beam Fan with Coherent Processing at the Output of Each Channel and Incoherent Inter-channel Addition
3.5.4. Fixed Beam Fan with Coherent Signal Processing at the Output of Each Channel, Doppler Frequency Offset Compensation, and Incoherent Inter-channel Addition
3.5.5. Single-Beam SAR
3.6. Marginal Errors of Estimation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Falkovich, S.E.; Ponomarev, V.I.; Shkvarko, I.V. Optimal Reception of Space-Time Signals in Radio Channels with Scattering; Radio i Svyaz: Moscow, Russia, 1989. (In Russian) [Google Scholar]
- Falkovich, S.E.; Kostenko, P.Y. Fundamentals of the Statistical Theory of Radio Engineering Systems: A Tutorial; Kharkiv Aviation Institute: Kharkov, Russia, 2005. (In Russian) [Google Scholar]
- Falkovich, S.E. Signal Parameters Estimation; Sovetskoye Radio: Moscow, Russia, 1970. (In Russian) [Google Scholar]
- Falkovich, S.E.; Khomyakov, E.N. Statistical Theory of Radio Measuring Systems; Radio i Svyaz: Moscow, Russia, 1981. (In Russian) [Google Scholar]
- Tikhonov, V.I. Statistical Radio Engineering; Radio i Svyaz: Moscow, Russia, 1982. (In Russian) [Google Scholar]
- Tikhonov, V.I. Optimal Signal Reception; Radio i Svyaz: Moscow, Russia, 1983. (In Russian) [Google Scholar]
- Bakut, P.A.; Tartakovsky, G.P. Questions of the Statistical Theory of Radar; Sovetskoye Radio: Moscow, Russia, 1963. (In Russian) [Google Scholar]
- Amiantov, I.N. Selected Problems of the Statistical Communication Theory; Sovetskoye Radio: Moscow, Russia, 1971. (In Russian) [Google Scholar]
- Kotel’nikov, V.A. The Theory of Optimum Noise Immunity; McGraw-Hill Book, Co.: New York, NY, USA, 1959. [Google Scholar]
- Gutkin, L.S. Theory of Optimal Radio Reception Methods with Fluctuation Interference; Gosenergoizdat: Moscow, Russia, 1961. (In Russian) [Google Scholar]
- Levin, B.R. Theoretical Foundations of Statistical Radio Engineering; Sovetskoye Radio: Moscow, Russia, 1969. (In Russian) [Google Scholar]
- Van Tris, G. Theory of Detection, Estimation and Modulation; Sovetskoye Radio: Moscow, Russia, 1972–1977; Volumes 1–3. (In Russian) [Google Scholar]
- Middlton, D. Introduction to Statistical Communication Theory; Sovetskoye Radio: Moscow, Russia, 1961–1962; Volumes 1–2. (In Russian) [Google Scholar]
- Shirman, Y.D.; Manzhos, V.N. Theory and Technique of Processing Radar Information against the Background of Interference; Radio i Svyaz: Moscow, Russia, 1981. (In Russian) [Google Scholar]
- Kraus, J.D. Radio Astronomy, 2nd ed.; Cygnus-Quasar Books: Powell, OH, USA, 1986. [Google Scholar]
- Tseitlin, N.M. Aerial Equipment and Radio Astronomy; Soviet Radio: Moscow, Russia, 1976; 352p. [Google Scholar]
- Thompson, A.R.; Moran, J.M.; Swenson, G.W. Antennas and arrays. In Interferometry and Synthesis in Radio Astronomy; Springer International Publishing: Cham, Switzerland, 2017; pp. 153–206. [Google Scholar] [CrossRef] [Green Version]
- Van Schooneveld, C. Image Formation from Coherence Functions in Astronomy. In Proceedings of the IAU Colloquium No. 49 on the Formation of Images from Spatial Coherence Functions in Astronomy, Groningen, The Netherlands, 10–12 August 1978. [Google Scholar]
- Kondratenkov, G.S.; Potekhin, V.A.; Reutov, A.P.; Feoktistov, Y.A. Earth Survey Radars; Radio i Svyaz: Moscow, Russia, 1983. (In Russian) [Google Scholar]
- Reutov, A.P.; Mikhailov, V.A.; Kondratenkov, G.S.; Boyko, B.V. Side-Looking Radars; Sovetskoye Radio: Moscow, Russia, 1970. (In Russian) [Google Scholar]
- Karavayev, V.V.; Sazonov, V.V. Fundamentals of Synthesized Antenna Theory; Sovetskoye Radio: Moscow, Russia, 1974. (In Russian) [Google Scholar]
- Antipov, V.N.; Goryainov, V.T.; Kulin, A.V.; Mansurov, V.V.; Okhonskiy, A.G.; Sazonov, N.A.; Titov, M.P.; Tolstov, E.F.; Shapovalov, A.V. Digital Synthesized Aperture Radars; Radio i Svyaz: Moscow, Russia, 1988. (In Russian) [Google Scholar]
- Volosyuk, V.K.; Kravchenko, V.F. Statistical Theory of Radio Engineering Systems for Remote Sensing and Radar; Fizmatlit: Moscow, Russia, 1988. (In Russian) [Google Scholar]
