Improved Computational Prediction of the Electrochemical Reduction Potential of Twenty 3-Aryl-Quinoxaline-2-Carbonitrile 1,4-Di-N-Oxide Derivatives
Abstract
:1. Introduction
Compound | R1 | R2 |
---|---|---|
A1 | H | H |
A2 | CH3 | H |
A3 | OCH3 | H |
A4 | Cl | H |
B1 | H | 3-CH3 |
B2 | CH3 | 3-CH3 |
B3 | OCH3 | 3-CH3 |
B4 | Cl | 3-CH3 |
C1 | H | 3-Cl |
C2 | CH3 | 3-Cl |
C3 | OCH3 | 3-Cl |
C4 | Cl | 3-Cl |
D1 | H | 4-Br |
D2 | CH3 | 4-Br |
D3 | OCH3 | 4-Br |
D4 | Cl | 4-Br |
E1 | H | 4-NO2 |
E2 | CH3 | 4-NO2 |
E3 | OCH3 | 4-NO2 |
E4 | Cl | 4-NO2 |
2. Materials and Methods
2.1. Building the 3-Aryl-quinoxaline-2-carbonitrile 1,4-di-N-oxide Derivatives
2.2. DFT Calculations
2.3. Ferrocene/Ferrocenium Reference
3. Results and Discussion
3.1. Computationally Predicted Electrochemical Reduction Potentials
3.2. Comparison to Experimental Electrochemical Data
3.2.1. Comparison of Predicted and Experimental Wave 1 Electrochemical Potentials
3.2.2. Comparison of Predicted and Experimental Wave 2 Electrochemical Potentials
3.2.3. Comparison of the Predicted and Experimental Nitro-Wave Electrochemical Potentials
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Anderson, R.F.; Yadav, P.; Shinde, S.S.; Hong, C.R.; Pullen, S.M.; Reynisson, J.; Wilson, W.R.; Hay, M.P. Radical chemistry and cytotoxicity of bioreductive 3-substituted quinoxaline di-N-Oxides. Chem. Res. Toxicol. 2016, 29, 1310–1324. [Google Scholar] [CrossRef] [PubMed]
- Zarranz, B.; Jaso, A.; Aldana, I.; Monge, A. Synthesis and anticancer activity evaluation of new 2-alkylcarbonyl and 2-benzoyl-3-trifluoromethyl-quinoxaline 1,4-di-N-oxide derivatives. Bioorg. Med. Chem. 2004, 12, 3711–3721. [Google Scholar] [CrossRef] [PubMed]
- Amin, K.M.; Ismail, M.M.F.; Noaman, E.; Soliman, D.H.; Ammar, Y.A. New quinoxaline 1,4-di-N-oxides. Part 1: Hypoxia-selective cytotoxins and anticancer agents derived from quinoxaline 1,4-di-N-oxides. Bioorg. Med. Chem. 2006, 14, 6917–6923. [Google Scholar] [CrossRef] [PubMed]
- Suter, W.; Rosselet, A.; Knusel, F. Mode of action of quindoxin and substituted quinoxaline-di-N-oxides on Escherichia coli. Antimicrob. Agents Chemother. 1978, 13, 770–783. [Google Scholar] [CrossRef] [Green Version]
- Soliman, D.H. Anti-bacterial and Anti-fungal Activities of New Quinoxaline 1,4-di-N-Oxide Derivatives. Int. J. Org. Chem. 2013, 3, 65–72. [Google Scholar] [CrossRef] [Green Version]
- Vicente, E.; Pérez-Silanes, S.; Lima, L.M.; Ancizu, S.; Burguete, A.; Solano, B.; Villar, R.; Aldana, I.; Monge, A. Selective activity against Mycobacterium tuberculosis of new quinoxaline 1,4-di-N-oxides. Bioorg. Med. Chem. 2009, 17, 385–389. [Google Scholar] [CrossRef]
- Estevez, Y.; Quiliano, M.; Burguete, A.; Cabanillas, B.; Zimic, M.; Málaga, E.; Verástegui, M.; Pérez-Silanes, S.; Aldana, I.; Monge, A.; et al. Trypanocidal properties, structure–activity relationship and computational studies of quinoxaline 1,4-di-N-oxide derivatives. Exp. Parasitol. 2011, 127, 745–751. [Google Scholar] [CrossRef] [Green Version]
