Monitoring of Temperature Measurements for Different Flow Regimes in Water and Galinstan with Long Short-Term Memory Networks and Transfer Learning of Sensors
Abstract
:1. Introduction
2. Data Collection in Thermal Hydraulic Flow Loop
3. Development of LSTM Networks for Temperature Sensors Validation
3.1. Identification of Correlated Sensors
3.2. Development of LSTM Networks
3.3. Selection of Time Series Test Segments
4. Monitoring of Thermocouple Time Series in Water Flow Loop
4.1. LSTM Prediction of Thermocouple Time Series
4.2. Relationship between RMSE, σ, and Re
4.3. Benchmarking LSTM Runtime
5. Monitoring of Thermocouple Time Series in Galinstan Flow Loop
5.1. LSTM Prediction of Thermocouple Time Series
5.2. Relationship between RMSE, σ, and Re
5.3. Benchmarking LSTM Runtime
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ma, J.; Jiang, J. Application of fault detection and diagnosis in nuclear power plants: A review. Prog. Nucl. Energy 2011, 53, 255–266. [Google Scholar] [CrossRef]
- Hu, G.; Zhou, T.; Liu, Q. Data-driven machine learning for fault detection and diagnosis in nuclear power plants: A review. Front. Energy Res. 2021, 9, 663296. [Google Scholar] [CrossRef]
- Rezaeianjouybari, B.; Shang, Y. Deep learning for prognostics and health management: State of the art, challenges and opportunities. Measurement 2020, 163, 107929. [Google Scholar] [CrossRef]
- Heifetz, A.; Vilim, R. Eigendecomposition model of resistance temperature detector with applications to S-CO2 cycle sensing. Nucl. Eng. Des. 2017, 311, 60–68. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Pang, Y. Application of Adomian decomposition method to nonlinear systems. Adv. Differ. Equ. 2020, 1, 67. [Google Scholar] [CrossRef]
- Turkyilmazoglu, M. Nonlinear Problems via a Convergence Accelerated Decomposition Method of Adomian. Comput. Model. Eng. Sci. 2021, 127, 1–22. [Google Scholar] [CrossRef]
- Guzmán, C.H.; Carrera, J.L.; Durán, H.A.; Berumen, J.; Ortiz, A.A.; Guirette, O.A.; Arroyo, A.; Brizuela, J.A.; Gómez, F.; Blanco, A.; et al. Implementation of Virtual Sensors for Monitoring Temperature in Greenhouses Using CFD and Control. Sensors 2019, 19, 60. [Google Scholar] [CrossRef] [Green Version]
- Lin, T.-H.; Wu, S.-C. Sensor fault detection, isolation and reconstruction in nuclear power plants. Ann. Nucl. Energy 2019, 126, 398–409. [Google Scholar] [CrossRef]
- Yu, Y.; Peng, M.-J.; Wang, H.; Ma, Z.-G.; Li, W. Improved PCA model for multiple fault detection, isolation and reconstruction of sensors in nuclear power plant. Ann. Nucl. Energy 2020, 148, 107662. [Google Scholar] [CrossRef]
- Mandal, S.; Santhi, B.; Vinolia, K.; Swaminathan, P. Sensor fault detection in Nuclear Power Plant using statistical methods. Nucl. Eng. Des. 2017, 324, 103–110. [Google Scholar] [CrossRef]
- Peng, B.-S.; Xia, H.; Liu, Y.-K.; Yang, B.; Guo, D.; Zhu, S.-M. Research on intelligent fault diagnosis method for nuclear power plant based on correlation analysis and deep belief network. Prog. Nucl. Energy 2018, 108, 419–427. [Google Scholar] [CrossRef]
- Mandal, S.; Santhi, B.; Sridhar, S.; Vinola, K.; Swaminathan, P. Nuclear power plant thermocouple sensor-fault detection and classification using deep learning and generalized likelihood ratio test. IEEE Trans. Nucl. Sci. 2017, 64, 1526–1534. [Google Scholar] [CrossRef]