- Moreira, A.; Prats-Iraola, P.; Younis, M.; Krieger, G.; Hajnsek, I.; Papathanassiou, K.P. A tutorial on synthetic aperture radar. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–43. [Google Scholar] [CrossRef] [Green Version]
- Krieger, G.; Moreira, A.; Fiedler, H.; Hajnsek, I.; Werner, M.; Younis, M.; Zink, M. TanDEM-X: A Satellite Formation for High-Resolution SAR Interferometry. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3317–3341. [Google Scholar] [CrossRef] [Green Version]
- Reigber, A.; Moreira, A. First demonstration of airborne SAR tomography using multibaseline L-band data. IEEE Trans. Geosci. Remote. Sens. 2000, 38, 2142–2152. [Google Scholar] [CrossRef]
- Charvat, G.L.; Kempel, L.C.; Rothwell, E.J.; Coleman, C.M.; Mokole, E.L. A Through-Dielectric Radar Imaging System. IEEE Trans. Antennas Propag. 2010, 58, 2594–2603. [Google Scholar] [CrossRef]
- Goodman, J.W. Introduction to the Fourier Optics; Mir: Moscow, Russia, 1970. (In Russian) [Google Scholar]
- Born, M. Fundamentals of Optics; Nauka: Moscow, Russia, 1973. (In Russian) [Google Scholar]
- Zommerfel’d, A. Optics, Izdat; Inostrannoy Literatury: Moscow, Russia, 1953. (In Russian) [Google Scholar]
- Zubkovich, S.G. Statistical Characteristics of Radio Signals Reflected from the Earth’s Surface; Sovetskoye Radio: Moscow, Russia, 1968. (In Russian) [Google Scholar]
- Fradin, A.Z. Ultrahigh Frequency Antennas; Sovetskoye Radio: Moscow, Russia, 1957. (In Russian) [Google Scholar]
- Rytov, S.M.; Kravtsov, Y.A.; Tatarskiy, V.I. Introduction to Statistical Radiophysics; Nauka: Moscow, Russia, 1978. (In Russian) [Google Scholar]
- Kravchenko, V.F.; Kutuza, B.G.; Volosyuk, V.K.; Pavlikov, V.V.; Zhyla, S.S. Super-resolution SAR imaging: Optimal algorithm synthesis and simulation results. In Proceedings of the 2017 Progress in Electromagnetics Research Symposium—Spring (PIERS), St. Petersburg, Russia, 22–25 May 2017; pp. 419–425. [Google Scholar] [CrossRef]
- Pavlikov, V.V.; Zhyla, S.S.; Odokienko, O.V. Structural optimization of Dicke-type radiometer. In Proceedings of the 2016 II International Young Scientists Forum on Applied Physics and Engineering (YSF), Kharkiv, Ukraine, 10–14 October 2016; pp. 171–174. [Google Scholar] [CrossRef]
- Ostroumov, I.; Kuzmenko, N.; Sushchenko, O.; Pavlikov, V.; Zhyla, S.; Solomentsev, O.; Zaliskyi, M.; Averyanova, Y.; Tserne, E.; Popov, A.; et al. Modelling and Simulation of DME Navigation Global Service Volume. Adv. Space Res. 2021, 68, 3495–3507. [Google Scholar] [CrossRef]
- Volosyuk, V.K.; Pavlikov, V.V.; Zhyla, S.S. Algorithms Synthesis and Potentiality Analysis of Optimum Ultrawideband Signal Processing in the Radiometric System with Modulation. In Proceedings of the 2011 VIII International Conference on Antenna Theory and Techniques, Kyiv, Ukraine, 20–23 September 2011. [Google Scholar] [CrossRef]
- Pavlikov, V.V.; Volosyuk, V.K.; Zhyla, S.S.; Van Huu, N. Active Aperture Synthesis Radar for High Spatial Resolution Imaging. In Proceedings of the 2018 9th International Conference on Ultrawideband and Ultrashort Impulse Signals (UWBUSIS), Odessa, Ukraine, 4–7 September 2018. [Google Scholar] [CrossRef]
- Pavlikov, V.; Volosyuk, V.; Zhyla, S.; Van, H.N.; Van, K.N. A New Method of Multi-Frequency Active Aperture Synthesis for Imaging of SAR Blind Zone Under Aerospace Vehicle. In Proceedings of the 2017 14th International Conference The Experience of Designing and Application of CAD Systems in Microelectronics (CADSM), Lviv, Ukraine, 21–25 February 2017. [Google Scholar] [CrossRef]
- Gorovyi, I.; Bezvesilniy, O.; Vavriv, D.; Ievgen, G. Multi-look SAR processing with road location and moving target parameters estimation. In Proceedings of the 2015 16th International Radar Symposium (IRS), Dresden, Germany, 24–26 June 2015; pp. 581–586. [Google Scholar] [CrossRef]
- Bezvesilniy, O.O.; Kochetov, B.A.; Vavriv, D.M. Moving target detection with multi-look SAR. In Proceedings of the 2014 20th International Conference on Microwaves, Radar and Wireless Communications (MIKON), Gdansk, Poland, 16–18 June 2014; pp. 1–4. [Google Scholar] [CrossRef]