- Ancizu, S.; Moreno, E.; Torres, E.; Burguete, A.; Pérez-Silanes, S.; Benítez, D.; Villar, R.; Solano, B.; Marín, A.; Aldana, I.; et al. Heterocyclic-2-carboxylic Acid (3-Cyano-1,4-di-N-oxidequinoxalin-2-yl)amide Derivatives as Hits for the Development of Neglected Disease Drugs. Molecules 2009, 14, 2256–2272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torres, E.; Moreno-Viguri, E.; Galiano, S.; Devarapally, G.; Crawford, P.W.; Azqueta, A.; Arbillaga, L.; Varela, J.; Birriel, E.; Di Maio, R.; et al. Novel quinoxaline 1,4-di-N-oxide derivatives as new potential antichagasic agents. Eur. J. Med. Chem. 2013, 66, 324–334. [Google Scholar] [CrossRef] [Green Version]
- Zarranz, B.; Jaso, A.; Aldana, I.; Monge, A.; Maurel, S.; Deharo, E.; Jullian, V.; Sauvain, M. Synthesis and antimalarial activity of new 3-arylquinoxaline-2-carbonitrile derivatives. Arzneimittelforschung 2005, 55, 754–761. [Google Scholar]
- Carta, A.; Paglietti, G.; Rahbar Nikookar, M.E.; Sanna, P.; Sechi, L.; Zanetti, S. Novel substituted quinoxaline 1,4-dioxides with in vitro antimycobacterial and anticandida activity. Eur. J. Med. Chem. 2002, 37, 355–366. [Google Scholar] [CrossRef] [PubMed]
- Burguete, A.; Pontiki, E.; Hadjipavlou-Litina, D.; Ancizu, S.; Villar, R.; Solano, B.; Moreno, E.; Torres, E.; Pérez, S.; Aldana, I. Synthesis and biological evaluation of new quinoxaline derivatives as antioxidant and anti-inflammatory agents. Chem. Biol. Drug Des. 2011, 77, 255–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burguete, A.; Pontiki, E.; Hadjipavlou-Litina, D.; Villar, R.; Vicente, E.; Solano, B.; Ancizua, S.; Pérez-Silanesa, S.; Aldanaa, I.; Mongea, A. Synthesis and anti-inflammatory/antioxidant activities of some new ring substituted 3-phenyl-1-(1,4-di-N-oxide quinoxalin-2-yl)-2-propen-1-one derivatives and of their 4,5-dihydro-(1H)-pyrazole analogues. Bioorg. Med. Chem. Lett. 2007, 17, 6439–6443. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, M.; Cerecetto, H.; Monge, A. Quinoxaline 1,4-dioxide and phenazine 5,10-dioxide chemistry and biology. Top. Heterocycl. Chem. 2007, 11, 179–211. [Google Scholar]
- Crawford, P.W.; Scamehorn, R.G.; Hollstein, U.; Ryan, M.D.; Kovacic, P. Cyclic voltammetry of phenazines and quinoxalines including mono-and di-N-oxides. Related to structure and antimicrobial activity. Chem. Biol. Interact. 1986, 60, 67–84. [Google Scholar] [CrossRef]
- Moreno, E.; Pérez-Silanes, S.; Gouravaram, S.; Macharam, A.; Ancizu, S.; Torres, E.; Aldana, I.; Monge, A.; Crawford, P.W. 1,4-Di-N-oxide quinoxaline-2-carboxamide: Cyclic voltammetry and relationship between electrochemical behavior, structure and anti-tuberculosis activity. Electrochim. Acta 2011, 56, 3270–3275. [Google Scholar] [CrossRef]
- Carta, A.; Corona, P.; Loriga, M. Quinoxaline 1,4-dioxide: A versatile scaffold endowed with manifold activities. Curr. Med. Chem. 2005, 12, 2259–2272. [Google Scholar] [CrossRef]
- Cheng, G.; Sa, W.; Cao, C.; Guo, L.; Hao, H.; Liu, Z.; Wang, X.; Yuan, Z. Quinoxaline 1,4-di-N-oxides: Biological activities and mechanisms of action. Front. Pharmacol. 2016, 7, 64. [Google Scholar] [CrossRef] [Green Version]
- ACD/ChemSketch, Version 2022.1.0; Advanced Chemistry Development, Inc. (ACD/Labs): Toronto, ON, Canada, 2022. Available online: https://www.acdlabs.com (accessed on 26 December 2022).