- Mandal, S.; Santhi, B.; Sridhar, S.; Vinola, K.; Swaminathan, P. A novel approach for fault detection and classification of the thermocouple sensor in nuclear power plant using singular value decomposition and symbolic dynamic filter. Ann. Nucl. Energy 2021, 103, 440–453. [Google Scholar] [CrossRef]
- Wallace, C.J.; McArthur, S.D.J. Sensor degradation detection using visual time series and deep convolutional neural networks. In Proceedings of the 12th Nuclear Plant Instrumentation, Control and Human-Machine Interface Technologies (NPIC-HMIT2021), Providence, RI, USA, 14–17 June 2021; pp. 304–312. [Google Scholar]
- Mandal, S.; Santhi, B.; Sridhar, S.; Vinola, K.; Swaminathan, P. Minor fault detection of thermocouple sensor in nuclear power plants using time series and analysis. Ann. Nucl. Energy 2019, 134, 383–389. [Google Scholar] [CrossRef]
- Kim, M.; Ou, E.; Loh, P.-L.; Allen, T.; Agasie, R.; Liu, K. RNN-based online anomaly detection in nuclear reactors for highly imbalanced datasets with uncertainty. Nucl. Eng. Des. 2020, 364, 110699. [Google Scholar] [CrossRef]
- Choi, J.; Lee, S.J. Consistency index-based sensor fault detection system for nuclear power plant emergency situations using an LSTM network. Sensors 2020, 20, 1651. [Google Scholar] [CrossRef] [Green Version]
- Ankel, V.; Pantopoulou, S.; Weathered, M.; Lisowski, D.; Cilliers, A.; Heifetz, A. Monitoring of thermal mixing Tee sensors with LSTM neural networks. In Proceedings of the 12th Nuclear Plant Instrumentation, Control and Human-Machine Interface Technologies (NPIC-HMIT2021), Providence, RI, USA, 14–17 June 2021; pp. 313–323. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Gers, F.A.; Schmidhuber, J.; Cummins, F. Learning to forget: Continual prediction with LSTM. Neural Comput. 2000, 12, 2451–2471. [Google Scholar] [CrossRef]
- Namini, S.S.; Tavakoli, N.; Namin, A.S. A Comparison of ARIMA and LSTM in forecasting time series. In Proceedings of the 17th IEEE International Conference on Machine Learning and Applications (ICMLA), Orlando, FL, USA, 17–20 December 2018; pp. 1394–1401. [Google Scholar]
- Lee, D.; Seong, P.H.; Kim, J. Autonomous operation algorithm for safety systems of nuclear power plants using long-short term memory and function-based hierarchial framework. Ann. Nucl. Energy 2018, 119, 287–299. [Google Scholar] [CrossRef]
- Wu, Z.; Zaghloul, M.A.S.; Carpenter, D.; Li, M.-J.; Daw, J.; Mao, Z.-H.; Hnatovsky, C.; Mihailov, S.J.; Chen, K.P. Mitigation of radiation-induced fiber Bragg grating (FBG) sensor drifts in intense radiation environments based on long-short-term memory (LSTM) network. IEEE Access 2021, 9, 148296–148301. [Google Scholar] [CrossRef]
- Venketeswaran, A.; Lalam, N.; Wuenschell, J.; Ohodbicki, P.R., Jr.; Badar, M.; Chen, K.P.; Lu, P.; Duan, Y.; Chorpening, B.; Buric, M. Recent advances in machine learning for fiber optic sensor applications. Adv. Intell. Syst. 2021, 4, 2100067. [Google Scholar] [CrossRef]
- Wu, J.-Y.; Wu, Μ.; Chen, Ζ.; Li, X.-L.; Yan, R. Degradation-aware remaining useful life prediction with LSTM autoencoder. IEEE Trans. Instrum. Meas. 2021, 70, 1–10. [Google Scholar] [CrossRef]
- Lu, W.; Li, Y.; Cheng, Y.; Meng, D.; Liang, B.; Zhou, P. Early fault detection approach with deep architectures. IEEE Trans. Instrum. Meas. 2018, 67, 1679–1689. [Google Scholar] [CrossRef]
- Wang, X.; Zheng, Z.; Jiang, G.; He, Q.; Xie, P. Detecting Wind Turbine Blade Icing with a Multiscale Long Short-Term Memory Network. Energies 2022, 15, 2864. [Google Scholar] [CrossRef]