- Volosyuk, V.K.; Pavlikov, V.V.; Zhyla, S.S. Phenomenological Description of the Electromagnetic Field and Coherent Images in Radio Engineering and Optical Systems. In Proceedings of the 2018 IEEE 17th International Conference on Mathematical Methods in Electromagnetic Theory (MMET), Kiev, Ukraine, 2–5 July 2018; pp. 302–305. [Google Scholar]
- Volosyuk, V.K. Phenomenological description of coherent radar images based on the concepts of the measure of set and stochastic integral. In Telecommunication and Radio Engineering; Volosyuk, V.K., Zhyla, S.S., Kolesnikov, D.V., Eds.; Begell House: Danbury, CT, USA, 2019; Volume 78, pp. 19–30. [Google Scholar]
- Isar, A.; Nafornita, C. Sentinel 1 Stripmap GRDH image despeckling using two stages algorithms. In Proceedings of the 2016 12th IEEE International Symposium on Electronics and Telecommunications (ISETC), Timisoara, Romania, 27–28 October 2016; pp. 343–348. [Google Scholar] [CrossRef]
- Gisinger, C.; Schubert, A.; Breit, H.; Garthwaite, M.; Balss, U.; Willberg, M.; Small, D.; Eineder, M.; Miranda, N. In-Depth Verification of Sentinel-1 and TerraSAR-X Geolocation Accuracy Using the Australian Corner Reflector Array. IEEE Trans. Geosci. Remote. Sens. 2020, 59, 1154–1181. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, H.; Gu, X.; Guo, H.; Chen, J.; Liu, G. Sea Ice Classification Using TerraSAR-X ScanSAR Data With Removal of Scalloping and Interscan Banding. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 589–598. [Google Scholar] [CrossRef]
- Steinbrecher, U.; Kraus, T.; Castellanos Alfonzo, G.; Grigorov, C.; Schulze, D.; Braeutigam, B. TerraSAR-X: Design of the new operational WideScanSAR mode. In Proceedings of the EUSAR 2014 10th European Conference on Synthetic Aperture Radar, Berlin, Germany, 3–5 June 2014; pp. 1–4. [Google Scholar]
- Korosov, A.; Demchev, D.; Miranda, N.; Franceschi, N.; Park, J.-W. Thermal Denoising of Cross-Polarized Sentinel-1 Data in Interferometric and Extra Wide Swath Modes. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5218411. [Google Scholar] [CrossRef]
- Wegmuller, U.; Werner, C.; Wiesmann, A.; Strozzi, T.; Kourkouli, P.; Frey, O. Time-series analysis of Sentinel-1 interferometric wide swath data: Techniques and challenges. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 3898–3901. [Google Scholar] [CrossRef]
- Ignatenko, V.; Nottingham, M.; Radius, A.; Lamentowski, L.; Muff, D. ICEYE Microsatellite SAR Constellation Status Update: Long Dwell Spotlight and Wide Swath Imaging Modes. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 1493–1496. [Google Scholar] [CrossRef]
- Ignatenko, V.; Dogan, O.; Muff, D.; Lamentowski, L.; Radius, A.; Nottingham, M.; Leprovost, P.; Seilonen, T. ICEYE Microsatellite SAR Constellation Status Update: Spotlight Extended Area Mode, Daily Coherent Ground Tracks and Waveform Diversity. In Proceedings of the IGARSS 2022—2022 IEEE International Geoscience and Remote Sensing Symposium, Lumpur, Malaysia, 17–22 July 2022; pp. 4145–4148. [Google Scholar] [CrossRef]
- Kraus, T.; Ribeiro, J.P.T.; Bachmann, M.; Steinbrecher, U.; Grigorov, C. Concurrent Imaging for TerraSAR-X: Wide-Area Imaging Paired With High-Resolution Capabilities. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5220314. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Volosyuk, V.; Zhyla, S. Statistical Theory of Optimal Functionally Deterministic Signals Processing in Multichannel Aerospace Imaging Radar Systems. Computation 2022, 10, 213. https://doi.org/10.3390/computation10120213
Volosyuk V, Zhyla S. Statistical Theory of Optimal Functionally Deterministic Signals Processing in Multichannel Aerospace Imaging Radar Systems. Computation. 2022; 10(12):213. https://doi.org/10.3390/computation10120213
Chicago/Turabian StyleVolosyuk, Valeriy, and Semen Zhyla. 2022. "Statistical Theory of Optimal Functionally Deterministic Signals Processing in Multichannel Aerospace Imaging Radar Systems" Computation 10, no. 12: 213. https://doi.org/10.3390/computation10120213
APA StyleVolosyuk, V., & Zhyla, S. (2022). Statistical Theory of Optimal Functionally Deterministic Signals Processing in Multichannel Aerospace Imaging Radar Systems. Computation, 10(12), 213. https://doi.org/10.3390/computation10120213