- Divya, K.M.; Savitha, D.P.; Anjali Krishna, G.; Dhanya, T.M.; Mohanan, P.V. Crystal structure, DFT studies, Hirshfeld surface and energy framework analysis of 4-(5-nitro-thiophen-2-yl)-pyrrolo [1, 2-a] quinoxaline: A potential SARS-CoV-2 main protease inhibitor. J. Mol. Structure. 2022, 1251, 131932. [Google Scholar] [CrossRef]
- Verbitskiy, E.V.; le Poul, P.; Bureš, F.; Achelle, S.; Barsella, A.; Kvashnin, Y.A.; Rusinov, G.L.; Charushin, V.N. Push–Pull Derivatives Based on 2,4′-Biphenylene Linker with Quinoxaline, [1,2,5]Oxadiazolo[3,4-B]Pyrazine and [1,2,5]Thiadiazolo[3,4-B]Pyrazine Electron Withdrawing Parts. Molecules 2022, 27, 4250. [Google Scholar] [CrossRef]
- Aguilar-Martínez, M.; Cuevas, G.; Jiménez-Estrada, M.; González, I.; Lotina-Hennsen, B.; Macías-Ruvalcaba, N. An Experimental and Theoretical Study of the Substituent Effects on the Redox Properties of 2-[(R-phenyl)amine]-1,4-naphthalenediones in Acetonitrile. J. Org. Chem. 1999, 64, 3684–3694. [Google Scholar] [CrossRef] [PubMed]
- Hodgson, J.L.; Namazian, M.; Bottle, S.E.; Coote, M.L. One-Electron Oxidation and Reduction Potentials of Nitroxide Antioxidants: A Theoretical Study. J. Phys. Chem. A 2007, 111, 13595–13605. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro da Silva, M.D.M.C.; Gomes, J.R.B.; Gonçalves, J.M.; Sousa, E.A.; Pandey, S.; Acree, W.E. Thermodynamic Properties of Quinoxaline-1,4-Dioxide Derivatives: A Combined Experimental and Computational Study. J. Org. Chem. 2004, 69, 2785–2792. [Google Scholar] [CrossRef] [PubMed]
- Lauria, A.; Almerico, A.M.; Barone, G. The influence of substitution in the quinoxaline nucleus on 1,3-dipolar cycloaddition reactions: A DFT study. Comput. Theor. Chem. 2013, 1013, 116–122. [Google Scholar] [CrossRef]
- Mishra, A.; Verma, C.; Srivastava, V.; Lgaz, H.; Quraishi, M.A.; Ebenso, E.E.; Chung, I.-M. Chemical, Electrochemical and Computational Studies of Newly Synthesized Novel and Environmental Friendly Heterocyclic Compounds as Corrosion Inhibitors for Mild Steel in Acidic Medium. J. Bio Tribo Corros. 2018, 4, 32. [Google Scholar] [CrossRef]
- Miller, E.M.; Brazel, C.J.; Brillos-Monia, K.A.; Crawford, P.W.; Hufford, H.C.; Loncaric, M.R.; Mruzik, M.N.; Nenninger, A.W.; Ragain, C.M. Reduction Potential Predictions for Some 3-Aryl-Quinoxaline-2-Carbonitrile 1,4-Di-N-Oxide Derivatives with Known Anti-Tumor Properties. Computation. 2019, 7, 6. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Xia, Q.; Shangguan, S.; Liu, X.; Hu, Y.; Sheng, R. Synthesis and biological evaluation of 3-aryl-quinoxaline-2-carbonitrile 1,4-di-N-oxide derivatives as hypoxic selective anti-tumor agents. Molecules 2012, 17, 9683–9696. [Google Scholar] [CrossRef] [Green Version]
- Hay, P.J.; Wadt, W.R. Ab initio effective core potentials for molecular calculations—Potentials for K to Au including the outermost core orbitals. J. Chem. Phys. 1985, 82, 299–310. [Google Scholar] [CrossRef]
- Ditchfield, R.; Hehre, W.J.; Pople, J.A. Self-Consistent Molecular Orbital Methods. 9. Extended Gaussian-type basis for molecular-orbital studies of organic molecules. J. Chem. Phys. 1971, 54, 724. [Google Scholar] [CrossRef]