- Elizabeth Michael, N.; Mishra, M.; Hasan, S.; Al-Durra, A. Short-term solar power predicting model based on multi-step CNN stacked LSTM technique. Energies 2022, 15, 2150. [Google Scholar] [CrossRef]
- Liu, C.-H.; Gu, J.-H.; Yang, M.-T. A simplified LSTM neural networks for one day-ahead solar power forecasting. IEEE Access 2021, 9, 17174–17195. [Google Scholar] [CrossRef]
- Elsheikh, A.H.; Panchal, H.; Ahmadein, M.; Mosleh, A.O.; Sadasivuni, K.K.; Alsaleh, N.A. Productivity forecasting of solar distiller integrated with evacuated tubes and external condenser using artificial intelligence model and moth-flame optimizer. Case Stud. Therm. Eng. 2021, 28, 101671. [Google Scholar] [CrossRef]
- Elsheikh, A.H.; Katekar, V.P.; Muskens, O.L.; Deshmukh, S.S.; Abd Elaziz, M.; Dabour, S.M. Utilization of LSTM neural network for water production forecasting of a stepped solar still with a corrugated absorber plate. Process Saf. Environ. Prot. 2021, 148, 273–282. [Google Scholar] [CrossRef]
- Weiss, K.; Khoshgoftaar, T.M.; Wang, D. A survey of transfer learning. J. Big Data 2016, 3, 9. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Pan, Z.; Lei, B. Transfer learning with deep convolutional neural network for SAR target classification with limited labeled data. Remote Sens. 2017, 9, 907. [Google Scholar] [CrossRef] [Green Version]
- Sagheer, A.; Hamdoun, H.; Youness, H. Deep LSTM-based transfer learning approach for coherent forecasts in hierarchical time series. Sensors 2021, 21, 4379. [Google Scholar] [CrossRef] [PubMed]
- Gautam, Y. Transfer learning for COVID-19 cases and deaths forecast using LSTM network. ISA Trans. 2022, 124, 41–56. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Xu, H.; Jiang, P.; Yu, S.; Lin, G.; Bychkov, I.; Hmelnov, A.; Ruzhnikov, G.; Zhu, N.; Liu, Z. A transfer learning-based LSTM strategy for imputing large-scale consecutive missing data and its application in a water quality prediction system. J. Hydrol. 2021, 602, 126573. [Google Scholar] [CrossRef]
- Tanaka, N.; Moriya, S.; Ushijima, S.; Koga, T.; Eguchi, Y. Prediction method for thermal stratification in a reactor vessel. Nucl. Eng. Des. 1990, 120, 395–402. [Google Scholar] [CrossRef]
- Weathered, M.; Kultgen, D.; Kent, E.; Grandy, C.; Sumner, T.; Moisseytsev, A.; Kim, T. Thermal Hydraulic Experimental Test Article (FY2020 Status Report); No. ANL-ART-211; ANL-METL-25; Argonne National Laboratory (ANL): Lemont, IL, USA, 2020.
- Masterson, R.E. Nuclear Reactor Thermal Hydraulics: An Introduction to Nuclear Heat Transfer and Fluid Flow; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Cabral, A.; Bakhtiari, S.; Elmer, T.W.; Heifetz, A.; Lisowski, D.D.; Carasik, L.B. Measurement of flow in a mixing Tee using ultrasound Doppler velocimetry for opaque fluids. Trans. Am. Nucl. Soc. 2019, 121, 1643–1645. [Google Scholar]
- Benesty, J.; Chen, J.; Huang, Y.; Cohen, I. Pearson correlation coefficient. In Noise Reduction in Speech Processing. Springer Topics in Signal Processing; Springer: Berlin/Heidelberg, Germany, 2009; Volume 2. [Google Scholar]
- Liu, H.; Cocea, M. Semi-random partitioning of data into training sets in granular computing context. Granul. Comput. 2017, 2, 357–386. [Google Scholar] [CrossRef] [Green Version]
Fluid | ρ (kg/m3) | μ (Pa·s) | c (J/kg·K) | k (W/m·K) | D (in) |