- Pooladian, F.; Crawford, P.W.; Kessler, J.M.; Casey, G.R.; Ragain, C.M. Reduction Potential for Some 1,4-Di-N-oxide quinoxaline-2-car-boxamide derivatives with anti-tuberculosis activity. Compounds 2023, 3, 83–95. [Google Scholar] [CrossRef]
- Dunning, T.H. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989, 90, 1007–1023. [Google Scholar] [CrossRef]
- Miller, M.E.; Xia, Q.; Cella, E.M.; Nenninger, W.A.; Mruzik, N.M.; Brillos-Monia, A.K.; Hu, Z.Y.; Sheng, R.; Ragain, M.C.; Crawford, P.W. Voltammetric Study of Some 3-Aryl-quinoxaline-2-carbonitrile 1,4-di-N-oxide Derivatives with Anti-Tumor Activities. Molecules 2017, 22, 1442. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, R.J.; Musial, M. Coupled-cluster theory in quantum chemistry. Rev. Mod. Phys. 2007, 79, 291–352. [Google Scholar] [CrossRef]
- Dennington, R.; Keith, T.; Millam, J. Millam GaussView, Version 5; Semichem Inc.: Shawnee Mission, KS, USA, 2016. [Google Scholar]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
Wave 1 | Nitro Wave | Wave 2 | |||||||
---|---|---|---|---|---|---|---|---|---|
Compound | cc-pVTZ | lanl2dz | 6-31G | cc-pVTZ | lanl2dz | 6-31G | cc-pVTZ | lanl2dz | 6-31G |
A1 | 3.37 | 3.60 | 3.29 | --- | --- | --- | 2.08 | 2.18 | 1.78 |
A2 | 3.31 | 3.55 | 3.24 | --- | --- | --- | 2.07 | 2.16 | 1.77 |
A3 | 3.33 | 3.58 | 3.27 | --- | --- | --- | 2.11 | 2.23 | 1.83 |
A4 | 3.49 | 3.75 | 3.46 | --- | --- | --- | 2.26 | 2.40 | 2.02 |
B1 | 3.36 | 3.59 | 3.28 | --- | --- | --- | 2.06 | 2.16 | 1.76 |
B2 | 3.30 | 3.54 | 3.23 | --- | --- | --- | 2.05 | 2.09 | 1.75 |
B3 | 3.32 | 3.57 | 3.26 | --- | --- | --- | 2.10 | 2.22 | 1.82 |
B4 | 3.47 | 3.74 | 3.45 | --- | --- | --- | 2.25 | 2.39 | 1.79 |
C1 | 3.40 | 3.65 | 3.35 | --- | --- | --- | 2.10 | 2.19 | 1.81 |
C2 | 3.37 | 3.61 | 3.31 | --- | --- | --- | 2.09 | 2.12 | 1.81 |
C3 | 3.37 | 3.63 | 3.33 | --- | --- | --- | 2.13 | 2.25 | 1.86 |
C4 | 3.52 | 3.80 | 3.52 | --- | --- | --- | 2.27 | 2.41 | 2.04 |
D1 | 3.40 | 3.64 | 3.33 | --- | --- | --- | 2.10 | 2.19 | 1.81 |
D2 | 3.34 | 3.58 | 3.28 | --- | --- | --- | 2.09 | 2.12 | 1.80 |
D3 | 3.36 | 3.62 | 3.31 | --- | --- | --- | 2.13 | 2.24 | 1.86 |
D4 | 3.52 | 3.78 | 3.50 | --- | --- | --- | 2.27 | 2.40 | 2.04 |
E1 | 3.48 | 8.05 | 7.77 | 2.47 | −4.22 | −4.72 | 2.43 | 5.62 | 5.41 |
E2 | 3.43 | 8.00 | 7.72 | 2.48 | −4.18 | −4.63 | 2.44 | 5.58 | 5.26 |
E3 | 3.42 | 7.96 | 7.67 | 2.54 | −4.09 | −4.53 | 2.50 | 5.58 | 5.22 |
E4 | 3.57 | 7.98 | 7.65 | 2.76 | −3.88 | No Value * | 2.58 | 5.72 | No Value * |
Wave 1 | Nitro Wave | Wave 2 | |||||||
---|---|---|---|---|---|---|---|---|---|
Compound | cc-pVTZ | lanl2dz | 6-31G | cc-pVTZ | lanl2dz | 6-31G | cc-pVTZ | lanl2dz | 6-31G |
A1 | −1.09 | −1.19 | −1.17 | --- | --- | --- | −2.37 | −2.62 | −2. 69 |
A2 | −1.10 | −1.25 | −1.22 | --- | --- | --- | −2.39 | −2.63 | −2.69 |
A3 | −1.05 | −1.21 | −1.19 | --- | --- | --- | −2.35 | −2.56 | −2.63 |
A4 | −1.06 | −1.05 | −1.00 | --- | --- | --- | −2.35 | −2.40 | −2.44 |
B1 | −1.14 | −1.20 | −1.18 | --- | --- | --- | −2.38 | −2.63 | −2.70 |
B2 | −1.15 | −1.26 | −1.23 | --- | --- | --- | −2.40 | −2.71 | −2.71 |
B3 | −1.08 | −1.22 | −1.20 | --- | --- | --- | −2.36 | −2.58 | −264 |
B4 | −1.11 | −1.06 | −1.01 | --- | --- | --- | −2.36 | −2.40 | −2.69 |
C1 | −1.12 | −1.14 | −1.11 | --- | --- | --- | −2.34 | −2.60 | −2.65 |
C2 | −1.13 | −1.18 | −1.15 | --- | --- | --- | −2.35 | −2.68 | −2.65 |
C3 | −1.09 | −1.16 | −1.13 | --- | --- | --- | −2.32 | −2.55 | −2.60 |
C4 | −1.10 | −1.00 | −0.94 | --- | --- | --- | −2.32 | −2.39 | −2.42 |
D1 | −0.97 | −1.16 | −1.13 | --- | --- | --- | −2.19 | −2.60 | −2.65 |
D2 | −0.98 | −1.21 | −1.18 | --- | --- | --- | −2.20 | −2.67 | −2.66 |
D3 | −0.93 | −1.18 | −1.15 | --- | --- | --- | −2.18 | −2.55 | −2.60 |
D4 | −0.94 | −1.01 | −0.96 | --- | --- | --- | −2.18 | −2.39 | −2.42 |
E1 | −0.97 | 3.26 | 3.31 | −1.98 | −9.01 | −1.15 | −2.02 | 0.82 | 0.95 |
E2 | −1.03 | 3.21 | 3.26 | −1.98 | −8.98 | −1.20 | −2.02 | 0.78 | 0.80 |
E3 | −1.03 | 3.17 | 3.21 | −1.91 | −8.88 | −1.25 | −1.95 | 0.79 | 0.76 |
E4 | −0.88 | 3.18 | 3.19 | −1.69 | −8.67 | No Value * | −1.88 | 0.93 | No Value * |
Compound | Wave 1 | Nitro Wave | Wave 2 |
---|---|---|---|
E1/2 (V) | E1/2 (V) | Epc(V) | |
A1 | −1.296 | --- | −2.163 |
A2 | −1.327 | --- | −2.310 |
A3 | −1.331 | --- | −2.166 |
A4 | −1.188 | --- | −1.973 |
B1 | −1.309 | --- | −2.56 b |
B2 | −1.318 | --- | −2.377 |
B3 | −1.333 | --- | −2.216 |
B4 | −1.196 | --- | −2.115 |
C1 | −1.269 | --- | −2.097 |
C2 | −1.303 | --- | −2.125 |
C3 | −1.401 a | --- | No Value |
C4 | −1.154 | --- | −2.080 |
D1 | −1.278 | --- | −2.06 b |
D2 | −1.305 | --- | −2.326 |
D3 | −1.300 | --- | −1.995 |
D4 | −1.181 | --- | −2.132 |
E1 | −1.234 | −1.518 | −2.306 |
E2 | −1.265 | −1.539 | −2.352 |
E3 | −1.277 | −1.566 | −2.372 |
E4 | −1.134 | −1.514 | −2.141 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhattarai, S.; Mareta, P.; Crawford, P.W.; Kessler, J.M.; Ragain, C.M. Improved Computational Prediction of the Electrochemical Reduction Potential of Twenty 3-Aryl-Quinoxaline-2-Carbonitrile 1,4-Di-N-Oxide Derivatives. Computation 2023, 11, 9. https://doi.org/10.3390/computation11010009
Bhattarai S, Mareta P, Crawford PW, Kessler JM, Ragain CM. Improved Computational Prediction of the Electrochemical Reduction Potential of Twenty 3-Aryl-Quinoxaline-2-Carbonitrile 1,4-Di-N-Oxide Derivatives. Computation. 2023; 11(1):9. https://doi.org/10.3390/computation11010009
Chicago/Turabian StyleBhattarai, Shambhu, Pradeep Mareta, Philip W. Crawford, Jonathan M. Kessler, and Christina M. Ragain. 2023. "Improved Computational Prediction of the Electrochemical Reduction Potential of Twenty 3-Aryl-Quinoxaline-2-Carbonitrile 1,4-Di-N-Oxide Derivatives" Computation 11, no. 1: 9. https://doi.org/10.3390/computation11010009
APA StyleBhattarai, S., Mareta, P., Crawford, P. W., Kessler, J. M., & Ragain, C. M. (2023). Improved Computational Prediction of the Electrochemical Reduction Potential of Twenty 3-Aryl-Quinoxaline-2-Carbonitrile 1,4-Di-N-Oxide Derivatives. Computation, 11(1), 9. https://doi.org/10.3390/computation11010009