---|---|---|---|---|---|
Water | 1000 | 8.9 × 10−4 | 4183 | 0.6 | 1.61 |
Galinstan | 6440 | 2.4 × 10−3 | 296 | 16.5 | 1.61 |
Segment | Constant-Flow Time Interval (s) | Time Series Test Segments (s) | Re |
---|---|---|---|
1 | 1836–2100 | 1870–2079 | 1680 |
2 | 1444–1661 | 1444–1653 | 2600 |
3 | 1124–1393 | 1130–1339 | 5600 |
4 | 811–1027 | 811–1020 | 11,900 |
5 | 1–739 | 200–409 | 18,300 |
Segment | Constant-Flow Time Interval (s) | Time Series Test Segments (s) | Re |
---|---|---|---|
1 | 276–791 | 300–446 | 5800 |
2 | 1170–1471 | 1200–1346 | 9100 |
3 | 1–216 | 50–196 | 14,500 |
4 | 918–1100 | 950–1096 | 18,200 |
Segment | RMSE (10−2) (°C) | μ(·10−2) (°C) | σ(·10−2) (°C) | Measurement Uncertainty (°C) | |||
---|---|---|---|---|---|---|---|
LSTM | TL-LSTM | LSTM | TL-LSTM | LSTM | TL-LSTM | ||
1 | 1.96 | 2.08 | −1.49 | 0.84 | 1.28 | 1.91 | ±1.1 |
2 | 2.01 | 3.64 | 0.25 | −0.01 | 2.00 | 3.65 | ±1.1 |
3 | 4.18 | 4.60 | −1.32 | −0.09 | 3.98 | 4.61 | ±1.1 |
4 | 6.72 | 7.85 | 5.25 | 2.82 | 4.20 | 7.34 | ±1.1 |
5 | 9.07 | 9.34 | 3.14 | 5.17 | 8.53 | 7.80 | ±1.1 |
Model | RMSE (°C) | RMSE < 1.1 °C |
---|---|---|
LSTM | 4.38 × 10−6Re + 0.013 | Re < 2.48 × 105 |
TL-LSTM | 4.21 × 10−6Re + 0.022 | Re < 2.56 × 105 |
Segment | RMSE (10−2) (°C) | μ(·10−2) (°C) | σ(·10−2) (°C) | Measurement Uncertainty (°C) | |||
---|---|---|---|---|---|---|---|
LSTM | TL-LSTM | LSTM | TL-LSTM | LSTM | TL-LSTM | ||
1 | 3.47 | 4.51 | 1.64 | −2.93 | 3.07 | 3.44 | ±1.1 |
2 | 6.01 | 8.44 | 3.81 | −0.89 | 4.66 | 8.42 | ±1.1 |
3 | 10.55 | 11.97 | 3.58 | −1.03 | 9.95 | 11.97 | ±1.1 |
4 | 15.39 | 16.18 | 0.96 | −5.51 | 15.42 | 15.27 | ±1.1 |
Model | RMSE (°C) | RMSE < 1.1 °C |
---|---|---|
LSTM | 9.44 × 10−6 Re − 0.024 | Re < 1.19 × 105 |
TL-LSTM | 8.95 × 10−6 Re − 0.004 | Re < 1.23 × 105 |
Re | C | m |
---|---|---|
35–5 × 103 | 0.583 | 0.471 |
5 × 103–5 × 104 | 0.148 | 0.633 |
5 ×104–5 × 105 | 0.0208 | 0.814 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pantopoulou, S.; Ankel, V.; Weathered, M.T.; Lisowski, D.D.; Cilliers, A.; Tsoukalas, L.H.; Heifetz, A. Monitoring of Temperature Measurements for Different Flow Regimes in Water and Galinstan with Long Short-Term Memory Networks and Transfer Learning of Sensors. Computation 2022, 10, 108. https://doi.org/10.3390/computation10070108
Pantopoulou S, Ankel V, Weathered MT, Lisowski DD, Cilliers A, Tsoukalas LH, Heifetz A. Monitoring of Temperature Measurements for Different Flow Regimes in Water and Galinstan with Long Short-Term Memory Networks and Transfer Learning of Sensors. Computation. 2022; 10(7):108. https://doi.org/10.3390/computation10070108
Chicago/Turabian StylePantopoulou, Stella, Victoria Ankel, Matthew T. Weathered, Darius D. Lisowski, Anthonie Cilliers, Lefteri H. Tsoukalas, and Alexander Heifetz. 2022. "Monitoring of Temperature Measurements for Different Flow Regimes in Water and Galinstan with Long Short-Term Memory Networks and Transfer Learning of Sensors" Computation 10, no. 7: 108. https://doi.org/10.3390/computation10070108
APA StylePantopoulou, S., Ankel, V., Weathered, M. T., Lisowski, D. D., Cilliers, A., Tsoukalas, L. H., & Heifetz, A. (2022). Monitoring of Temperature Measurements for Different Flow Regimes in Water and Galinstan with Long Short-Term Memory Networks and Transfer Learning of Sensors. Computation, 10(7), 108. https://doi.org/10.3390/computation10070108